
Reproducibility: Methods1

Randall J. LeVeque2

Department of Applied Mathematics, University of Washington3

DRAFT of an article in preparation for the Encyclopedia of Applied and4

Computational Mathematics, to be published by Springer. All rights re-5

served. April 22, 2012.6

1 Summary7

The term “reproducible research” in scientific computing and computational8

mathematics, science or engineering generally refers to the archiving and/or9

publication of all computer codes and data necessary to later reconstruct10

research results.11

2 Description12

The requirement of reproducibility of experimental results has long been an13

integral part of the “scientific method”. To the extent possible, researchers14

are expected to repeat carefully controlled experiments in order to insure15

that observed results are not the result of flawed experimental procedure16

or external influences. Experimental scientists are expected to keep careful17

laboratory notebooks documenting all steps of experiments, including those18

that fail to support the desired result. Such notebooks have a legal standing19

in issues of intellectual property rights or investigations of research falsifi-20

cation, and are critical in facilitating future research by the same scientist or21

by new personnel joining an established laboratory. Publications that result22

from experimental research are expected to contain a detailed description23

of the procedures and materials used in the experiments. These descrip-24

tions are often used by other researchers to independently verify the results25

presented, or as a basis for new research that builds on the published work.26

Similar standards are generally not the norm in computational research,27

but the development of such standards and tools to facilitate reproducibility28

is an active area of research. There is growing concern regarding the repro-29

ducibility of computational experiments, particularly with the increasing use30

of computer simulation to replace physical experiments and the increased31

1

http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-70528-4
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-70528-4
http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-540-70528-4


reliance on computational techniques in all areas of scientific enquiry, en-1

gineering design, and policy making.2

At first glance it may seem that a computational experiment is much3

more easily repeatable than a physical experiment: running the same pro-4

gram a second time might be expected to give the same results as the first5

time, even if run on a different computer. However, in practice there are6

several challenges:7

• It is not always true that running the same program twice gives the8

same results, even if the program is correctly written. On a computer,9

the order in which operations are performed can make a difference10

even if operations commute in theory. When using optimizing compil-11

ers or parallel computers, the order of operations may change from12

one run to another.13

• Some programs cannot easily be run on a different computer than the14

one where the original experiment was performed. This may be be-15

cause of the use of proprietary or commercial software that cannot be16

transferred, or the use of specialized hardware such as a massively-17

parallel supercomputer.18

• Even if the same result is always obtained when running the program19

repeatedly on a number of different computers, this does not guaran-20

tee that the program is correct or that the result is meaningful. Nor21

does it guarantee that other scientists can confirm that the program22

faithfully implements the ideas contained in a publication or can build23

on this work in future research.24

• The program and input data may not be available at a later date, even25

to the person who wrote it and originally performed the experiments.26

Computer codes often evolve rapidly in the course of research and27

are adapted to solve new problems without carefully documenting or28

archiving the version of code and data that were used to obtain previ-29

ous results.30

Although the first two difficulties above should not be overlooked, the31

term “reproducible” in computational science generally means much more32

than simply getting the same result in a dependable manner when the same33

program is run repeatedly. (This more limited version of reproducibility is34

sometimes called “replicable” or “repeatable” to make this distinction clear.)35

Reproducibility also does not directly address the correctness of computer36

2



code for solving the target problem; see the entries on Validation and Veri-1

fication for that topic.2

The remainder of this article addresses the difficulties inherent in archiv-3

ing and publishing computer codes and data, and some tools that are cur-4

rently used to facilitate this. Approaches and methods are rapidly evolving5

and rather than citing specific tools currently in use, it is recommended that6

interested readers search the literature for the latest developments using7

some of the terms introduced below.8

See [Yale Law School Roundtable on Data and Code Sharing(2010)]9

or [reproducibleresearch.org(2012)] for some further references.10

2.1 Version control11

A technique that is well established in software development communities12

(and increasingly among computational scientists) is the use of a version13

control system (VCS) to track changes to source code and perhaps data.14

Once a file is under version control, a modified version can be “committed”15

and the system will keep track of the difference between this version and16

the previous version. Only differences are stored, which greatly reduces17

the storage required to track large numbers of changes, but any previous18

version of a file or the entire code base can be automatically regenerated19

with a few commands.20

Popular version control systems include CVS and its successor Subver-21

sion. These are examples of the client-server model of version control, in22

which a master repository exists on a server that contains the full history. All23

developers commit changes to this repository and must have access to the24

repository (often via the internet) in order to commit changes or reconstruct25

previous versions.26

More recently, distributed version control systems have become more27

popular, in which every “clone” of the repository contains the entire his-28

tory and developers can work independently but easily merge changes be-29

tween repositories when convenient. Popular examples include Mercurial,30

Git, and Bazaar. A good introduction to version control can be found in31

[Sink(2011)].32

2.2 Web-based repositories33

Most version control systems have associated web-based tools to assist34

in the exploration of past versions and changes between versions. These35

3



tools typically also provide “issue tracking” facilities to keep track of bug1

reports and proposals for enhancements to the code.2

Although version control is extremely useful even when practiced by a3

lone researcher on an isolated computer, for collaboration it is often conve-4

nient to use repositories that are hosted on websites such as bitbucket.org5

or github.org that can be used for a “master copy” of a shared repository6

and to host the issue tracker. Public repositories are frequently used for7

open source software projects that allow anyone to download code, and8

can be a valuable component in reproducibility when used to host code9

associated with a journal publication. Many institutions also maintain insti-10

tutional repositories that can be used to archive the code or data used in11

publications, generally without version control.12

2.3 Related ideas13

2.3.1 Data provenance14

The term “provenance” refers to the documentation of the complete his-15

tory of an object and its ownership, and was originally used primarily for16

works of art. Since scientific results now frequently depend on data that17

has been collected from numerous sources, or is generated or processed18

by computer programs that may change or be run with different choices of19

parameters, the issue of data provenence is an important aspect of repro-20

ducibility.21

2.3.2 Literate programming22

The term “literate programming” was coined by the computer scientist Don-23

ald Knuth [Knuth(1984)], who developed a system to combine computer24

code with its own description and documentation. Several other approaches25

have been developed since that also assist in writing self-documented code.26

These systems can be a useful component in reproducible research, and27

can greatly assist in deciphering code written by someone else or in the28

distant past.29

2.3.3 Scientific workflow systems30

A workflow management system designed to build up and keep track of a31

sequence of computational steps and their data is often called a scientific32

workflow system. Their use can aid in preserving a complete record of33

4



all computations performed in the course of a research project and the1

provenance of the associated data.2

2.3.4 Virtualization3

Often having the computer program that generated results is insufficient to4

replicate the same results later, since subtle changes in compilers, visual-5

ization tools, or other software used by the program can change the results.6

With the passage of time it may not be possible to run the code at all on7

a newer operating system. One approach to archiving or sharing codes8

is to use virtualization, in which the entire operating system and software9

environment is preserved in a virtual machine (VM). This machine can then10

be run on any computer (with an appropriate player) in order to emulate11

the original environment. This approach has become even more conve-12

nient recently with the growth of commercial cloud computing: a VM can be13

created and archived on a public cloud computing platform in such a way14

that it can be run by anyone who purchases sufficient computing time (typ-15

ically at a rate of pennies per CPU hour as of this writing). Publicly funded16

cloud computing platforms, free for use in scientific research, are also be-17

ing deployed, and open source alternatives to commercial cloud platforms18

provide comparable capabilities.19

References20

[Knuth(1984)] Knuth DE (1984) Literate programming. The Computer Jour-21

nal 27:97–11122

[reproducibleresearch.org(2012)] reproducibleresearchorg (2012) Links to23

resources.24

http://reproducibleresearch.net/index.php/RR_links25

[Sink(2011)] Sink E (2011) Version control by example. http://www.26

ericsink.com/vcbe/27

[Yale Law School Roundtable on Data and Code Sharing(2010)] Yale Law28

School Roundtable on Data and Code Sharing (2010) Reproducible29

research: Addressing the need for data and code sharing in com-30

putational science. Computing in Science and Engineering 12:8–13,31

http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.11332

5

http://reproducibleresearch.net/index.php/RR_links
http://www.ericsink.com/vcbe/
http://www.ericsink.com/vcbe/
http://www.ericsink.com/vcbe/
http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.113

	Summary
	Description
	Version control
	Web-based repositories
	Related ideas
	Data provenance
	Literate programming
	Scientific workflow systems
	Virtualization



