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Time-split methods for partial differential equations

Randall John LeVeque

Abstract. 4 his thesis concerns the use of time-split methods for the numerical solu-
tion of time-dependent partial differential equations. Frequently the differential operator
splits additively into two or more pieces such that the corresponding subproblems are
each easier to solve than the original equation, or arc best handled by different tech-
niques. In the time-split method the solution to the original equation is advanced by al-
ternately solving the subproblems. In this thesis a unified approach to splitting methods
is developed which simplifies their analysis. Particular emphasis is given to splittings of
hyperbolic problems into subproblems with disparate wave speeds.

Three main aspects of the method are considered. The first is the accuracy and
efflciency of the time-split method relative to unsplit methods. We derive a general
expression for the splitting error and use it to compute the over~ll truncation error for
the time-split method. This is then used to analyze its efficiency, !Oeasured by the amount
of work required to obtain a given accuracy.

'*-.,The second topic is stability for split methods After a demonstration that in
general the product of two stable operators need not b\ stable, some important classes of
hyperbolic splittings are identified for which the product of stable approximate solution
operators- is in fact stable.

C( -- he final topic is the proper specification of boundary data for the intermediate solu-
tions, e.g., the solution obtained after solving only one of the subproblems. A procedure
is described which, for many problems, can be used to transform the giien boundary
conditions for the original equation into arbitrarily accurate boundary cotjditions for the
intermediate solutions. S&ability of the initial-boundary value problem -f also discussed.

-- The main emphasis is on hyperbolic problems, and the one-dimensional shallow
water equations are used as a specific example throughout. The final chapter is devoted to
some other applications of the theory. Two-dimensional hyperbolic problems, convection-
diffusion equations, and the Peaceman-Rachford ADI method for the heat equation are
considered
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1. Introduction

1.1. Overview.

Splitting methods of one form or another are frequently used in computing numerical
solutions to partial differential equations. This thesis concerns one wide clas of splitting
methods which will be referred to as time-split methods. Such methods are also known as
acti mal step methods. These methods apply to time-dependent equations of the form

-= A(u) for which the differential operator A splits additively into two or more pieces,
say A(u) = A1(u) + At(u), such that the subproblems

s,, = A,(u)

and
u, = As(u)

are each easier to solve than the original'problem, or are best handled by different tech-
niques. In the time-split method, the solution to the original problem is advanced by
alternating between (approximately) solving each or the two subproblems. For example,
a multi-dimensional problem may be split into one-dimensional subproblems, convection-
diffuplon or the Navier-Stokes equations may be split into hyperbolic and parabolic sub-
problum, or a purely hyperbolic problem may be split into subproblems with disparate
wave speeds.

The aims of this thesis are twofold. The first is to present a unified framework
for studying various aspects of time-split methods. The main idea is to decompose the
derivation or a ime-split method into two steps. First the exact solution operator for
the original problem is approximated to second order accuracy by a product of exact
solution operators for the subproblems. Then these exact solution operator are replaced
by second order accurate numerical approximations. Many tommonly-used splitting
methods can be viewed in this manner (see Section 1.6). This viewpoint is not new,. but
some of its consequences have not been fully exploited.

One advantage of this approach is that the errors In the resulting numerical ap-
proximation can be decomposed into errors due to splitting the exact solution operator
and errors due to numerically solving the subproblems. The latter errors are well under-
stood when standard numerical methods are applied. Section 2.3 contains some general
expressions for the splitting error. This decomposition or errors aids in analyzing the
efficiency of the time-split method, defined as the amount of work required to obtain
a given accuracy. The size of the splitting error relative to the truncation errors of
the numerical methods employed plays a critical role In determining the optimal choice
of mesh ratio ror the time-split method and In determining how efficient the resulting
method will be relative to unsplit methods. This is investigated in detail in Chapter 2.

y _____________________ ____________
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Another advantage of this viewpoint is that the intermediate solutions (e.g., the solu-
tion obtained after solving only one of the subproblems) take on physical meaning. They
are second order accurate approximate solutions to some differential equation (though
not to the original equation). This is an important realization, particulary when we
attempt to specify boundary conditions for the intermediate solutions. Such boundary
conditions are often required to implement the time-split method and have frequently
been specified in an ad hoc manner, e.g., the boundary conditions from the original equa-
tion are imposed on the intermediate solutions as well. More sophisticated approaches,
such as the method of undetermined functions[56], derive correct boundary conditions
based on the finite difference equations. However, by viewing the intermediate solution
as an approximation to a differential equation, it is often possible to derive appropriate
boundary conditions without regard to the finite difference methods employed. The given
boundary conditions for the original equation are transrormed into boundary conditions
appropriate for the subproblems. This is the subject of Chapter 4.

The second aim of this thesis is to investigate the applicability of the time-split
method to one particular class of problems, namely to hyperbolic systems of equations
which are split into subproblems with disparate wave speeds. The original problem
either has all fast waves or some fast waves and some slow waves. This splitting may be
advantageous if the "fast" subproblem can be solved more efficiently than the full system.
The remaining subproblem can also be solved more efficiently than the full system since
only slow waves are present. Such problems are described in detLail in Section 1.4.

Time-split methods for hyperbolic problems have not been studied extensively in
the past, but the results presented here indicate that in many situations they are quite
valuable.

Hyperbolic problems also provide specific examples for the general theory being
developed. For example, both the efficiency analysis of the time-split method and the
procedure for spe,'1ying intermediate boundary conditions are introduced by considering
hyperbolic examples. A few other applications are treated in Chapter 5.

1.2. Some partial differential equations and finite difference methods.

Time-dependent partial differential equations ariae in modeling a wide variety of
physical phenomena. Sirmple examples in two space dimensions include the parabolic
heat equation

Ut UZU (1.1)

and the hyperbolic wave equation

Utt - : UZ + upV. (1.2)

The latter equation can be rewritten as a first order hyperbolic system of equations in
the variables ut, u., and u.. A general first order hyperbolic system has the form

ut = Au. + BuV (1.3)

where u is now a vector and A and B are diagonalizable matrices with real eigenvalues.
For the wave equation (1.2) A and B are constant, but in a more general variable
coefficient problem, A and I? could depend on z, V, and t. If A and B also depend
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on the solution u then the problem is said to be quasilinear. The Inviscid Euler equations

of gas dynamics am of this forth, for example.
Practical problems often Include both first and second order spatial derivatives.

The simplest example Is the scalar consvetiod-i~sion equation in one space dimension,
which has the form

U, 2 cue + "M.,,(1.4)

for some constants c and v > 0. More realistically, the compressible Namer-Stokes
equtions for viscous flow In two dimensions constitute a quasilinear system of the form

--= Au. + Buy + Cu., + D, + Bu, (1.5)

where each of the matrices is a function or u.
Inhomogencous terms can also arise in practice. For example, the primitive equations

or atmospheric flow (the shallow water equations) are a quasilinear system of the form
(1.3) with an undifferentiated vector F(u) representing Coriolis forces added to the right
hand side.

Lower-order terms also occur in reaction-diffusion equations of the form

Ug = _- + U,, + F(u)(1.6)

Here F represents the chemical kinetics of a reacting system with diffusivity Y > 0.
All of the examples given above are of the general form

=M(u) (1.7)

where A(u) depends on u and its spatial derivatives. It may also depend on t and the
spatial variables although this dependence is not explicitly shown.

Initial boundary value problems will be discussed in detail later in this thesis, but for
now we restrict our attention to the Cauchy problem, which consists of the equation (1.7)
on the unbounded spatial domain -oo < z < oo, -oo < i < co (in two dimensions)
together with initial data u(z, V, to) = f(z, p).

If the problem is welt-posed (as all or the examples above are) then the initial
conditions uniquely determine the solution at any later time tj. We write

u(ti) = S(t 1, to)u(to). (1.8)

In general the solution operator S(tj, to) is nonlinear, but satisfies the semigroup property

S(t, to) = S(tg, t,)S(t,, to) (1.9)

if to< t I t2.
If t does not appear explicitly in the coefficients of the differential equation, then the

equation is said to be autonomous and the solution operator depends only on the time
.elapsed:

S(t,, to) = S(t - to).

For notational convenience we will assume that this is so unless otherwise stated.



Most practical problems cannot be solved exactly. Instead the solution must be ap-
proximated numerically. We will be concerned only with finite difference apormimations.
For such methods a grid is laid out over the spatial domain and an approximate solution
at all gridpoints is obtained at each of a sequence of times to, t,. In general we
assume that to = 0 and that t. = nk for some timestep k. For convenience we assume
that the grid is uniform with equal mesh spacing h in all spatial coordinate directions,
although this is not necessary. We will always use X to denote the mesh ratio:

X= kh.

Numerical approximations are denoted by capital letters. In one space dimension
U,. is the approximation to u(xm, t.) where z, = mh. In higher dimensions more
subscripts are added.

We will restrict our attention to two-level difference schemes. This means that U"+1
is determined solely by U" via some relation

U --- Q(k)U". (10)

This is the difference analogue to

u(t.+i) = S(k)u(t.)

and the finite difference operator Q(k) is an approximation to the solution operator
S(k). The method is said to be accurate of order p if, for smooth functions u, the local
truncation error (Q(k) - S(k))u is O(kP+') as k --+ 0 with some fixed relation between k
and h.

As an example, consider a one-dimensional constant coefficient hyperbolic equation

ut = Au..

Here u E IR is a vector and A E li"" is a square matrix. By Taylor series expansions
we find that the exact solution satisfies

u(z, t + k) = u(z, t) + kut(x, t) + 4k'ut,(z, t) +...

= u(z, t) + kAu,(z, t) + ik 2A 2u.3 (z, t) +...
= (I+ kA, + j k2A 2a + ... )u(z,t)
= exp(kA8.)u(z, t).

We thus have S(k) = exp(kAila), as defined by the series expansion for the exponential.
It is convenient to use this exponential notation for the solution operators of constant
coefficient problems.

The Lax-Wendroff method. Ir the expansion for exp(kAi9.) is truncated aftor
the first three terms and the differential operators a., and t9 are replaced by appropriate
finite difference operators, we obtain the familiar Lax-Wendroff method:

U ' ( + kADo + k2 A 2D+DU, (1.11)

.4
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where
DoU.= iU,,+t - U.-),

D+U -(U.+, - U.),

DU. -- -(U. - U.._I),

D+DUm I (Um+i - 2Un + Ur-i).

The- value U:,+1 Is thus determined by the values U*.-, U,, and U"+ 1 . This Is
conveniently denoted by showing the stencil of the the method as in Figure 1.1.

FiG. 1.1. Stencil for Lax-Wendroff.

The numerical operator Q(k) is defined by equation (1.11). This Lax-Wendroff
operator appears so often in the sequel that we will introduce the Following notation
for it, which shows the dependence on the coefficient matrix A explicitly:

LW(A, k) - I + kADo + Ik2AD+D-. (1.12)

Strictly speaking, this operator also depends on h, or, equivalently, on the mesh ratio
X-- k/h, but X will be assumed to be fixed. Analogous methods can be defined for
variable coefficient or quasilinear hyperbolic systems. The same generic symbol LW(A, k)
will be used for all of these methods although in general they will be more complicated
than in (1.12).

The Lax-Wendroff method is second order accurate since the local truncation error
is O(k):

ILW(A, k) - exp(kA .)lu(x, t) = - rk3 (A3 - y ,A)u.. + O(k4 ). (1.13)

The Crank-Nicolson method. As another example, consider the one dimensional
heat equation

,, :f ,,... (1.14)

The solution operator rot this problem is S(k) = exp(ki9'). Explicit methods for
parabolic problems are generally stable only if the imestep k is very small relative to

6
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h. For this reason implicit methods are often used instead. One popular method is the

second order accurate Cvrak-Nicolson methodl,

(1 - jkD+D_)U, + 
- (I + jkD+D_)U%., (1.15)

for which
Q(k) = (I - JkD+D_)-(1 + IkD+D_).

This corresponds to using a rational approximation to the exponential solution operator.
To implement this method a tridiagonal system of linear equations must be solved at each
iteration. This can be done quite efficiently. Because all of the U" +1 must be determined
simultaneously, the method is said to be implicit. Lax-Wendroff, by comparison, is an
ezplicit method. The stencil for Crank-Nicolson is shown in Figure 1.2.

FIG. 1.2. Stencil ror Crank-Ncolson.

In two space dimensions the heat equation (1.1) can be solved by a similar method:

(1 - ik(D+.D_. + D+vD_,))U-4 = (1 + ik(D+.D- + D+D_,))U,, (1.16)

where, for example, D+, is the forward difference operator in the z-direction. Unfortun-
ately, this no longer leads to a tridiagonal system of equations but rather to a more com-
plicated system which cannot be solved nearly as efficiently. It was this problem which
led to the introduction or some of the first splitting methods. One such method is the
locally one-dimensional (LOD) method in which the solution to (1.1) is advanced by first
solving ut = u.. approximately using (1.15) and then solving ut = u., approximately
using the same method in the p-direction. In this manner only one-dimensional problems
need be solved. The LOD method is one special case of the time-split method, which will
now be described more generally.

1.3. The time-split method.

Consider again the general problem (1.7) and suppose that the runction A(u) splits
additively into two or more pieces which are most naturally handled separately. Restricting
our attention to two pieces, suppose A is of the form

A(u) = Ai(u) + A2(u), (1.17)

where each or the sbproblem s
isa = Ai(u) (1.1ga)



and Ut = A(u) (1.18b)

is easier to solve than the full problem (1.7). As we have already seen, this is the case for
the heat equation (1.1) when Aj(u) = u.. and A2 (u) = ui. It may also prove useful to
handle the different space dimensions in the hyperbolic system (1.3) separately. For other
equations the natural splitting is between terms describing different physical processes. In
the convection-diffusion equation (1.4) we may take Ai(u) = cu. and A2(u) V au..s, thus
spitting the mixed problem up into separate hyperbolic and parabolic equations. The
reaction-diffusion equation (1.6) might be handled similarly. The Navier-Stokes equation
(1.5) could well be split into five separate pieces.

Splittings have long been used for all of these problems and in many other contexts
as well. Some history and references are given in Section 1.6.

We now discuss in more detail the implementation of the time-split method once a
splitting of the form (1.17) has been decided upon. The subproblems (1.18a) and (1.18b)
have corresponding solution operators Si(k) and S2 (k). The basic assumption is that
these operators are easier to approximate than S(k) is. The time-split method is based
on the fact that

S(k) ;S 2 (k)S,(k) (1.19)

when k is small. In some cases this splitting is in fact exact. For the heat equation (1.1)
with the LOD splitting, for example, we have S(k) = exp(k(a2 + 2 )) while Si(k) =
exp(k02), S2 (k) = exp(kB.). Since the differential operators 2 and 8 commute, we

find that S(k) = S2(k)SI(k). For variable coefficient problems, or systems or equations,
the splitting (1.19) is not exact in general. For example, the same LOD splitting on the
constant coefficient hyperbolic system (1.3) has an error

S2(k)S1 (k) - S(k) = exp(kBO() exp(kAO.) - exp(k(AO. + B8a)) (1.20)
-2 k2 (BA - AB)a9a, + 0(k3 )

as can be verified by expanding the exponentials. In this case the splitting is exact only if
the matrices A and B commute. Otherwise the local error on smooth solutions is 0(k 2 )
and hence the splitting is only first order accurate.

A simple second order splitting was introduced for this problem by Strang[49] ,tiho
noted that

exp(k(AO + BOY)) = exp( .j kAOE) exp(kBa,) exp(I kA3,) + 0(ki).

In fact the same type of splitting is second order accurate (on smooth solutions)- for
general problems of the form (1.7). The general Strang splitting is

S(k) P- s (k/2)S2 (k)S, (k/2). (1.21)

If the equation depends explicitly on t, then the appropriate rorrn of the splitting is

s(t + k, t);t, S, (t + k, t + I"k)152(t + k, t)S,(t + .1k, t).

By the semigroup property (1.9), this can be written as

s(t + k, t) [s,(t + k, t+ k)s,2(t + k,.t + -k)] (1.22)

x [s2(t + k, t)S (t + k, t).

7
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When viewed in this way it is apparent that second order accuracy may also be retained
by using a splitting of the form (1.19) but reversing the order of Si and S2 in alternate
time steps.

Strang[49] proves that this splitting is second order accurate on a general nonlinear
problem. This proof is repeated in Section 2.3, where we also compute a general
expression for the error in the splitting.

Once the appropriate splitting of the exact solution operator has been chosen, the
time-split method results from replacing the exact solution operators S1(k) and S2(k)
by approximations Ql(k) and Q2(k). A numerical method based on the splitting (1.21)
would thus be

U" + ' = Q1(k/2)Q2(k)Qi(k/2)U ,. (1.23)

In practice U" + I is computed via the sequence

V" = Qi(k/2)U.

U -= Q2 (k)U (1.24)
U +1 = Q(k/2)U*

where we have introduced nouphysical intermediate solutions U* and U. When several
steps of (1.23) are applied successively the adjacent Qt(Ir/2) operators can be combined
into Ql(k), and the half-step operators need only be applied at the beginning and
immediately before printout, i.e.,

U" = QI(k/2)Q 2(k)Q 1 (k).. .Qi(k)Q2 (k)QI(k/2)U.

When the original problem is split into more than two pieces, say

A(u) = Ai(u) + A2(U) +.. + Ap(u),

the following splitting is second order accurate:

S(k) -_ Sl(k/2)S2(Ik/2) ... Sp_,(/k2)Sp(/k)Sp_I(/€2)... "S2(k/2)Sl5(/k/2).

This is easily proved by induction (see Gottlieb[23)).

1.4. Hyperbolic splittings with disparate wave speeds.

This thesis is mainly an investigation into the applicability of time-split methods to
purc hyperbolic systems whose solutions consist of waves traveling at disparate speeds.
Consider the one-dimensional hyperbolic constant cocfciet system

ut = Au.. (1.25)

The r X r matrix A is assumed to be diagonalizable with real elgenvalues I, ,. p.
If X is the matrix of right eigenvectors of A, then

A = XMX - '

IL . L i - • . . .. . ... .



where M - diag(sj,/u2 ,...,/a,) Is a diagonal matrix. The solution to (1.25) with initial
conditions

U(Z,0) = 1(Z)
is given by u(z, t) = exp(tAO.)u(z, 0)

=X exp(tM8.)X - 1f (z).

Set ,(z) -x f(z). Then

[,(Z + tpa)1
(=,' ) = xV(z + tP2).

Y,.(Z + 44).

In general each component ua(z,t) of the solution is a linear combination of waves
traveling at the various speeds /A, P2,..., /'. Eigenvalues /q with large amplitude give
rise to fast waves, those with small amplitude, to slow waves.

Suppose now that the eigenvalues are ordered by magnitude, and that some of them
are much larger than others:

I/Sl <I 12 <" .. I. , PI -<"+1 " < Il. (1.26)

Now consider the use of a finite difference scheme for solving (1.25). Throughout this
thesis we will restrict our attention to the Lax-Wendroff method for hyperbolic problems,
both in computational examples and in some of the theory (for example in Section 2.5).
The same sort of analysis can be applied to other methods with similar results, but it
seems most instructive to concentrate on one particular method.

The Lax-WendrolT method, like all explicit methods, is only conditionally stable.
This places a restriction on the size or the time step that can be used. For Lax-Wendroff
this stability condition is

p(A) _ 1. "(1.27)

where p(A) = 1p,I is the spectral radius of A. The fastest waves thus dictate the size of
the timestep that can be taken. Accuracy considerations also influence the size of the
tinestep. In fact the fastest waves are computed most efficiently (in the sense that the
least work is required to achieve a given accuracy) if the mesh ratio k/h 1/p(A) is
used. This will be shown in Section 2.5.

Slow waves, on the other hand, can be accurately (and more efficiently) computed
using much larger timsteps. The question is whether a split method can be used to
compute accurate overall solutions more efficiently.

If the matrix A is diagonal, then the system decouples into r separate scalar equa-
tions, each of which can be solved independently using the appropriate mesh ratio. More
generally, we can split the matrix A into pieces A. and A1 corresponding to slow waves
and fast waves,

A. = X M. X - 1 , A f = XMt X - ' (t.28)

I



where me - 4(l .. 0,ot f..., O)
M! diag(0,..., 0, jzp+, I ., pr).

This essentially decouples the system into slow and fast parts. Since the matrices A. and
A1 commute, splittings of the form (1.19) or (1.21) are exact and nearly optimal mesh
ratios can be used for each part.

Realistic problems can never be split so easily. For variable coefficient or quasilinear
systems there will almost always be a splitting error to contend with. It is also generally
undesirable or even impossible to use a splitting of the form (1.28), since the eigenvectors
are themselves variable.

However, it is not necessary to split by characteristic variables as in (1.28), and
the time-split method is often advantageous even when the splitting error is nonzero.
Suppose, for example, that r is large but that the matrix A has only a few large
eigenvalues. It may be the case that relatively few elements of A contribute to the last
waves. We could then split A as A = Af + A. in such a way that Af is sparse compared
to A while A. has only small eigenvalues. Because of its sparsity, taking small timesteps
on Al requires less work than taking small timesteps with the full matrix A. The matrix
A. can be handled more efficiently using larger timesteps. We could thus consider to.ing
a scheme of the form

U,+ ' = Qf(k/2)Q.(k)Q(k/2)U, (.2)

with
Q.(k) = LW(A., k)

Q,(k/2) = (LW(A 1 , k/m))"'

for some even integer m. The accuracy and the efficiency of such a method relative to
an unsplit method, say LW(A, k/m), depends greatly on the nature of the splitting error.
This will be studied in detail in Chapter 2.

Example 1.1. An interesting model system for problems of this form is a block
triangular system with

A [All Aij.(13110 A221(.1
Suppose the eigenvalues of Al I are large relative to those or A 22 and consider the splitting

A, = A 1], A, = [ A1u (1.32)

The effectiveness of the split method depends greatly on the coupling A1 , between the
different time scales. This is analyzed in Section 2.7. In Section 2.8 we present a simple
procedure for changing variables to reduce the coupling.

Perturbed problems. The time-spliL method can also be very effective on equations
which are small perturbations or some equation for which the exact solution operator is
known. We will refer to such problems as pertrubed problem.. For example, consider a
variable coefficient problem in which the coefficients have large mean values and small
variation. It may then be possible to split off a constant coefficient problem ut = Afus
that can be solved exactly, leaving behind the small perturbations ror A.. We can then
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use (1.29) and take Ql(kit) e cxp(IkAjB.) with no error. Since the dominant part
of the operator is being hawidled exactly, substantial increases in efficiency are possible.
The one-dimensional shallow water equations Introduced in the next section are of this
form.

More generally we may divide the computational domain into subintervals and split
out a different constant matrix Al on each subinterval. This might be appropriate if the
coefficients are slowly (but widely) varying so that perturbations about the local mean
value are small. In this case Al would be piecewise constant. Alternatively we can view
this as a hybrid method in which a different scheme is used on each subinterval.

In other cases the matrix Al may be variable, but of a special form such that the
problem uj = Alu. can be solved exactly.

We continue to use the "fast" and "slow" notation even though for such perturbed
problems all of the eigenvalues of A may be roughly the same size. Nevertheless in the
splitting A = Al + A. we assume that Al has eigenvalues much larger than those of A.,
and so the subproblem ug = Aju.. has waves which are fast relative to those occurring
in the subproblem ut = Au..

Example 1.2. A simple example is the scalar problem

,, = (1 + ,(z)),. (1.33)

where Io(z)l - 1 with the splitting

Al = 1, A. =

Take k = 2ph for some integer p. The operator exp(4IkAfO) is known exactly:

exp(JkAja=)u(x, t) = exp(pho&)u(z, t) = u(z + ph, t).

If Lax-Wendroff is used for the remaining subproblem ut = a(z)u. then the method
(1.24) becomes

u. = U~~

U = LW(c(-), k)U
= U" + p.(Z.)(U'+, - U _) + P,(=.) {(a(z.+L) + C(ZM))(uv+, - U )

-(,,,) - -(Z, ))(U,, - u,,,_)}

Notice that even though this is a scalar problem, the operators C1 and a(z)a. do not
commute and so the Strang splitting must be used to achieve a second order method.
This sequence is shown schematically in Figure 1.3 for p = 3.

Eliminating the intermediate solutions U* and U*, we can rewrite this as a one-step
method:

U" + = U: ,+ + p ,(X,+P,)( U,+P+I - U.,+2,_) + p%(=.+,)

X [((Z.+p+) + (+,))(UV+gp+, - U:,+, (1.34)

- ( +(x.,,) + a(=X+,_,))(U" 2%+,- 1+,,_,)]

I11



U.

U.

U"+I

FiG. 1.4 Stencil for the method (1.34) viewed an a one-step method which
approximately follows the characteristic of the problem (1.33) (shown, eg.,
by the dotted fine). Note that values of Ca(x) are used from near the middle
of the interval.
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The stencil for this method is shown in Figure 1.4. The value U , + l is determined by
the values of UO *at x.+2,-I, tm+2p, and x.'+,s This scheme can be interpretedas
a "skewed Lax-Wendroff" method whose stencil approximately follows the characteristic
of the equation, which had slope -(1 + a(z)) at each point z. The value of u(s., t%+1)
should thus be equal to the value of %(§,4m) for some point I near z.+s,. The exact
location depends on the values of a(z) for all z between xm and 1. We thus expect such a
skewed method to be quite good if a(z) is small. Just how good it is depends on the aes
of a(z) and also on how rapidly a(z) varies. Note that in the split method (1.34) only
values of a(x) near the middle of this interval are used. It turns out that the splitting
error for this problem depends on derivatives of a(z). As we will see in Chapter 2, when
a(z) is rapidly varying it is most efficient to use small values of p, but the resulting
method is still more efficient than using Lax-Wendroff on the unsplit problem.

1.5. The shallow water equations.

Throughout this thesis the shallow water equations will be used as an example to
illustrate the general theory being developed. The theory applies to this system in a fairly
straightforward but nontrivial manner, and thus studying these equations provides some
insight into the issues which arise when splitting methods are applied to other practical
problems.

In one space dimension the shallow water equations are

These equations model flow in a channel where g is the gravitational constant, h is the
height of the water and u its velocity. This system can be symmetrized by setting 4 =
2v/-gW to obtain

[ -] 0' , ][0] -8

We will make the realistic asumption that u is small compared to 4 and that variations
in 0 are small compared to some mean value #o:

I Oo1 - o (1.37)

with c 4 1. Moreover we assume that v., 0. and higher derivatives are also O(c o). We
split the system (1.36) by taking

Al = A/ 4$0/2], A. = -[(,o _u)1 (0- -o)/21. (1.38)

The eigenvalues of Al are +4/2. The exact solution operator exp(IkA1/8.) can be used
on the grid provided that

k - (1.3)

for some integer p I. The matrix A. has eigenvalues u : (0 - 4~o)/ 2 which are smaller
by a factor of e than those of Al.

13
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We will see in Section 2. that using a time-split method on this problem reduces
the errors by a factor of e (using the same amount of work). The method s stable for
the frozen-coeflicient problem, as seen in Section 3.5, and in practice Is stable for the
nonlinear system. The proper specifications of boundary conditions for this problem Is
discussed in Section 4.5.

1.6. A brief history of splitting methods.

Now that the basic form of the time-split method and a wide variety of possible
splittings have been introduced, we pause briefly to review some of the extensive work
that has been done on splitting methods. This survey is far from complete, but it provides
some historical perspective and references, particularly to the sources which have had
the most impact on this thesis.

Splitting methods have been most extensively studied in the context of spatial
splittings of multidimensional problems. The first splittings were of implicit methods
for solving parabolic problems and were also used as iteration procedures for solving
steady-state elliptic problems.

The locally one-dimensional methods were developed primarily by D'Yakonov[11I,
Marchuk381, Samarskii[481 and Yanenko(551. The basic form of such methods has
already been indicated in Section 1.2. For the heat equation (1.1) using Crank-Nicolson,
for example, the scheme is

(1 -kD+ _,)U = (1 + IkD+,D-.)U,1

(1 - = (1 + kD+,D_,)UL. (1.40)

This clearly fits into the general framework introduced In the Section 1.3 with the splitting

Ai(u) = u., A2(U) = U,. (1.41)

The LOD method, however, was not the first such splitting method to be used.
In the mid 1950's the Alternating Direction Implicit (ADI) method was Introduced by
Peaceman & Rachford[45] anti Douglas[6]. On the equation (1.1) this method, known as
the Peaceman-Rachford method, has the form

(1 - 'kD+D.,)U" = (1 + JkD+,D_,)U (1.42)

(1 - jkD+,D.-,)U',*' = (1 + ikD+,D-.)U.4

The philosophy behind the ADI method is somewhat different from that behind the LOD
method. Each equation of (1.42) is, by itself, a first order accurate scheme for solving
the original cquation (1.1) on a timestep or length k/2. The combination provides a
second order accurate solution on a step or length k. In some sense it is thus a more
natural approach to solving the problem. than the 1.01) method, since the individual
cqtuations composing (1.40) do not, by themselves, provide consistent approximations to
the original system. On the other hand, the IOD method can be viewed more naturally
as a time-split method of the form discussed in Section 1.3, since each equation of (1.40)
is a second order accurate approximation to one of the subproblems determined by (1.41)
on a timestep of length k.

14



In fact, the Peaeman-Rachrord method can also be viewed as a time-split method
of this form, but with a different splitting. Instead of (I.41) suppose we split the operator
A(u) = u. + u, as

4(,,) = jy,.. + u,,) + jk(u.... - ,,,,). (1.43)
A,(u) = (u.. + u,,) - jk(u.... - u..).

Then the equations of (1.42) are second order accurate approximations to U - l(u)
and ut = A2(u) on timesteps of length k.

There are many other ways or relating the ADI and LOD methods, see for example
Gourlay & Mltchel(25j or Morris & Gourlay[42]. One advantage or viewing ADI as
a time-split method is that, in some cases, appropriate boundary conditions for the
intermediate solution U* can then be easily determined using the general procedure
described in Chapter 4. This is discussed in Section 5.4.

Numerous variations on the Peaceman-Rachford method have been proposed over
the years, for example by Douglas & Rachford[8], Fairweather & Mitchell[19], Douglas
& Gunn[7j, and D'Yakonov(121. The last of these is particularly interesting since it
is based on approximate factorization, an approach that is currently quite popular
in computational fluid dynamics. D'Yakanov's method, which he calls the method of
disintegrating operators, results from the approximations

1 - ik(D+.D_.. + D+,D_,) P (1 - IkD+.D_.)(I - IkD+vD_,),

1 + ik(D+xD_, + D+,D_,) F (I + IkD+.D-..)(1 + 'kD+,D_,).

Each or these has an error ik 2D+iD..D+vD.,. When both approximations are used
in (1.16), the resuling error is 0(k3 ). This leads to the split method

(I - j kD+.D-.)U= (I + IkD+.D-.)(1 + JkD+,D_,)U'

(1 - IkD+,D_,)U"++  UL

which can also be viewed as a time-split method with the splitting

Ad1(u) = U,. + 4u,, -ku,,,,

A,(u) = ju,, + ku,..

A great deal of work has gone into the proper specification of intermediate bound-
ary conditions for such splitting methods. See, for example, Lawson & Morris[34,
Fairweather & Mitchell[19j, or D'Yakonov[13. General discussions of splitting methods
for parabolic problems can be found in many places, including Yanenko[56, Marchuk[40j,
and Mitchell & Criflfths[41I.

As opposed W parabolic problems, many hyperbolic systems of equations are solved
using explicit methods. As we saw for the one-dimensional system (1.25), the stability
limit frequently allows timesteps that are reasonable front the standpoint of efficiency,
and so) there is no need to use implicit methods. In more space dimensions, however,
the stability limit is often severely reduced. (For example, the stability limit for 2D Lax-
Wendroff on (1.3) is X max(p(A), p(/)) _< I/V'.) Strang[491 showed that if the locally
one-dimensional method is used on (1.3), then the stability limit is more reasonable (for
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Lax-Wendroff, X max(p(A), p(B)) _5 1). Thus the LOD method has the use, for explicit
methods, or increasing the stability limit.

Implicit methods are often used for certain classes of hyperbolic systems. Recall that
the timestep for an explicit method is restricted by the fastest wave speed. For certain
systems of equations with disparate wave speeds the physically meaningful solutions con-
tain no fast-wave components, or at least the fast waves have small amplitude compared
to the slower waves. For an explicit method applied to such a problem, stability con-
siderations limit the timestep to a value much smaller than that required for accuracy.
For this reason, implicit methods are frequently used instead. In more than one space
dimension LOD, ADI or approximate factorization methods again prove useful.

Such problems arise, for example, in modeling atmospheric flows. The simplest
such system is the two-dimensional shallow water equvtions. The general solution to
these equations includes both fast "gravity waves" and much slower "Rossby waves". In
practice, however, the gravity waves contain little energy and, it is thought, have little
effect on the weather. Gustafsson[291 has studied an ADI method for this problem.

Another approach to such problems has been taken by Kreiss[32],[338 and Browning,
Kasahara & Kreiss[3j. They properly prepare the data so that fast wave components are
eliminated. Majda[371 has considered using filters to suppress the fast waves in the same
context.

Approximate ractorization methods for hyperbolic problems have been studied by
Warming & Beam[541, primarily for the Euler equations of gas dynamics and for mixed
hyperbolic-parabolic problems such as the Navier-Stokes equations. Again they are
dealing with problems where the fast waves have little effect on the solutions of interest.

Another possible approach for such problems is to split the coefficients into fast and
slow terms and use an implicit method only on the fast part. This can be quite efficient if,
for example, the fast part is sparse. The splitting between implicit and explicit methods
can be effected in various wsvs. For the problem u, = Au. = (A1 + A.)u., a time-
split method of the form (1.29) could be used with Q,(k/2) implicit and Q.(k) explicit.
Alternatively, one-step methods can be derived that are implicit only in Af. For example,
the trapezoidal formula and leapfrog can be combined into the hybrid method

(I - kADo)U"+ = (I + kADo)U" - 1 + 2kA.DoU". (1.44)

Such methods are called semi-implicit methods or explicit-implicit methods. Elvius &
Sundstr6m161 have analyzed the two-dimensional analogue of (1.44) for the shallow
water equations. Harlow & AmsdenI31] have applied a similar method to the Euler
equations.

The idea of using different timesteps on various parts of the system has been used in
one form or another by several authors, including Engquist, Gustafsson & Vreeburg(17,
Gadd[201, and Turkel & Zwa,4521.

Many nonlinear hyperbolic systems have solutions involving shock wavee discontinu-
ous solutions which can arise even from smooth initial data. For such problems a wide
variety of special methods have been devised. Often these methods are directly applicable
only in one space dimension. For higher dimensional problems, LOD splittings are agal:
frequently used. Since the solutions are not smooth, splittings are more difficult to
analyze in this context. Crandall & Majda[5j have proved that the splittings (1.19) and
(1.21) do give convergent methods when applied to scalar conservation laws.
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For mixed problems such as the Navier-Stokes equations the time-split method has
been used to split between hyperbolic and parabolic parts. Abarbanel & Gottlieb[f] split
the full three-dimensional Navier-Stokes equations into nine pieces-the hyperbolic and
parabolic terms in each space dimension and three cross-derivative terms. They then
use the time-split method to derive an explicit method with good stability properties.
MacCormack[351161, Strikwerda[50, and Dwoyer & Thames[10] have studied similar
methods.

Approximate factorization methods for this problem have been proposed by Beam
and Warming[2][64. This approach appears to have certain advantages in steady state
calculations. The numerical steady state is independent of the timestep k used to compute
it, and the calculations can be performed in an "increment form" that is computationally
efficient.

Convection-diffusion equations similar to (1.4) arise in transport problems that in-
clude diffusion, for example in multi-phase miscible flow or in modeling heat flow in a
moving material. When the problem is convection dominated (v < Idc in (1.4)), the
propagation of sharp fronts is often or interest. These are difficult to handle numerically.
It is often advantageous to again split between the hyperbolic and parabolic parts and
handle the hyperbolic part using characteristics. This is studied in Section 5.3. Similar
methods have been proposed by MacCormack[36 and Douglas & RusselU[9]. Another
possibility is to use the finite element method for the parabolic part[9][151147][531.

1.7. Outline and summary of results.

There are three main issues to be dealt with when considering the use of a time-split

method for any differential equation. These may be summarized as efficiency, stability,
and the proper choice or boundary conditions. These are, of course, major issues in the
choice of any finite difference scheme, but the use of time-split methods introduces new
complications into each area.

Efficiency. The first quantity to compute in the analysis or any finite difference
scheme is its truncation error. In Section 2.2 we show that for the time-split method the
truncation error is simply the sum of the splitting error and the truncation errors for
the approximate solution operators Q1 and Q2 (plus higher order terms). The splitting
error thus plays a fundamental role and techniques for computing this error for general
splittings are discussed in Section 2.3.

In comparing methods, however, it is not in general sufficient to compare their
truncation errors, since one scheme may require much more computation than another.
This is particularly true where time-split methods are concerned. Instead we must
compare some measure of the efficiency of the methods such as the amount of work
required to achieve a given accuracy.

Since split methods generally involve the conjunction or several different numerical
methods, there may be several free parameters, such as stepsizes, to be chosen. For the
method (1.30), for example, we must choose both k/h and m. We can essentially choose
the mesh ratios for the two time scales independently. As we will see in Section 2.5,
the optimal choice depends on the size of the splitting error and is not always obvious a
priori. In particular, the optimal mesh ratio k/h is often far from the stability limit of
the nethod used on the slow problem.
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Stability. For some time-split methods applied to certain problems, the operator
QI(k)Q,(k) is stable whenever the operators QI(k) and Q2(k) are each stable operators on
their own. Unfortunately, this is not true in general; the product of two stable operators
may be unstable. An example of this is given in Chapter 3.

Of course the stability of Ql(k)Q2(k) can always be determined directly by eliminat-
ing all intermediate variables and viewing the split method as a one-step method. How-
ever, the resulting method is generally quite complicated, making direct analysis difficult.
For this reason it is useful to identify special classes of problems for which the individual
stability of Q1 (k) and Q2 (k) does guarantee the stability of Q1 (k)Q2(k). Several such
classes of hyperbolic splittings are identified in Chapter 3.

Boundary conditions. All practical calculations are performed on finite domains.
If periodic boundary conditions are used (e.g., u(O, t) = u(l, t) Vt on the strip 0 < z <
1), then the same finite difference scheme can be used at all points, simply by wrapping
around at the boundaries. Otherwise, one or more points at each boundary will have
to be determined in some alternative manner (unless a one-sided scheme is used). Some
boundary values will be provided as part of the problem, but frequently finite difference
approximations require more boundary conditions than the original differential equation.
The remaining boundary values must be determined by some other procedure. A variety
of techniques are used for this purpose, depending on the context. The easiest approach is
often to extrapolate the interior solution at time t,,+, out to the boundary. Alternatively,
one-sided (or lopsided) finite difference schemes can be used to compute the solution at
points on (or near) the boundary. At some boundaries other desirable properties of the
solutions, such as nonreflection of outgoing waves, may be used to determine the proper
boundary values.

For time-split methods the choice of boundary values is complicated by the need
to supply boundary data for the intermediate solutions, such as U'. These solutions
are obtained not by solving the original differential equation but rather by solving one
of the subproblems. Decause of this, appropriate boundary data for the intermediate
solutions is never available directly. Extrapolation from the interior can still be used,
but is generally undesirable both for reasons of stability and accuracy.

The generation of boundary data for the intermediate solutions is discussed in
Chapter 4. We describe a general procedure for transforming given boundary data for the
original equation into appropriate data for the intermediate solutions. This procedure
is based on the following idea. We introduce a new function u° which satisfies the
subproblem that is actually being solved in the first step of the splitting. We then expand
the desired boundary value for u° in a Taylor series about the initial time t,, at which
u* - u. Using the differential equations for u* and u we then reexpress this as a series
expansion involving only the function u and its time derivatives along the boundary.
This can then be evaluated rrom the given boundary conditions for t.

Each of the next three chapters is devoted to one of these issues. The emphasis
is on splittings of hyperbolic problems into subproblems with disparate wave speeds, as
discussed in Section 1.3. However, many of the techniques used are also applicable to
other splittings or the form ut = Al(u) + A2 (u). Whenever possible, the discussion is in
terms of the more general splitting to facilitate application to other problems. Hyperbolic
splittings arc always used as concrete exaniples in these chapters, and most of the specific
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results are for such problems. In particular, the one-dimensional shallow water equations
are frequently used as an example.

In Chapter 5 we discuss several other applications of the time-split method using the
theory developed in previous chapters. We first consider applications of the time-split
method to hyperbolic problems in two space dimensions. The main intent is still to split
between different wave speeds, but in conjunction with this spatial splittings may also
be used.

Finally we consider two applications of the theory of time-split methods to non-
hyperbolic splittings. In Section 5.3 the simple convection-diffusion equation (1.4) is split
and solved as a perturbed problem with a skewed Crank-Nicolson method analogous to
the skewed Lax-Wendroff method (1.34). The efficiency of this method can be analyzed
using the techniques of Chapter 2. Intermediate boundary conditions at the inflow bound-
ary can be specified using the procedure of Chapter 4. When the diffusive parameter v
in (1.4) is small the equation becomes a singular perturbation equation with a boundary
layer at the outflow boundary that causes additional diificulties.

In Section 5.4 the Peaceman-Rachford method (1.42) is viewed as a time-split method
with the splitting (1.43). For a rectangular region the boundary condition procedure of
Chapter 4 can be used to derive appropriate boundary conditions for the intermediate
solution U*. These arc seen to agree with the classical boundary conditions of Fairweather
and Mitchell[191.

Chapters 2-4 are essentially independent of one another and can be read in any
order. The sections of Chapter 5, which deal with other applications, are disjoint from
one another, but build upon the results of the previous chapters, particularly Chapters
2 and 4.
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2. Accuracy and efficiency

2.1. Introduction.

This chapter begins with a computation of the truncation error for a general time-
split method. Neglecting higher order terms, this is simply the sum of the error com-
mitted in splitting the exact solution operator (the splitting error) and the truncation
errors of the schemes used for the subproblems.

In Section 2.3 we present general expressions for the splitting error in both the first
order splitting (1.19) and the Strang splitting (1.21). The splitting error is explicitly
computed for some model problems, including the one-dimensional shallow water equa-
tions.

For the type of splitting with which this thesis in most concerned, namely where
112(u)II cIIAi(u)jI with c < 1, the error in the Strang splitting is seen to be Ofrk 3 ). A
simple modification of this splitting is proposed with O(c 2 k + ek4 ) splitting error.

Once we are able to compute the splitting error for specific problems, we can analyze
the efficiency of the split method relative to unsplit methods. It turns out that the size of
the splitting error greatly affects what size timestcps should be used in the split method
and what increase in efficiency can then be expected. This analysis is presented in Section
2.5 and continues in Section 2.6 where phase errors are computed.

In Section 2.7 these results are interpreted for a block triangular system of the form
considered in Example 1.1. For this problenm (and also for more general partitioned
systems) the splitting error can be reduced by the use of a simple change of variables.
This is discussed in Section 2.8.

In Section 2.9 the one-diniensional shallow water equations are studied. The theory
developed in Section 2.5 is confirmed numerically for this system.

2.2. Truncation error of the time-split method.

In order to compute the truncation error for the time-split method we first introduve
the truncation error operators Ei(k) Ior the approximate solution operators Q(.(k). These
are defined by

i,(k) = Qi(k) - Si(k), k = 1, 2.

We will assume throughout that Q1 and Q2 are at least second order accurate. Then
E (k)u is 0(k 3 ) for smooth u. For shorthand we sometimes write Ej(k) 0(k).
Similarly, we introduce the splitting error operator Ispik(k) defined by

= S1(k/2).S2 (k)Si(k/2) - S(k).

This is also 0(k0) for smooth u.
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The truncation error operator for the time-split method is

ET1M (k) = Qi(k/2)Q2(k)Qi(k/2) - S(k).

If the operators At(u) and A2(u) are linear, this can be easily computed in terms of El,
E2 and Eplit using the fact that Si(k) = I + O(k) and Qj(k) I + O(k):

E's-u(k) = (S1 (k/2) + El(k/2)) (s2 (ik) + E2 (k)) (Si(k/2) + El(k/2)) - S(k)

= S1(k/2)S2(k)Si(k/2) - S(k) + 2El(k/2) + E2(k) + O(k 4 )

= E.,11t(k) + 2E,(k/2) + E2(k) + O(k4 ). (2.1)

If the operators Ai(U) and A2 (u) are nonlinear, then the Q, S, and E operators will also
be nonlinear. More care must then be used in deriving ETSM(k), but the O(k s ) term of
the result is exactly the same as above, and the expression (2.1) holds in general.

The truncation error for the time-'iplit method is thus seen to be essentially the sum
of the splitting error for the problem and the truncation errors for the finite difference
operators. This allows us to easily compute the accuracy and investigate the efficiency
of the time-split method relative to unsplit schemes. This will be done in Section 2.5.
First we must be able to compute the splitting error Esplit(k).

2.3. The splitting error.

We will first prove the assertions made in Chapter 1 regarding the accuracy of the
splittings (1.19) and (1.21) when applied to the solution operator for a general equation
of the form

ut = A (u, t). (2.2)

The operator A may also depend on spatial variables, but this dependence will not
be explicitly shown. The proofs are completely independent of the number of space
dimensions.

We denote by A'(u, t) the total time derivative of A assuming u satisfies (..2). This
is given by

A'(u, t) = At(U, t) + A.(u, t)U (2.3)
= At(U, t) + Aju, t)A(u, t).

In the latter form this depends only on u at the time t and does not depend explicitly
on ut. This is crucial in the proofs that follow, where we will be switching between
solving different differential equations, which means that time derivatives of u become
ambiguous.

A few words should be said about the quantity A.(u, t). The vector-valued function
A generally depends both on u and on one or more spatial derivatives of u. [it one space
dimension, for example, we could write A = A(u, uuz,.. ., t). The derivative A. is

then defined as
9 A aA B9AA, + - +  ).---- +" (2.4)

where oA/Ou, BtA/Out, etc. are ordinary Jacobian matrices with respect to the ap-
propriate vectors u, a., etc. More will be said about evaluating these expressions later
in this section.
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Now suppose that A is split as A(u, t) - Ai(u, t) + A2(u, t). One consequence of (2.3)
is that A'(u, t) $ A (u, t) + A'2(u, t). This is because A.(u, t) is the time-derivative of Ai
assuming u satisfies ut = A (u, t) rather than (2.2). We find instead that

A' = At + AA
= (At, + Ag,) + (At, + A2,,)(A, + A2)
= (AIt + AiA,) + (A2, + A2, A2) + A1,,A2 + A2 ,Ai (

=A'1 + A'2 + A1,A 2 + A2.At.

We are now ready to prove the results indicated earlier, beginning with a standard
proof that the splitting (1.19) is first order accurate (i.e., that the local error is 0(k2)).

THEOREM 2.1. Suppose that u(to) is a Ce" function of all spatial variables and that

A, A,, and A2 are smooth functions of u and t related by (.1.17). Then the corresponding
solution operators S, S 1, and S2 satisfy

S2 (to + k, to)S1 (to + k, to)u(to) - S(to + k, toJu(to)

= jk2 [A22u (to), to)A1(u(to), to) - A , (u(to), to)A2, 'to), to)] + 0(k3 ) (2.6)

as k -a 0.

Proof. We begin by computing S(to + k, to)u(to). If u satis.ies (2.2) then this is
simply u(to + k) and expanding in a Taylor series gives

S(to + k, to),(to) = u(to) + kut(to) + gk2Utt(to) + 0(k 3 ) (2.7)
- U(to) + kU - k2 .A' + 0(k 3 ).

Here and below, when no arguments are shown ror A we mean A(u(to), to) (similarly for
A, and A2). We now compute the solution using the split operator. Alter the first step
we have

St(to + k, to)u(to) u(to) + kA1 + k2 A + 0(k3).

Set u* = S1 (to + k, to)u(to). Then

S 2(to + k, to)u =u + k 2 (u ,to + kA k 2u,tO) 0(k

= u* + k[A 2 (u(to), to) + A2.(,(to), to)(U* - u(to)) + 0(k2)]

+ k2[A'(u(to), to) + 0(k)] + 0(k3 )

[u(to) + kAt + 2 k + 0(k 3 )]

+ k[A 2 + A2 ,(kA, + 0(k2)) + 0(k2)]
+ 1k2 [A + 0(k)] + 0(k3 )

=,(to) + k(A I + A2) + 2k (A' + 2A2 ,AI + A) + 0(k)

Using (2.5) and (2.7) we find that

s 2 (to + k, to)S,(to + k, to)u(to) - S(to + k, to)t,(to)

= k2 (A2 At - At-A 2) + 0(k3 ).

This proves the theorem. *
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Example 2.1. The formula (2.6) can be used to compute the 0(k 2 ) term of the
splitting error for any particular problem. Consider, for example, the problems

(a) u, = Au. + Bu. with A, (u) = Au., A2(u) = Bu,, and A and B constant.
The solution operators are simply exponentials, so the splitting error can be computed
directly as in (1.20). We get the same result by (2.6) since Al. = A8. and A2. -= BOv.

(b) ut = (1+ a(z))u. with A,(u) = u. and A2(u) = a(z)u2 . From (2.6) the splitting
error is +'1k2[a(x)a,* , - a,(-(=)* , + 0(0s)

= - ka'(x)u- + 0(k).
For this problem the solution operators are again exponentials, S1(k) = exp(ka.) and
S2(k) = exp(ka(z)8), so this can also be checked directly.

(c) ut = (c+u)u2 with c constant and u scalar. Take Al(u) = cu. and A2 (U) = uu*.
Then A1.A2 = A2 Aj - c(u2 + uuXt) and the 0(k2) term in the splitting error is zero.
In fact, for this problem the splitting error is identically zero. This is intuitively clear
since solving the subproblem ut = cu. simply translates the solution in z. The remaining
subproblem ut = utu. does not depend explicitly on z, and so solving this problem and
shifting the result is equivalent to solving the original problem.

Note that if u is a vector this is no longer true, since in general different eigen-
components of u propagate at different speeds and hence move relative to one another.
The splitting error for a system of equations ut = JA + A.(u)]u will be computed later
in this section.

The next theorem asserts that the Strang splitting (1.21) is in general second order*
accurate.

THEOREM 2.2. (Strang[49J) Suppose that u(to) is a C' function of all spatial
variables and that A, A,, and A2 are smooth functions of u and t related by (1.17). Then
the corresponding solution operators S, S1, and S2 satisfy

SI(to + k, to + gk)S2(to + k, to)S(to + k, to) (to) - S(to + k, to)(to) - 0(k3 )
as k --+ 0.

Proof. Proceeding as in the proof of Theorem 2.1,

S,(to + 1k, to)u(to) = u(to) + IkAI + Ik 2 A'1 + O(k 3 ).

Again denote this by u. Then
2(to + k, to)u* = u + kA 2 (U*, to) + 'kA 2 (, to) + 3)A' (u%, to +, OO)

= u(to) + k(&AI + A2) + lk2(A'i + A2.A, + A2) + 0(k).

Call this quantity U**. Then

S,(to + k, to + ,k)u* ° = u** + IkAi(u**,to + 1k) + jk 2 A'(u*,to + j k) + o(k 3 ).

Ixpaiiding AI and A, in both u and t about (u(to), to) and collecting terms, we find tii.t
St (to +t k, to +t k)82(to +{ k, to)Sl1(to +4 j k, to)

U(to) + k(A I + A2) + jk 2I jA' + YA it4 AImaAt) + A2

+ AjA 2 + A2,A 11 + O(k3 )
- (to) + kA + jk 2A'+ o(k 3 )

in view or (2.3) and (2.5). Comparing this with (2.7) shows that the error is indeed
O(k3). t
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Keeping the 0(k3) term everywhere in the proof would have given us a formula
analogous to (2.8) for the k term of the error. In general this is quite complicated. For
the relatively simple autonomous case where A is a function of u alone, the splitting error
is found to be

-. k'M A.A - YA,.A 2).Ai + RA + A)kAs (2.8)

Yj.2. + (A24.Ai).A2 - MAj.A 2)mA2J+0()(28

Example 2.2. The errors in the Strang splitting for the problems considered in
Example 2.1 are relatively easy to compute:

(a) Ut = Au, + Bu. with A and B constant. By expanding the exponential solution
operators the splitting error is seen to be

- _3[(IA 2B- 4ABA + *BA2)a 12 _ AB2)a 2  4.(2.9)
- (B 2A - BAB + A Ot'B2) ]u(to) + O(k4).

The splitting error is zero only if A and B commute.

(b) ut = (1 + a(x))u.. Again expanding the exponential solutiop operators shows
that the splitting error is

- 1kI[( +C())d"(X) - (a'(X))2jU2 (to) + o(k 4 ).

A higher order splitting. The fact that the Strang splitting is second order
accurate can be seen more directly by viewing the Strang splitting, as in (1.22), as two
applications of the first order splitting with Si and S2 applied in the opposite order in
the second application. By Theorem 2.1 the truncation error in the first step is

k2(A2.(U(to), to)A,(u(to), to) - Al.(u(to), to)A 2(U(t o), to)) + 0(k3 ) (2.10)

and in the second step:

k2(A ,(u*, to + k)A2 (U,to + 1k) - A2,(U,to + Ik)A,(u*,to + )lk)) + O(k 3 ). (2.11)

The full-step truncation error can be shown to be simply the su, of (2.10) and (2.11)
plus O(k 3 ) terms. Expanding (2.11) about (u(to), to) and adding (2.10), the O(k 2 ) terms
cancel and hence the Strang splitting is O(k3) accurate. This cancellation occurs because
the 0(k2 ) termn of (2.6) is skew-symmetric in the variables A, and A2 .

For the type of problem wc are considering here, where I1A2(U)II < tIjA(u)1 and
similarly for their derivatives, a similar trick can be applied to the Strang splitting to
increase the accuracy even rurther. The 0(k3 ) term of the splitting error (2.8) is generally
dominated by the first three terms, which contain two factors Ai(u) and a single A2(u).
The other terms are smaller by a factor of c and hence the Strang splitting is O(ek 3 )
accurate. But now suppose that on every third step we reverse S, and S2 in the Strang
splitting, so that the approximate solution operator over three timesteps becomes

S(3k) sL 2(k/2)S, (k)S2(k/2)S, (k/2)S2 (k)S, (k)S.,(k)S1 (k/2).

Then the 0(k3 ) term of the error is simply twice the expression (2.8) plus the expression
(2.8) with At(u) and A2(u) interchanged. The O(fkV) terms then cancel leaving only the
O(c2k3 ) ternis, plus of course the higher order terms, which are O(ck4 ). Unfortunately in
practice these higher order terms often dominate, especially when large timesteps k are
used. Numerical results indicate that, this modification has little praclical value except
when a very fine mesh is used. This idea will riot be developed any further here.
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2.4. Computing the splitting error for quasilinear systems.

The expressions (2.6) and (2.8) for the splitting errors look deceptively simple.
Evaluating them for practical problems Is actually quite a chore, mainly because of the
matrix derivatives which occur. We will now discuss the proper way to evalueate such
expressions and give several examples. We are paticularly interested in the situation
where A(u) = A(u)u.

We begin by discussing derivatives of matrices. If A(%) E IRVxV is a matrix valued
function of a vector u E 1R', then its derivative A.(u) E IR"i' will be a three-tensor.
It is convenient to think of this as an array of matrices:

A.(=) - (2.12)

A tensor multiplied by a vector gives a matrix. There are two ways to perform this
tensor-vector multiplication and it is important to distinguish between them, since they
give different results.

If B is the tensor
B = [BtB 2,...,B,

where By E IRr'X, and if v E R', then the first type of multiplication, denoted simply
by Bl, is obtained by taking a linear combination of the matrices By:

Bv = B1 v + Bv 2 + ". + Bw E I "x'

where v = (VIP ... ) The second type of multiplication will be denoted by B v.
This product is given by the matrix whose jth column is the vector Bjv:

B®v =[BtIBs,v... IDv E "X.
J

It is easy to verify that if w E iR' is some other vector then

(Bov)w = (BW)v E R". (2.13)

Both forms or multiplication play a role in differentiation. Consider the vector-valued
function f(u) = A(u)w, where to is a constant -cctor and u is itself a function of z. Then
differentiating f with respect to z gives the vector

aA)= (-!A(u))W

= (A.(u)u.), E IR"

where A,(u) is the tensor (2.12) and the multiplication is or the first type. On the other
hand, differentiating with respect to u gives the matrix

-1(u) = A.(u)®,, E IRrX ' . (2.14)
5u
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This can be verified by direcUy computing the Jacobian matrix corresponding to

f(u) = A(,),E,!-, a"y(")'t1

I.E;-.. 1(s),oi]

Also note that if B Is a constant tensor, then

-(Buu) = Bu + Bou.

Now let A(u) = A(u)u. and suppose, for simplicity, that A.(u) is constant, so that
A..(u) = 0. (Otherwise this would be a four-tensor.) We then find that

A.() = A.. + A0.

A,.(u)= 2A4,,10.

Example 2.3. Consider the problem ut = [A1 + A.(u)ju. with A! constant and A.
a function or u alone. Take Ai(,) = Afu and A2 (U) = A.(u)u.. Using (2.6) we can
compute the 0(k2) term of the splitting error for the first order splitting (1.19):

'k 2 (A,.A,(u) - .4,.A,(u))

= Ik[(A. &u + A..)Afu. - A! ..(A.)(

= Ik[(A.,,0uzA, . + A.A/u . - (A 1(A..,u)t. + AIA.u.=)j

- 1k[(A.,.AIu= - AA.t.u.)u. + (A.A, - AA)uzxI.

To obtain the last line we have used (2.13) to rewrite A.,. @uAf u. as A.,Afu.u. Note
that in order for (2.15) to be zero A, must commute both with A. and with Ass.

As a concrete example, consider the one-dimensional shallow water equations (1.36)
with the splitting (1.38). For this system, the tensor A.,, is given by

A,.lu) =- 0 10
01 1

We compute that

(A..M(Aft.),. - 4

- 4o [;. 6. 1
2 [Iu 2+u "
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Similarly,.

,,,r=, +,'1T-,1z+1:.A.A..,.),,- Lu 00. .rS 90-.0)X
2[, . + +(- ,.

and hence

jk'(A,.A,(u) - A,.A(u))= Iok(ju! - ju.,. + 02.)

Example 2.4. The error in the Strang splitting can be computed analogously. In
interpreting the expression (2.8) it is important to recall (2.14), which indicates that, for
example,

(A1.A2(u)),Ai(u)'= (Ai,..(A ,(u) + Ai,,.,,)At(u)
= A,..A(u)A2(U) + A.,A,,A,(,).

Evaluating (2.8) for the shallow water equations requires a tedious calcuation. In view
or (1.37), the dominant terms or (2.8) are the terms

+Ai.Ai(u)).A2(t) + (Ai.A 2(u)).Ai(u) - MA2.Ai(u)).Ai())

This turns out to be
00k ['.-X O XU(c244 k 3). (2.16)
go ugosL - -XZ

All other terms in the splitting error are o(S3 .4k 3 + C2-00k 4 ).

2.5. Efficiincy analysis for the time-split method on hyperbolic problems.

The remainder of this chapter deals only with hyperbolic problems of the sort
described in Section 1.4, although the same type of analysis can easily be applied to other
problems. For definiteness we also restrict our attention to the Lax-Wendroff method.
Other schemes can be analyzed in the same manner. In Section 5.3 a similar analysis
will be performed ror the Crank-Nicolson method on a convection-diffusion problem.

For the constant coefficient equation

ut = Au. = (A1 + A.)u. (2.17)

we wish to compare the unsplit method

LW(A, k)

witlh the time-split method (1.29) using

Q.(k) = LW(A., k). (2.18a)
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For Q1(k/2) we consider both

Q,(k/2) - exp(JkAfO) (2.18b)

and
Qj(k/2) = (LW(Al, k/rn))""/  (2.18c)

for some even ihteger m. The split scheme defined by (2.18a,c) might be used if A1 were
sparse relative to A., while (2.18a,b) would be appropriate for perturbed problems where
exp( kAf a.) is known exactly.

In each case we assume that X = k/h is fixed as k --, 0. In comparing the split
methods with the unsplit method, it does not suffice to compare the local truncation
errors. For fixed k and h the two methods may take quite different amounts of work to
implement. Furthermore the optimal mesh ratio may be different for the two schemes.

Instead we compare the amount of work required to compute a solution with an
error bounded by r, say. Specifically, we consider the z-interval. [0, 1] and determine the
amount of work required to compute solutions at time t = 1 with error no greater than
r. Strang[49] takes an equivalent approach and compare. the accuracy obtained with a
fixed amount of work. In comparing numerical results it is convenient to take yet another
approach and simply normalize the resulting errors by multiplying by some measure of
thc work required to obtain them. This will be done in later sections.

For theoretical analysis the approach taken here seems to be the most natural. It
determines the optimal mesh ratio and also provides (rough) expressions for the values
of k and h which must be used to achieve a given accuracy.

For this analysis we will assume, as does Strang, that the variables have been
normalized (or the norm appropriately chosen) so that

p(A) PIAil = a

where p(A) is the spectral radius or A. This means in particular that 11A311 s a 3 . For
the splitting indicated in (2.17) we suppose that

IIAl I a, IIA.11 P ca (2.19)

with the spectral radii again comparable to the norms and c < 1. Set b = ca. Also
suppose that 1ju .. 11 -- 1. This is for convenience only, since it removes one common
factor from all of the bounds below.

Efficiency of the unsplit method. We will first analyze the unsplit Lax-Wendroff
method LW(A, k). Suppose that W is the work required to compute LWIA, k)U,, at a
single point z,. Then the work required to advance the solution on a unit s-interval by
one unit of time is W/kh = XW/k 2 if k = Xh. The truncation error for the Lax-Wendroff
method is given by (1.13),

1,IW( - - hk(k2A 3 
- h2A)ut 3 3 + 0(k 4 ). (2.20)

Applying this roughly Ilk times gets us to time t = I and

(LW(A, k))'/ k 
- (exp(k(Aj + A.)D) + ELW(k)) 1/k

" exp(AOa) + k[ELw(k) + 0(k 4 )] + O(k 4 ).
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The error after one unit or time using the unsplit method Is thus bounded as

"I((LW(A, k))'/1 - exp(AO.))vjl

< j((kIlA~ll + kh'llAII) + O(k4))

<_ jkl(as + a/.') + 0(k).

Since we require an error s v-, we set

jk'(o3 + a/X)) =r

giving

a(a2 + /X')"

Thus w(-r; )), the work required to achieve a given accuracy 1 using Lax-Wendroff with
mesh ratio X, is given by

XW

=(Xa; + /,,a

We have not yet specified ). Choosing X to minimise w(r; )) gives X - I/a and the
minimum work w(r) is

a2 W
w(,r) = f--- for unsplit Lax-Wendroff. (2.21)

Note that the optimal mesh ratio X = 1/a is, also the stability limit for this problem.
We can actually see that this is the optimal mesh ratio by looking only at the error at
time t = 1. Since this error is bounded by

j(k 2a3 + h2a) + o(k 4)

it is clearly optmtoni to choose k and h so that the two terms k2 a3 and h2a are roughly
the same size (for otherwise wc could increase k or h, and decrease the amount of work
we do, without substantially increasing the error).

So far this analysis is completely standard and our results agree with those of
Strang[49]. However, the same type of analysis, when applied to tinio-split methods
under the assumption (2.19), yields some illuminating new results. This will now be
done, first for the method (2.18a,b) and then for (2.18a,c).

Efficiency of the split method (2.18a,b) on perturbed problems. Let W. be
tie work required to apply Lax-WendrolT on the slow scale and W7P the work required
to cotupute exp(kA/f0)U". Then the work rc'quired for a single step or the Lime-split
method is W* ' m = W. + 2W" p . Typic,%lly Wr sM - W. The error over one unit of
timce for the split scheme is bounded by

j((O,(A:/2)Q.(k)O,(k/2))' - exp(AO.)) ull
_< -j.p,,i(k)u + Ei,.(k)u + 2r 1(k/2)u + Q(k4 )ll.
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For (2.18b), E,(k/2) = 0. The truncation error for Lax-Wendroff on the slow scale Is
bounded by

IIE.(k)ulI _< jk(kb3 + hb)
- 3k(b3 + b/X2).

The splitting error for (2.17) is eauily computed to be

B.pl=t(k) exp(I kA 10.) exp(kA.8.) exp(I kA18.) - exp(k(A! + A.)B)

-= - jk'(AA. - JAIA . Aj + 1A.A7 (2.22)

- iA!Aj + A.AIA. - iA/A!)8 _ + 0(k)

so that
llE.pit1 (k)ull < kk(Ao' + aPe) P jk~aob,

although it may be much smaller for some problems. Since our results depend very much
on the size of this error, we will suppose for now that

IIJEpj,(k)ull < jk'u

for some o, so that

-lEl.piL(k)u + E.(k)ull < lk(, + b +bl

In order to obtain accuracy 7 we must take

k 2 
- 67____

o + b3 + b/X2

so

W(7;X) =.XW,5h / kS

= X(o + P + b/X2) W (2.23)

The optimal stepsize ratio X now depends on the size of the splitting error and is given
by

Vdr (2.24)

so that

W(7) = W/b(O + V )  for the time split method (2.18a,b).
37

If a < b3 (e.g., when Af and A. commute), then (2.24) gives X % l/b and

P= Wra u
W(T) b- W (2.25)
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TABiEz 2.1

Reduction in work over (2.21) obtained by using the time-split method
(2.18s,b) on (2.17). The results depend on the size of the splitting error.

case optimal X reduction in work

general a* 3  +E(u + "aa)

best 12
to

01

typical cask s
a

When W"" s W this is better than (2.21) by a factor of c2, meaning greatly improved
efficiency. Note that when or = 0 the only error incurred is the error in using Lax-"
Wendroff on the slow scale. From our previous discussion of Lax-Wendroff it is clear why
X = l/b is optimal in this case.

On the other hand, if the splitting error ii as bad as (2.22) indicates, then u - a~b

and X g 1/a in (2.24), giving
abl r s "

This is still an improvement over (2.21), although now by only a factor of c. Note that

now X is chosen appropriate to the fast scale, even though the fast part of the problem
is solved exactly. This is necessary because of the splitting error. Indeed, if we try to
use X = l/b when o = a2 b, we obtain no improvement over (2.21). For this reason it
is advisable to always use small timesteps with the time-split method (2.18a,b) unless

Eplit(k) is known to be very small, in which case even greater efficiency is achieved by
using larger timesteps.

These results are summarized in Table 2.1.

Efficiency of the split method (2.18a,c) with spare Al. When Lax-Wendroff
is use( for both operators, the work for a single step of the time-split method is given
by W"" = W. + mWt, where Wjis the work required to apply lax-Wendroff on the
fast scale. We are assuming that W1 < W. % W. Suppose that W1  = yW ror some
-1 < I. In this case, the best we can hope or is to decrease the required work by a factor
or -Y. Wc will see that in general we can reduce the work by a factor of roughly -Y + vA
by choosing the mesh ratio appropriately. When the splitting error is negligible, we can
improve this to 7 + C.

B1ccause we are still free to choose m in (2.18c), the mesh ratios we use on the fast
and slow scales are essentially independent for this problem. The local truncation error

3t
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for (2.1k) Is

(k/2) = (LW(A,, k/m))'/' - exp( kAfZ9.)

= (exp(.A,.) - KJ.L- - h2A )a )' - exp(jicA,a.)
O2k4).+

- - A, - #h A,)a.3 + 0(k')

The optimal value of m Is that which makes klas/Mn s hS, or m m Xa where X - k/h
is the mesh ratio for the slow scale. The optimal mesh ratio on the fast scales is thus
k/mh = i/ regardless of X.

Using this value of m, we compute the following bound for the error at time t = 1,
using (2.1),

IIE.,is(k)u + E.(k)u + 2A,(k/2)uII _< 1k(a + V + b/X' + a/m2 + a/x') + 0(k

jk2(o + b + 2a/X2).
(2.26)

We then obtain

w,(-; X) s X(oW + b+ + Xw for (2.4a,c). (2.27)

The optimal X is most easily determined by requiring that the terms in the error (2.26)
balance. This gives

X 2a (2.28)
;-+b3

Again we will consider the best and worst cases, a 0 0 and a a2 h. When the splitting
error is negligible, (2.24) gives

= (2.29),T CS/2a

In this case the optimal mesh ratio appears to be larger than the optimal mesh ratio
for the slow problem alone (which would bc I/ca). This counterintuitive result is due to
the fact that otherwise the error on the fast scale dominates the error on the slow scale.
fly taking larger timesteps on the slow scale we decrease the work without increasing
the error, or so the efficiency analysis tells us. Unfortunately, the mesh ratio (2.29) is
larger than the stability bound for LW(Ao, k), which is 1/ca, and so this cannot be used
in practice. The best we can do is to take

X

with corresponding work
2E2a3 W, + - W

ca 6r
= 2a 2Cw S + Wf

63
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TABLE 2.2

Reduction in work over (2.21) obtained by using the time-split method

(2.18ac) on (2.17). The results depend on the size of the splitting error.

case oEPt(k) optimal X reduction in work

general k min (1 ma _x +Y
4ca o~~S ~~a3)

best 0 f + 1
ca

typical ea3 k V + 7

which is better than (2.21) by a factor or if + 7).
In the more typical situation, when o a2 b, (2.28) becomes

2a 1 1
V 2b fa- V/ia

with corresponding work
.(r) = 3a 3 W. + -1/2W1

Vrea 6T

= a2, rW. + WI
2r

2 W

We thus se that ir /c < , an increase in efficiency by the best possible factor of
roughly y is always possible. These results are summarized in Table 2.2.

2.6. Phase errors.

When solving differential equations with wave-like solutions, it is rrequently (esirable
to compute the phase errors or the finite difference scheme employed. Comparing the
phase errors for the time-split method with those ror the unsplit method provides some
further insight into the results or Section 2.5.

Consider again the constant coefficient problem ut = Au. and denote the eigenvalues

and eigenvectors of A by pi and fi., respectively,

Af= -- /tifi, j = 1, 2,..., r
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with the pi ordered as in (1.26). As usual we suppose that hIAII ; p(A) 1 ,. If we take
as initial conditions a single mode

U(Z, 0) = et (2.30)

ror some j and some wavenumber C, then the true solution at time t is simply

u(z, t) = eVZ+AOf i .

The wave thus propagates with a phase speed ity.
Now suppose we apply a single step or unsplit Lax-Wendroff to u(X, 0). By (1.13) we

obtain

LW(A, k)u(z, 0) - u(x, k) - j k(k 2 A' - h2 A)u,,.(x, 0) + O(k 4 )

eit(eIik -k(k
2,U - h2 ,)(iC) 3 )&, + 4 )

exp{qi x + k(p, + I k2 (A - 1j/X 2 ) 2 )]}j&, + o(k 4 ).

The phase speed of the numerical wave is

p, + Ik 2 (p - p,/X 2 )(2  + O(k 3).

The optimal mesh ratio for Lax-Wendroff is X l-e 1/jpA. In practice, or course, one never.
has exactly the optimal mesh ratio, so we suppose only that X = I/it with p Jpri. We
then find that the error in the phase speed for the jth eigenvector with wavenumber C is

phase speed error = gk2 (P4 - 1pA
2)g 2 + 0(k 3 ).

For comparison purposes we again wish to normalize by some measure of the work
required to compute the solution. We define the normalized phase speed error Oj(C) as

Oi(C) = (phase speed error)/kh.

For the unsplit method we have

- ,(. 2 )) 2 + o(k).

If lip = p exactly then there is no error in this mode of the computed solution. In
general, however, the error is roughly

- ",p,. (2.31)

Now consider the split method (2.18a,h) where cxp . ,-kA1 O ) is known exactly and
suppose to begin with that there is no splitting error ror the splitting A = Af + A8.
Then the matrices are simultaneously dliagonalizable and so the ftj are also eigenvectors
or A1 and A.. We then have
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with I i< dI ,.j. The optimal mesh ratio as found in Section 2.5 is then X sz 1/fit.
When applying (2.18a,b), the only error is the lax-Wendroff error on the slow scale, so
after applying one step of the split operator Q(k) we obtain

Q(k)u(x, 0) = u(, k) - 'k(k 2A, - h2A.)u2 f,(x, 0) + O(k 4).

Proceeding exactly as before we find that the normalized error is

S+ (k) (2.32)

This is always better than (2.31). Just how much better it is will depend on the velocity
of the mode (2.30). For slow waves, those for which 11i1 , cIj, say, we have IJL oI -I
IpjI and so (2.32) is better than (2.31) by roughly a factor of c. For fast waves, on the
other hand, for which I~jil z , (2.32) is better than (2.31) by a factor of C2 . The
improvement in phase errors is thus more dramatic for fast waves than for slow waves.
This is to be expected since it is the fast subproblem which is being solved exactly.

How do these results fit in with the results of Section 2.5? There we saw that for the
method (2.18a,b) with no splitting error, the work required to obtain a given accuracy
should be reduced by c2, or, equivalently, that the normalized error should be reduced
by f2. Yet here it seems that the error in slow waves is reduced only by c. This apparent
contradiction is resolved by reexamining (2.31). This shows that for the unsplit method
phase errors in slow waves are already smaller by a factor of c than those in fast waves.
Hence with the unsplit method errors in the fast waves dominate, and reducing those
errors by c2 (and errors in the slow waves by c) causes the overall global error to decrease
by t2.

This has an important consequence which was not directly apparent from the analysis
of Section 2.5. For problems in which frast waves are absent from the solutions of interest,
and only slow waves are present, the use of the time-split method can be expected to
decrease the normalized errors, and hence improve the cficiency, by at most a factor of
f, even in the absence of splitting'errors.

Now suppose that the splitting error is nonzero. For the constant coelficient system
this means that A1 and A8 do not commute and the cigenvectors uj of A are no longer
cigenvectors of Af and A.. Because of this initial conditions consisting of a single mode
(2.30) no longer lead to a single-mode solution and we are not able to consider each mode
separately.

Instead we take more general initial conditions

t(z,0) - etxzi

where

U = ~(2.33)
vm=t

and look at phase errors in the jlh mode. We assume that the km are order unity and
for convenience take a3  1.
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The truncation error for the split method is now the sum or the truncation error for
Lax-Wendroff on A,. and the splitting error (2.22). So

Q(k)u(z, O) = u(x, k) - kBus.. +... (2.34)

where
B = (k2AS, - h2A.) + &2[ A2A. - A1 A.A + 1AA!

- iAoA! + A.A/A - 'AfA.

Assuming as usual that IIA.II < EIIAI 1e cA, and using the optimal mesh ratio k/h
1/1,! gives a rough bound on B:

lIBI < 2k2 ,4 + O(kc 2 ,). (2.35)

Now we must make an additional assumption on the matrix A, namely that the
eigenvectors of A are well-conditioned, If X is the matrix of eigenvectors f,. then we
assu me

I[Xl IIX-' II = 0(1).

This means that we can expand Bfi as

with I,Il of the same order as IIBII. This is because /3 = X-BXo and so II/ll <
fIBIJ IIXll IIX-fIl IjaII P 111111. Using (2.33) in (2.34) then yields

Q(k)u(x,O) E ,,ei(+jAk)f.,' - -6k(iC)3 E ft,, + O(k4 )
,n=t v=1

I

= a,,L exp~iC[x + k(ptm + /amJ}n + 0(k4).

Using (2.35) we can compute the normalized phase speed error in the jth mode:
;Z;I C,&22.

Note that unlike the previous cases the phase error here is the same for fast waves and
slow waves. Comparing this with (2.31) shows that for fast waves (Ay -p ,r) the error is
reduced by ( while for slow waves (/s. < Cp,) the error is not reduced at all. This indicates
that when computing a solution containing only slow waves, the time-splilt method with
splitting errors may be no more ellicient than the unsplit method.
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2.7. Block triangular systems.

Since the efficiency of the split scheme is limited primarily by the splitting error,
it is interesting to investigate how this error depends on the coupling between fast and
slow scales in a simple model system. Consider the block triangular system with

A = [.AI, 
A ]2

and the splitting
A [ = ], A. = [ A

12]
A 0 0 . 0 A22J

and suppose that IIApl sII 1 and that IIA1211 = a < 1. For variety we have chosen a
problem in which A1 -+ oo as c --+ 0 rather than A. -+ 0. The theory developed in the
previous section applies equally well in this situation.

Here A 12 is the coupling between fast and slow scales. If A12 = 0, the problem is
uncoupled and E.plit(k) 0. In general, from (2.22),

kV[ 0  1Al 1 (-AIIA 12 - 2A 12A22)]03 + O(k 4).

Thus IIE.pjt(k)uI z ak 3 /24C 2 . The efficiency of the splitting depends on the size of a.
In the notation used above, we have

a.-IE, b= 1, oa a 2 b.

For unsplit Lax-Wendroff, (2.21) gives

1W
w(T) = I 3" (2.36)

The time-split method (2.18a,b) is always more efficient if we choose

X- (1 + 1aa2b)-l/.

For example, if a %- I we should use X -- 2/a = 2c in order to reduce (2.36) by a factor
of c. The maximum efficiency indicated in (2.25) is achievable only if a < C2, in which
case taking X = 1 reduces (2.36) by a factor or C2.

2.8. Reducing the splitting error.

For block triangular systems in which A1 2 is not small, it is possible to reduce the
coupling through a change of variables so that the optimal efficiency can be achieved. A
change or variables amounts to replacing u by fi H Du for sonie nonsingular matrix B.
The system ut = Au. then becomes ft = BAH- tei. Clearly, if B is chosen to be the
eigenvector matrix or A then the problem completely decouples into independent scalar
equllaioss. We are seeking something less expensive which only decouples the fast and

37

4.



slow scales. Thus we want a (well-conditioned) matrix B such that

BAB'1 = N 1 0 (2.37)

with IIC11 P IIC2211 Pv 1. In tfie block triangular case, it suffices to consider B of the
f o r m = [B 1 2, I._B 1 2

B- [0 1- = [0 ~1Z1
Then

BAB-' = A11  - *,AIIBI'2 + A12+B22
= 0" A22 +ElA]

and so B 12 should be chosen to solve

-AiB 1 2 - B12A 2 2 = A1 2  (2.38)

in order to completely decouple the fast and slow scales.
In the present context solving for B12 from (2.38) is not worthwhile. In order to

achieve optimal efficiency we need only reduce the coupling by one or two factors of C.
Further reductions do not gain anything once the Lax-Wendroff errors dominate. This
suggests taking

12 = 4EA1
1Ai (2.39)

so that

BAB-' = rAi A(,21
0 A 22 J

where
A( ) = cA- A1 2A 22 .

We now have IIAW)II z ca provided IIA-1
11 - 1. The coupling is thus reduced by a

factor of c through the use of a very simple change of variables. This process can be
repeated to obtain additional factors of c. This change of variables has been suggested
by Krci4s[321 in a similar context.

For full systems of the form

A __ [1A11 A12]
SA21  A221J

we can obtain a similar reduction in the size of both off-diagonal blocks and again reduce

the splitting error by several orders of magnitude. In this case we consider 11 of the form

Bi[ K I 01=[ I+KL K].
L0 I LL I L I"

It is easy to verify that the lower corner of A is annihilated by taking 1, to satisfy

-LA 11 - A 22- LA12 L+ A21 0.
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The matrix K can then be chosen as before to remove the remaining upper corner. This
results in a system of the form (2.37). This particular transformation is discussed more
completely by O'Malley and Anderson[44]. Again, however, we are not interested here in
completely annihilating the corners, but rather in reducing them by a factor of e. This
is easily accomplished by taking

K = cA-lI'A,2
L -- -eAgtA' t .

Example 2.4. This problem is designed to illustrate the effects of the splitting error
and the use of the change of variables (2.30). Consider

u fo[ [ < z <z 1,t>0 (2.40)
V1 1, ][] ,vo

with initial conditions
t(z, 0) = v(z, 0) = e- ° (x-

1
/

2
)
2

and periodic boundary conditions

u(0, t) = u(1, t), t > 0, j = 1, 2,

v(0, t) = V(1, t), t 0, j = 1,2.

Figure 2.1a shows the results after 236 time steps using Lax-Wendroff with h - 1/50 and
k = h/O on the unsplit problem, Figure 2.1b shows the results based on the splitting

We used k = h - 1/50 with

Qa(k) = LW(A°, k), Q,(k/2) = (LW(Af, k/1O)) 5 .

In this case E8 (k) = E((k/2) = 0 by a judicious choice or k/h and m. The second
component v is computed exactly and the errors in u are due entirely to the splitting
error.

ir the change of variables suggested in (2.39) is applied twice to (2.40) with e = 0.1,
we obtain the new variable

U -, (,C + ,2),, == U _ 0.1 1 V, (2..4 1)

and (2.40) becomes
V1] =. [10 O.1 ][vl]

If we solve this system with the same split scheme as before and then transform back to

the original variables by u = fi + 0.l1v, the errors in u are reduced to 0(10- 3 ) as seen
in Figuure 2.1c.
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FIG. 2.4. True (dashed line) and computed solutions at t = 4.72 tot Example
2.1. Thc first component, u, is on the left and the second component, w,
is on the right. The schemes used are: (a) unsplit Lax-Wendro if, (b) the
time-split method (2.1 8ab), and (c) the time-split method with the change
of variables (2.41).
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2.9. The shallow water equations.

In this section the efficiency analysis of Section 2.5 is applied to the one-dimensional
shallow water equations (1.36). We will use the splitting (1.38) and assume that the
condition (1.37) holds. In Section 2.4 we computed the splitting error for this system.
In general this error is nonneglible. Since all or the waves in the solution to the original
problem are fast waves, the analysis or Sections 2.5 and 2.6 leads us to expect the time-
split method to be more efficient than the unsplit method by a factor of C.

Taking the mesh ratio as in (1.39), the time-split method (2.18a,b) becomes

U = RunP + Un+ + 'n-_ - on+,]

< = lfl _- Un+, +
In + = p_- + 0,-p + On+pi

[4j= LW(A., k)4; (2.42)

InP +P rn-p 'n+p

in - i- - U"+ t- + P

Since ut A.ii is a quasilinear problem, an appropriate generalization of the Lax-
Wendroff operator must be used ror LW(A.,k). We have used MacCormack's method
(see 1411).

We wish to compare the efficiency of the split method with that of the unsplit
method. For convenience in checking our predictions against experimental results, we
choose to compare the error at a fixed time normalized by the amount or work required
to compute it (rather than the amount of work required to compute a solution with a
given error). Since the split and unsplit methods take roughly the same amount of work
per grid point per timestep, it suffices to normalize the errors at a fixed time by dividing
by kh, as we did to normalize the phase errors in Section 2.6.

We first consider the unsplit MacCormack's method applied to (1.36). Since A s A!
with small, slowly varying peturbations, the errors in applying MacCormnack's method
on A are roughly the same as those in applying Lax-Wendroff on the constant coefficient
matrix Af. We can thus use the results or Section 2.5 directly to analyze the efficiency
or the unsplit method.

Since p(A) Pz p(Af) = 40/2, the optimal mesh ratio is X ; 2/#Oo. The error at time
t = 1 is bounded using the truncation error (2.20) by

k-lIEw(k)i, ll 46k211AII + h2 11AII) ...i 11. (2.43)

For smooth solutions we can asmume that il .. 1 = O((.0o). Then taking X 0(1/00),
we find the normalized error by dividing (2.43) by kh:

normalized error = O(c4)) ror the unsplit method. (2.44)

Now to analyze the split method. The splitting error (2.22) is in general O((. 2 4k 3)
ror this problem. The results or Section 2.5 indicate that ror the thne-split method with
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E = = 0 and E.pit(k) nonnegligible, we should again take X = 0(1/0o) and hence the
optimal p in (1.30) should be some small integer, independent of both c and 40. Numerical
experiments confirm this prediction (see Example 2.5 below) and in fact p = 3 or 4 seems
to be optimal over a wide 'range of values of c and o.

Using this optimal value of X, the normalized error should, in theory, be reduced by
a factor of c over (2.44), i.e.,

normalized error = O(r'44) for the split method. (2.45)

This is also confirmed in the following example.

Example 2.5. Consider the shallow water equations (1.36) on 0 < z < 1 with initial
conditions

u(x, 0) = coo cos(2nz)

O(x, 0) = Oo(1 + c sin(2.=))

and periodic boundary conditions

U(0, t) = U(1, t)
(0, t) = 1, t).

We first compare the error obtained at a fixed time using various values of p in the
time-split method (2.42). Figure 2.2 shows the normalized errors as a function of p for
00 = 1 and c = 102,10-3,10 - 4 with h = 1/50. Other values of 4'o, c, and h have also
been tested and lead to graphs which are qualitatively very similar to Figure 2.2. In all
cases p = 3 or 4 is optimal.

We can also compare the error in the split method with that of the unsplit method
using the optimal values of X for each. For the split method we take p = 3 (corresponding
to X = 12/0o) and for the unsplit method we use X = 1/ 0. Figure 2.3 shows the results
for b0 = 1. We see the normalized error- plotted as a function of c. This confirms
the prediction that using the split method reduces the normalized error by a factor of
e. More significantly, it show that even for i>'lrly large (i.e. realistic) values of c the
time-split method is superior. For example, at c = 0.1 the errors are reduced by a factor
of roughly 100.

Simple waves. The splitting error for the quasilinear problem (1.36) .with the

splitting (1.38) depends on u and 0 and the relation between them. In general it is
nonnegligible but for certain special solutions, namely simple waves, the splitting error
is identically zero.

The equations (1.36) can be written in characteristic form as

(,U + A = -(00 + U)(u + ). ( )
(U, - O)t = 00 - U)(, - 0)..

The Riemann invariants u + 4, and u -. 0 are each constant along characteristic curves
in z-t space defined by the ordinary differential equations

dx- = ' (, t) u(Z, t)

42



100

10-5 10- 10- 10-: 1i- 10-1 100
FIG. 2.2. Normalized errors in the shallow water equations of Example 2.5
as a function of the parameter p occurring in the mnesh ratio (1.39). In all

csst = 0.96, 40o 1 and h =1/50.
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FIG. 2.3. Normalized errors in the shallow water equations of Example 2.5 as
a function, of f or the unsplit method with X = 1/Oo and the split method
with X = 12/00. In the computations shown here t =0.96, 00 t and
h =1/50.
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and

respectively.
A solution for which one ofrthe invarianta is in fact constant for all z and t is called

a simpe wavte. For simple waves the splitting error is idcntically zero. This is most easily
seen by changing variables. Set

p(z, t) = u(z, t) + O( Z 0, (2.47)
u(z, 0 = t(Z, t) - #(Z, t).

The equation (1.36) becomes

[P] = - [3p+ j] (2.48)

The matrix occurring here is SAS - ' where

Applying the same similarity transformation to A/ and A. leads to the following splitting
of (2.48):

SAfs- = 0 jo SASS-=- [3P+ 0 2o p+3a+2" (2.49)

Since we have applied a constant similarity transformation, it is easily verified that
the splitting errors corresponding to the splitting (1.38) and (2.49) are also related by
the same similarity transformation. Thus it suffices to show that for simple waves the
splitting error in (2.49) is zero. This is easy to do, as we will see momentarily.

We note in passing that solutions to the shallow water equations can be computed
directly in terms of p and a using the splitting (2.19). With R and S denoting approxima-
tions to p and o, the time-split method (2.42) then becomes

R:, R"M_,

I !,W(A., k)(2.50)

R",+' =It"M_1

This form will prove particularly convenient when specifying boundary conditions for the
interncidiate solutions, as we will see in Section 4.5.

Suppose now that we are compulting simple waves aind that one of the invariants p
or a is constant, say a - o . Then clearly ," -o in (2.50) and so the second
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component of the splitting error is zero. The equation for p is pe - 4(3p+ a)pz A(p)
and it remains only to show that there is no error in using the splitting AI(p) = - loop.,
A2(p) = - 3p+a - 2.0o)pz. Since o and q$o are constant, this is essentially the problem
of Example 2.1(c) and so the splitting error is zero. Note that the expression (2.16) is
consistent with this, since for simple waves u. = 4', and u., -",= .

It follows that the optimal mesh ratio for computing simple waves is O(1/coo) leading
to normalized rrors which are reduced by a factor of c 2 over (2.44):

normalized error = 0(iE303 ) for the split method on simple waves.

These predictions are also confirmed by numerical experiments, as the following example
shows.

Example 2.6. Consider the shallow water equations (1.36) on 0 < z < 1 with initial
conditions

ox,0) = c#o sin(27x)

O(x, 0) = o(I + csin(27rx))

and periodic boundary conditions. Since u - 0 is constant, the solution is a simple wave.
We again compare the normalized errors at a fixed time using various values of p in

the time-split method (2.42). We expect p = O(1/c) to be optimal. In order to test this
theory when ( is small we must run the computations out to large times, t = 0(1/f). For
each value of t we will compare the normalized error at t = 0.96/(100c), using values of
p < 12/(100t). This is roughly the stability limit of the method. (In Section 3.5 it will
be shown that the stability limit is k/h < I/(2fbo) which corresponds to p < 1/(8).)
Since the stability limit is smaller than the optimal p predicted by the theory, we expect
the normalized errors to be monitonically decreasing up to the stability limit. This is
confirmed in Figure 2.4.

The theory also predicts that the residing normalized errors at a fixed time should
be 0(c 34b) at the optimal p, and hence that the errors at time 0(1/1c) should be 0(c(.2).
This is also confirmed by Figure 2.4.
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FIG. 2.4. Normalized errors in a simple-wave solution to the shallow water
equations or ,xarnple 2.6 as a function or the parameter p occuring in the
mesh ratio (1.39). In all cases 0= 1 and h 1/50 while t 0.96/(100f).
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S. Cauchy stability

3.1. Introduction to stability theory.

In this chapter we investigate the stability or the one-dimensional time-split method
when applied to a constant cocncient hyperbolic problem on the entire real line, -oo <
z < oo, or on a finite interval with periodic boundary conditions.

We will first engage briefly in a general discussion of Cauchy stability for a marching
scheme of the form

U"+ = Q(k)U" (3.1)

appled to a constant coefficient problem. More details can be found in Richtmyer &
Morton[461 or Thom c51J. We use a standard definition or stability, which can be
written in several equivalent forms. We begin with the most natural of these.

STABILITY DEFINITION 3.1. The operator Q(k) is stable if for any fixed time T there
exists a constant MT such that

IIQ"(k)ll < MT (3.2)
for all k sufficiently small (say k < ko) and nk < T.

The condition (3.2) ensures that for all initial vectors U °, the solution U"
Q"(k)U ° satisfies

HIU"l < MTIIUII (3.3)
for nk < T.

Here 11 11 represents sonic norm over all meshpoints at a fixed time. For example,
the discrete t2 norm is given by

0011U"112 = 2 lu, 12

with representing the usual vector two-norm.
Up until Section 3.4, where we introduce Sobolev norms, we will always suppose that

the norm 11 -11 is equivalent to the t2 norm in the sense that there exist constants M1 and
M 2 such that

MIIIU12 _5 IlUll < M21IU112

ror all U. With this restriction, Stability )efinition 3.1 is independent or the norm used.
If Q(k) is stable in the t2 norin then it is also stable in any equivalent norm.

The following equivalent definition or stability is sometimes easier to work with
since it only requires a bound on IJQ(k)lJ rather than a unirorm bound on IIQ"(k)II. The
dilficulty in applying the new definition is that such a bound, when it holds, will often
hold only in a very special norm tailored to the problem, and will generally not hold in
equivalent norms.
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STABILITY DEIFINITION 3.1'. The operator Q(k) is stable if there exists a norm
and a constant a > 0 such that

IIQ(k)ll < I + ak (3.4)
for all k < ko.

Clearly (3.4) implies (3.2) since

IIQ"(k)ll _ IIQ(k)ll" (1 + ak)" e"T

if nk < T and we can thus take MT = eaT. The converse, that such a norm exists for
any s!tible scheme, is proved constructively in Chapter 4 of Richtmyer and Morton[461
as part of the Kreiss Matrix Theorem.

In some cases bounds of the form (3.4) can be obtained directly. This method
of proving stability is referred to as the energy method since for physical systems the
required norm is often simply the energy of the system. Often, however, it is easier to
determine stability by an alternative approach known as the von Neumann method. We
take Un to be a single Fourier node, U - eimhU t" where (J" is the vector of Fourier
coefficients at time n, and insert this into (3.1). We find that Un+i is again a single
Fourier mode with coefficients

(Jn I = G( , k)U"

for sonic matrix G( ,k), called the amplification matrix. Stability Definition 3.1 is
equivalent to the following definition based on this amplification matrix.

STABILITY DEINITION 3.2. The operator Q(k) is stable if for any fixed time T
there exists a constant MT such that powers of the corresponding amplification matrix
are uniformly bounded by MT,

IIGn(C, k)lI < MT (3.5)
for all E, k < ko and nk < T.

Corresponding to Stability Definition 3.1' we have the following definition of stability,
which is again equivalent.

STABILITY DEFINITION 3.2'. The operator Q(k) is stable if there exists a norm
and a constant a > 0 such that

jIG(E, k)JI < I + ak (3.6)

for all C and k < ko.
Since every matrix norm is bounded below by the spectral radius, we find from

Stability Definition 3.2' that a necessary condition for stability is the so-called von
Neumann condition:

p(G(E, k)) _ I + 0(k). (3.7)
This condition is frequently sulicient as well. Chapter 4 or Richtlmyer and Morlon[461 has
a thorough discussion of su llicieit conditions. I lere we will mention only a Iew examples
which will prove particularly useful.

If For all C and k, G(E, k) is a normal matrix, i.e., if G commutes with its conjugate
transpose, then IIJG(, k)112 = p(G(E, k)). fly using the 2-normn in Stability Definition 3.2'
we see that in this case the von Neumann condition is sufficient for stability.

More generally, il. suffices that the matrices G((,, k) be simultaneously normalizable,
as (hlfi ned in the following theorem (see lichtinyer &. Morlton[46)).

48



TitORrM 3.1. Suppose there exists a constant matrix S such that SG(e,k)S'-

is a normal matrix for all e, k < ko. Then the von Neumann condition is sufficient for
stability.

Proof. Define the vector norm I1 I1s by

IIdis = I1st112*

This vector norm is equivalent to the 2-norm. The corresponding matrix norm is

IIAlls =- ISAS - 112. (3.8)

In this norm we have
IIG(e, k)llis = IISG(, k)S-'1 12= PCSG(e, k)S-')

= p(G(, k))

and the theorem follows by using the norm 11 1Is in Stability Definition 3.2'. I

An important application of this theorem provides the result that the von Neumann
condition is sufficient for stability if the G(e, k) are simultaneously diagonalizable (since
any diagonal matrix is normal). Many methods for the problem ut = Au= have the
property that their amplification matrices are polynomials in the matrix A and hence
are diagonalized (for all e and k) by the eigenvector matrix of A (by the assumption
of hyperbolicity, A is diagonalizable). In particular, the Lax-Wendroff operator and the
exact solution operator have this property, and the von Neumann condition is sufficicut
for their stability.

3.2. Stability of the time-split method.

We now turn to the stability analysis or the time-split method (1.23). When Q2(k/2) =
Qf(k), as is true for the splittings (2.18), for example, Cauchy stability of the Strang
splitting (1.21) is equivalent to stability of the first order splitting

Un +
1 = Qf(k)Q,(k)Un. (3.9)

For simplicity we restrict our attention to this splitting, and set Q(k) = Qf(k)Q.(k).
Let Gf(e, k) and G.(E, k) be the amplification matrices corresponding to the operators

Qf(k) and Q.(k) , respectively. Then it is easy to verify that the am plification matrix
G((, k) for Q(k) satisfies

G( , k) = Gf (e, k)C(E, k).

This allows us to calculate the amplification matrix for the Liine-split method relatively

easily. In general the stability of Qf(k) and Q,(k) separately does not imply that Q(k) is
stable, or even that the von Neumann necessary condition is satisfied for G( , k), since the
spectral radius is not submulLiplicative (i.e., the inequality p(G) K_ p(Gf)p(G.) does not
hold). It is easy to find examples for which Qf(k) and Q.(k) are both stable operators
but (3.9) is unstable. In fact, this can happen even when Ql(k) and Q.(k) are exact
solution operators for well-posed hyperbolic problems, as the following examle shows.
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10 .= 1 0

8 -=

6

2

- -4/2 0.0 w/2 W

FIG. 3.1. Spectral radius of the amplification matrix G( , k) of ixample 3.1
for 1 = 5, 10, as a funciton of Ek between -r and 7r.

(Incidentally, the converse can also occur, i.e., the product may be stable even if one of
the operators in unstable on its own. See Abarbanel & Gottlieb[I] for an example of
such a scheme.)

Example 3.1. Let

Then the problems ut = Afu,.r and ut = Aou. are well-posed, strictly hyperbolic
problems For any value of the parameter A, and so is ut = (A1 + A.)u" if p -2.
Let

Qf(k) = exp(kAfO9), Q.(k) exp(kA.a4).

The corresponding amplification matrices are

G,(C, k) = exp(ik Af)

=[eikf ui sin ke]

and
G,( , k) = cxp(ikcA.)

[cos k isin k ]:i sin k cos k J

We have p(Gf( ,k)) p(G8 ( , k)) - I for all E and k. On the other hand, the
amplilication matrix G( , k) for the time-split method has p(G(, k)) = I for all C and k
only ir 1 :< 2. When iil > 2, the method (3.9) is unstable. Figure 3.1 shows graphs of
p(C( , k)) for A = 5 and 10.
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3.3. Simultaneously normalizable splittings.

As we have just seen, the individual stability of Q1 (k) and Q.(k) is not sufficient
to guarantee the stability .of Q(k) in general. However, for certain special cases (which
include some fairly broad and important classes or problems), the individual stability
is sufficient for overall stabili y. Since the matrices G,(E, k) and G8 (E, k) are generally
much easier to-work vvh than their product G(e, k), it is useful to identify such classes
of problems. For these problems stability is relatively easy to determine.

We first note that if there exists a norm I1 and a constant a such that

IIG,(e, k)I < 1 + ak V e, k < k0  (3.10a)

and
IIG.(C, k)II < 1 + ak V C, k < ko. (3.1Ob)

Then JIl (C, k)ll _< Ilaf ( , k)llIIaG (,( k)ll

< I + 2ak + c
2 k 2

< I+ aok V , k< k0

where ao = 2a + a2 ko, so Q(k) is stable,
Of course if Qf(k) is stable then by Stability Definition 3.2' there exists a norm such

that (3.10a) holds. Similarly, if Q8 (k) is stable then (3.10b) also holds in some (possibly
different) norm. Only in certain special cases can we easily show the existence of a single
norm in which both (3.10a) and (3.10b) hold.

As one such case, suppose that all or the matrices G,(C, k) and G.(E, k) are simul-
taneously norializable by a single matrix S. Then the individual stability of Q1 (k) and
Q8(k) guarantees the stability of Q(k), since then (3.10a) and (3.10b) both hold in the
S-norm defined in (3.8).

Some operators, such as LW and exact solution operators, have the property that
if the coeflicient matrix is normal then the corresponding amplification matrix will also
he normal, for all and k. Restricting our attention to such schemes, we find that it
then suffices for the stability or Q(k) that the two matrices A1 and A. be simultaneously
normalizable and that Qf(k) and Q.,(k) be individually stable.

This result is quite useful, since in many practical problems the matrices Al and
A, are simultaneously normalizable. This class includes, for example, scalars, symmetric
matrices, an(d commuting matrices (which are simultaneously diagonalizable).

These results can easily be extended to split,tings involving more than two terms.
Since this is frequently useful, we summarize tUe above results and their proofs in a more
general setting.

TIIEoI' M 3.2. Let At, A2, A ., Am be constant matrices. Approximate each solution
operator ex,(kAj0,,) by some operator Qj(k) with amplification matrix Gj(E, k). Suppose
there exists a single norm and a constant a such that

IIG(,(k)II _I +ak V , k < ko, j 1= ,2,...,m. (3.11)

Then the scheme
U" = Q,(k,)Q,(k2)... Q,,(k,,)U" (3.12)
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is stable.

Proof. Let Q(k) - Q,(k).. Qm(k) and let G( , k) GI(f,k)...C.m(f k) be the
corresponding amplification matrix. Then

IIG(, k)ll <5 II,6k)ll' .IIG.(f, k)ll

<I+ aok

for ao0 = ma + (r)a 2 ko + ... + a'k' - ' and hence Q(k) is stable. I

THEOREM 3.3. With the Aiand G3 (f, k) as in Theorem 3.2, suppose there exists
some nonsingular matrix S such that SGj(f, k)S-' is a normal matrix for all j, f, and
k. Suppose furthermore that each satisfies the von Neumann condition,

p(G(, k)) _< 1 +ak Vf, k < ko, j = 1,2,...,m

for some constant ae. Then Q(k) is stable.

Proof. Using the S-norm defined in (3.8) and the fact that SG3 (f, k)S- ' is normal,
we have

IIGj(C, k) Is IISG (e, k)S-'112=p(sGi( , k)S-')

Sp(Gi(f, k))

< + ak

and stability follows by Theorem 3.2. |

3.4. Block triangular systems.

A similar stability result can be obtained for the standard block triangular system

[u], = [All A,2 1[l
A22 .11 tJ

with the splitting (1.32). The solution v does not depend on u. In solving for u, the
computed v. enters essentially as a forcing function. llecause or this we obtain only
a weak stability result, in whcih the norm or iiu"ii is bounded in terms of a discrete
Sobolcv norm of the initial conditions. The Sobolev )orrn I I has the form

IIIUIII = Ilull + IID+UII,

With the splitting (1.32), the schemes Q.(k) and Q1 (k) will be or the form

Q.(k) = (Qfj}] (k) = it~k~ (3.13)

Suppose that Q1,(k) and Q22(k) are stable schemes. Then, in particular, there exists a
norm " jI and a constant a > 0 such that

IIQ,(k)IIl < I + ak V k < ko. (3.14)
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All of the following estimates will be in this norm. We also suppose that

IIQ12(k)VII _< kMIID+VII V V, k < ko (3.15)

for some constant M. For example, if Q.(k) = LW(A., k), we have

Q12 (k) = kA 12 Do + Vk2A 12A 22 D+D-

= lkAi 2 (D+ + D-) + i>kxAl 2A 22 (D+ - D-)

since D+D_ = (D+ - D_)/h. Since lID-VII = IID+Vii, we have

IIQi 2(k)VIi _ k(flA,211 + X1A 12A2211)IjD+VIl.

For fixed X this is of the form (3.15).
With these assumptions we then have the following theorem.

TiEOREM 3.4. Suppose Q1 (k) and Q,(k) are stable schemes as above. Then the
split scheme Qo(k)Q,(k) is weakly stable:

IIU"11 _ Kr(IIU°II + IID+V°II) (3.16a)
IIV"ll _< KTIIV°II (3.16b)

for nk < T. [lere KT and kT are constants depending only on the fixed time T.

Proof. When the full scheme U+ = Q.(k)Q,(k)Un is written out we obtain

U ' = QI(k)U" + QI1 (k)Q 12 (k)V'"  (3.17a)

Q22 (k)V". (3.17b)

The bound (3.16b) follows imnediately from (3.17b) and the stability of Q22 (k). Moreover,
by linearity, an identical bound holds for the linear combination or solutions D+V", i.e.,

IiD+Vill < kTIID+V°lI.

Using this together with (3.15) in (3.17a) gives

IiU" + 'II < IIQ,t (k)lI(IU'Il + kMKTIID+ V11).

When iterated n times this gives

IIU"11 < IIQI,(k)lrllU11 + kMiA'!T ( 11Q(k)ll"- ' + iQi (k)II" 2 (
\ (3.18)

+ -- + IIQII(k)lI + I)l)+V11 .

By (3.14), IIQII(k)IJ" < (1 + ak)" _< e ' if nk < T. Uling this in (3.18) gives

IIuIl < e*T (IIUOII + 7'MkTI1D+V°II)

for nk < T, which is or the desired rorryi (3.16a). I
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3.5. The shallow water equations.

We will now investigate the stability of the splitting (1.38) for the shallow water
equations. Since this is a quasilinear system of equations, a complete stability analysis is
difficult to perform, even for unsplit methods. We will perform only a linearized stability
analysis for the corresponding frozen coefficient problem with

A/--- o/2 /2 A, U0
'00 /2 1o U1

Here the constant Uo is a representative value of u while 0o is a representative value of
(o'- .0)/ 2 . One hopes that if a method is stable on the frozen coefficient problem for all
values of Uo and 40o in the appropriate range, then the method will also be stable on the
nonlinear problem. It is well known that this is not necessarily so; nonlinear instabilities
may arise. Nonetheless, the linearized stability analysis is valuable because an instability
for the frozen coefficient problem will almost certainly lead to instability of the nonlinear
problem, and thus we at least obtain upper bounds on the stability limit. Moreover, for
the shallow water equations computations indicate that the nonlinear scheme is usually
stable when the frozen coefficient problems are.

Stability of the scheme (2.42) applied to (3.19) is easy to determine using Theorem
3.3. The matrices A1 and A. are both symmetric and so Q(k) is stable provided Q1 (k)
and Q8 (k) are both stable. Since Q((k) is the exact solution operator, it is always stable,
and so stability is determined entirely by Q,(k). The eigenvalues of Aa are Uo ± Do and
so Q(k) = LW(A., k) is stable if (Uo ± 10o)k/h < 1.

Suppose that (1.37) holds, i.e., Jul < 4co and 14 - 4'o/2 < coo for all x and t for
the solutions of interest. Then all of the relevant frozen coefficient problems are stable
provided

kc 1k- 2 o (3.20)

Note that for the unsplit method LW(A, k), the stability limit is roughly

k< 2

The split scheme is thus stable for much larger values of k. Recall, however, fromi Section
2.9 that for the split method an accurate solution is obtained most elficiently using
k/h : I/'o. Such mesh ratios are well within the stability limit (3.20) and long-time
calculations on the full nonlinear system have revealed no instabilities.
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4. Boundary conditions for the intermediate solutions

4.1. Introduction and a simple example.

So far we have considered the time-split method applied only to the Cauchy problem
on the unbounded spatial domain or to problems with periodic boundary conditions.
In practice we must be able to deal with more general boundary conditions. The
implementation of finite difference schemes frequently requires more boundary data than
arc supplied with the differential equation. In particular, when using a time-split method,
special boundary data must be generated for the intermediate solutions.

For the most part we will restrict our attention to the time-split method (2.18a,b)
for solving perturbed hyperbolic problems, although the same techniques can be applied
to a wide variety of other problems and splittings. Some examples of other applications
are given in Chapter 5.

We begin our discussion with a simple example which illustrates the problems
encountered and the general methodology used to determine the correct boundary data.

A constant coefficient scalar problem. Consider the equation

ut==-(1 + C)U. (4.1)

on the strip 0 < x < 1, t > 0, with initial conditions

u(X,0) f f(X), 0 < X < 1, (4.2)

and boundary conditions
u(O, t) = g(t), t > 0. (4.3)

For c > -I, this is a well-posed problem as it stands. Ioundary data is prescribed only
at the inflow boundary x = 0. Values at the outflow boundary x = I are determined as
part of the solution.

The exact solution to this problem is a wave moving to the right, unaltered, with
speed I + c:

u(t) = f(- (l +t), 0 < X < 1, t > 0

where for C < 0 we define

f() M= g(-/(1 + )), < 0.

We will first consider the unsplit Lax-Wendroff method. If the mesh spacing iWn
the ,-direcLion is h = I/N for some integer N, Ihen the grid )Oints or interest are
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ZO, X1,..., ZN. The Lax-Wendroff method is
U" +  U" - 'X(1 + C)(U"+I - U._)4

I + 12( + C)
2 (Un - 2U- + U-. 1), m 1,2,..., N - 1. (4.4)

This scheme cannot be applied for m = 0 or m = N and so UO+ 1 and U +1 must
be determined in some different manner. At the left boundary we simply use the given
boundary data (4.3), +

= g(t,+). (4.5)

At the outflow boundary we must either extrapolate from the interior, e.g.,
U" + 1 = 2U"+ - U"+, (4.6)

or use a one-sided difference scheme, e.g.,
Un + = U" - ,(I + C)(U - U _). (4.7)

Both (4.6) and (4.7) have local truncation errors which are O(k 2 ). This is sufficient to
retain the 0(k2 ) global accuracy of the Lax-Wendroff method. In general the overall
accuracy of a method is not degraded by errors in th- boundary values provided the
local error at the boundary is no larger than the global error for the interior scheme (see
Gustafsson[28]). In addition, of course, the total method (including boundary schemes)
must be stable. Stability is more difficult to determine for initial boundary value problems
than for Cauchy problems and is discussed in Section 4.6. For this simple problem both
(4.6) and (4.7) yield stable methods.

Now consider a time-split method applied to the same problem (4.1) with

A =-1, A.=- -c.

We now assume that r < 1. Since the operators commute, there is no need to use the
Strang splitting and so we need introduce only one intermediate solution. Taking k = ph
for some integer p > I arid using the exact solution operator on the fast part together
with IW(Ao, k), the split method is

u" = U" _P, , = p, p+ ly,..., N + t, (4.8a),

+  U P((U+i U 1) + 1_2 2 . - 2U + U_,), (4.8b)

m=1,2,...,N.

Notice that we use (4.8a) to define U7+ t even though it is not within the (omain of
interest. Nonetheless, it can be used in computing U'+1 (which is or interest) in the
Lax-Wendroff step (4.8b). Tecat;e or this we do not need any special procedure to specify
UV + . This is one advantage of using time-spliL methods for such perturbed problemns.
Since they are essentially skewed (one-sided) Lax-Wendroll methods which follow the
characteristics of the problem, arLificial boundary values are often not needed at outflow
boundaries.
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Instead, we need to specify additional values at x = 0. We still use (4.5) for U"' ,

but we must also specify Uo, U*,..., U -_ . Alternatively, we can leave these values

unspecified and apply (4.8b) only for m = p + 1,..., N. We must then determine
Un+l,..., Un+1 by some alternative procedure.

Since there is no splitting error for this problem, the results of Section 2.5 indicate
that for optimal efficiency we should take p ; /c. However, for simplicity we first
consider the case p = 1. Then we only need to specify U 0 or U + l.

Three possibilities for specifying U" +1 are immediately apparent. The first is to
interpolate between the known values Un +1 and U + 1,

un+1 = Ru + +u 1
Ujjt

- 0U~ + U ')- (4.9)

This is O(k 2 ) accurate. However, when c is small this choice causes a severe loss of
accuracy in (4.8) and completely negates the increase in efficiency obtainable through
the use of the time-split method. The reason is that the local truncation error for the
method (4.8) is O(Ek3 ) giving O(Ck 2 ) global errors. It is this factor of c which makes the
time-split method advantageous over the unsplit method (4.4). By using (4.9) we lose
this advantage.

Figures 4.1a,b show the errors at time t = 0.4 using this time-split method with the
boundary conditions (4.9) when c = 0.1. Signals propagate with velocity 1 +C = 1.1 and
so errors from the improper specification of u"+ ' have propagated in to approximately
x = 0.44 at this time. To the right of this point all errors are due solely to the interior
scheme. It is this accuracy which we would like to match at the boundary. Clearly
the boundary approximation (4.9) is causing a loss of accuracy. When f is smaller, as
in Figures 4.1c,d where c = 0.001, this disparity in the size of the errors is even more
apparent.

In order to maintain th," advantage of the time-split method, we must use a more
accurate boundary scheme, one with local error O(ck2 ). One possibility is to use higher
order interpolation. Using quadratic interpolation on the points U- + , Un + t, Un+ t

would give 0(k 3 ) errors. For k sufficiently small (k < c), this provides sufficiently ac-
curate data. lowever, t. ase or higher order interpolation can cause stability problems.
Moreover, when p > I tere wi!l be several values Un'+,..., Un + l to be determined and
interpolation is unsatisfactory.

The second obvious choice for U(+t is to simply use lax-Wendroff on the unsplit
problem,

U = LW(-(1 + c), k)U'. (4.10)

This also has O(k 3 ) local error and provides sufficiently accurate data for small k. Again,

however, stability may be a problem and for p > I the scheme is certainly unstable.
The final approach to specifying U? I" is based on Taylor series expansions in from

the n bomilary. This is the best approach and, for this sinple problem, gives the correct
value of /'U'i- exactly. We want U" + ' to approximate u(h, I,. ). We can expand this
in a Taylor series about u(0, t,+l):

u(h, tn,+) = u(0, t,+) + hu(O, tn+) + ! h2 u (O,to,+) + (4.11)

Approximating this directly by differencing the known values U'!+ ' would give us the
interpolation scheme rejected above. Ilowever, using the differential equation (4.1) we
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(a) k = 1/25, e - 10- 1 (c) k - 1/25, e 10-
10-3

_ 10-4

10- 5

10- 6

10-7
- - 10"8 __

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(b) k - 1/100, 0 -10 -2  (d) k = 1/100, -- 10 - 3

10-4
10-3

1 0-45

0-7

i0-8

,,,, ,,,I ... .... 1,,, : 1o- 9  ... . IF . ,,I , I . I ... .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 4.1. Errors in the computed solution of (4.1) using the split scheme
(4.8) with p = 1 and the intcrpolatory boundary condition (4.9). The errors
are shown on a logarithmic scale for various values or k and C. Note that
the interior error is 0( k2) while the boundary error is O(k 2).
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i-V-. U + - ao, U,04.12)

Wc can thus rewrite (4.11) as

u(h,t,) = uO,t,+j)- T+ut(O,t,+i)+ {+j 2Uu(O,t,+i) + ".. • (4.13)

The desired data is now expressed in terms or t-derivatives of u along the boundary, i.e.,

derivatives of the known function y(t) from (4.3). For this simple problem (4.13) can in
fact be evaluated in closed form, giving the desired value of U"1+ 1 exactly:

Uf +
1 = g(t,.+ I - h/(1 + f)). (4.14)

The calculations shown in Figure 4.1 have been repeated using (4.14) instead of (4.9).
The results are shown in Figure 4.2. Since for this problem the boundary data (4.14) is
exact, the errors are actually smaller near the boundary than in the interior.

This same approach can be used in a wide variety of problems to determine boundary
data for points near the boundary. In general it will not be possible to obtain the exact
data in closed form as in (4.14), but a series solution can be developed and evaliated
to arbitrary accuracy. Goldberg & Tadmor(21]221 explain how to do this for general
inflow-outflow boundaries. This will also be discussed in Section 4.4.

It seems that we have completely avoided the need to specify boundary values for
the intermediate solution U*. For this simple problem that is true. Hlowever, for many
problems it is not possible to avoid specifying intermediate boundary values. This is
particularly true when implicit methods are used in the splitting. In other situations it is
sinply more convenient comnputationally to specify boundary values for the intermediate
solution than to leave these points unspecified.

T'he remainder or this chapter is devoted to showing how, for many problems, the
same approach used above to conpute U' + t can be extended to compute arbitrarily
accurate intermediate boundary data.

Computing U0 . We now return to our original plan to specify U; for the scalar
problemi (4.1). We require data at the poin, xo, which is on the inflow boundary. At
this boundary the data (4.3) has been sUlpplied, but is not, usable directly since U* is
obtained not by solving the original equation but rather by solving the subproblem

= = -u-. This is the fundamental step in correctly conputing intermimediate boundary
data: introduce a new funciton u* which solves the differential equation :tually bring
approximated in the relevant step of the splitting. The desired boundary data can then
be expanded as a Taylor series in this function. In many cases this can be reexpressed as
a series in the original variable and evaluated in terms or g(t) is l'ore. We will see that
I'or nany problens it is possible to generate stable O(k 2 ) houilary dalta q(uite easily.
For Ihe problei (.1.I) we can in fact, geierale boundary dat which is exactly correct,
Pst Ias we did for 17 + 1. '

Consider a single step (4.8a) or the time-split method starti i at, time t,. and suppose
that, 1j" = u(.x,,, t,,). Since in this problem we have used the exact solution operator
eXl,(,,, dj in (1.8a), U* is tfien , tlhe exact :;ol ution It Lime ll',, 1to the subproblem

u .- u T > , t > t,.5)
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with initial conditions

U'(Z, t,) - u(z, t,), X > 0 (4.16)

at time t,,. The idea is to use the differential equations (4.1) and (4.15) to transform the
given boundary conditions (4.3) for u into boundary conditions for u*. We wish to find
an appropriate value for Uo, which should be an approximation to u*(0, t,,+). This we
can expand in a Taylor series. Using (4.15), we find that

t(0, t, + k) u(0, 4) + ku, (0, t.) + Ik2 ,(o, t,) + ... (

- ,(o, t",) - ku(o, t,) + Ik2 u.(O, t.) +....

Since the initial conditions (4.16) hold for all x, that relation can be differentiated with
respect to x, giving u:(x, t,) = urs(z, ,) and similarly for higher derivatives. So (4.17)
becomes

u*(Ot, + k) = u(O, t,) - ku,(O, t,) + itk u2 zz(0,t ,) +.... (4.18)

We can now use the original equation (4.1) governing u to rewrite this in terms of t-
derivatives of u. Using (4.12), (4.18) becomes

u*(O, t, + k) -- u(O, t,,) + r ut(Ot, ) + 5( 14 Utt(0, t) + "" (4.19)

= g(t, + k/(I + c)).

This is the desired boundary data U0, expressed in terms of the given boundary data
(4.3).

For such a simple example it is easy to verify that this is the correct boundary value.
According to the scheme (4.8a) we would really like

= 1 = u(-h, t,).

(Recall that p = 1.) (Of course u i i not really defined for z < 0, but using the differential
equation (4.1) it can easily be exten|ded backwards in time from the boundary. Since
(4.1) has characteristics with slope 1/(l + E), we find that

u(-h, t,) u(O, t, + hl(1 + c)) = g(t, + k/(t + ,))

exactly as in (4.19).
liecauuse the characteristics for Cihe i)roblems (.1.1) and (,4.15) have different slopes,

we see that the value u(-h, t.) is equal to both u(0, t,, + k/(i + o) and u'(O, t,, + k) and
ther'rore they are equal to each otfher. This is illustrated iii Figure 4.3.

When p > I we (-,n comptte U/; for 0 < j < p in a similar nner. Using the
fact that we know the exact solution operator for the subproblem (4.15), we can project
these values back to the boundary along the characteristics,

U = ,'(jh, 1, + k)
u*(, t, + k - jh).
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t = t, + k/(1 +

Z IX O X 1

FIG. 4.3. Characteristics for u;t  -u: x and u, -(I + f)u, (for 4E > 0)
showing that iru*(T., 1,,) = u(x, t,) then u*(O, t, + k) = u(O, t,, + k/lI +- c)).

This boundary value can be computed as before, giving the general expression

U, = g(t, + (k - jh)/(1 +-o), j = 0,1,... ,p- 1. (4.20)

C(omputations confirm that the use or this boundary value for U; in the split nmethod
(4.8) gives excellent results thal. are virtually identical to those seen in Figure 4.2.

In general when using this approach to specify boundary condiLions for the inter-
mediate solutions it will not be possible to generate exact boundary data as we (lid here.
It often will be possible, however, to develop a series solution, as in the first line of
(4.19), which can be use(i to generate arbitrarily accurate boundary data. In the next
rew s ections we (himonstrate how this cani be done for systemns of increasing complexity,
culmiiating in Section 4.5 with the development or boundary conditions for the shallow
walcr (qluations, a qItasilinear system or equalions with inllow-outlnow boundaries.

4.2. Constant coefficient systems-inflow boundaries.

As the next step in this direction, consider a constant, coellicient system of equations

ut = Au. = (A/ + A,)u,, z > 0, t > 0,

u(X, 0) = f( ), (4.21)

.,,(0, t) = g(t), t > 0,
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on the quarter plane x,t > 0. We assume that the boundary x = 0 is a pure inflow
boundary, i.e., that A has strictly negative eigenvalues. We also assume that A! has
nonpositive eigenvalues. In general A1 and A. (to not commute, so we will have to use a
Strang-type splitting. There will be at least two intermediate solutions, say

U* ; exp(lkAfO)U" (4.22)

U** ; exp(kA.8) exp("kAfi )U".

Of course there may be many more if exp('kAiOa,) is itself approximated by several
steps of Lax-Wendroff, but they can be handled similarly. The general principle should
be clear from considering (4.22).

Again introduce the function u*(x, t) which satisfies the first subproblem or interest,

ut=Afu.,  X > 0, t > t,, (4.23a)

u*(x, ti) = u(Z, tn), X > 0. (4.23b)

We then want

U; = u*(0, tn+ 11 2)
=- (0, t) + Iku,(0, t) + k2 ,,.(ot.) +(422 "(0,in) +(4.24)

(o, t) + 1kAfit,(o, tn) + Ik 2AU(O, 4n) +...

= u(o, 4,) + -kA U(o, tn) + k2 A2u,(O, t,) + ...

where we have used (4.23a) to replace t-derivatives of u* by x-derivatives. These were
then replaced with x-derivatives ol" u using the initiai conditions (4.231). We next use the
original equation (4.21) to replace x-derivatives of u by t-derivatives, which are equivalent
to derivatives or the boundary data,

U 0 = u0, in )+ 1kAfA-'ut(O, in) + 1-k 2 A2 A- 2 U"((), in) +
= (tn) + !kA ft- ' '(tn) + lk 2A 2A -- ,(t2 ) ± *... (4.25)

We have assiuned that A has strictly negative eigenvalues and thus is i~ivertible. In
gener:al If) nust now be al)proximated by the first. rew terms or (4.25). Keepirg the first
three Ierrns gives 0(k0) accurate boutidary data. As usual, this is su lliciently accurate if
k is small. Ilowever, it is worth pointing out that we can frequently achieve the 0((.k2 )
accuracy we desire inre easily. Suppose IIA-' - 0(l). Then since A - A1 + 0((),

AjA - j = I+0(.) for j= 1,2,....

We can then retaimu 0((k 2) accuracy si rply by taking

JO = g(tn ,/2) + 1k(AA- 1 - I)g'(t,). (4.26)

We unray :;till wish to use adlitional terms of the expansion in order to ensure that, the
error I rum ,1he bolunudry comdil.ions does not doiilte the interior error. 'Ilh Imundary
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conditions (4.26) are the correct order of accuracy but the error constant may be larger
than that of the interior scheme. We obtain O(tk 3) accurate boundary data by using

g=4- 1 2 ) + I k(AA 1 - 1)g'(tf) + - I)g"(t.). (4.27)

The additional Work incurred by using three terms of thc expansion rather than two at
the boundary is negligible compared to the work being done in the interior.

Now to ind boundary values for U* . The easiest way to proceed is to note that

U exp(- -kAO )U" + t

which prompts us to define u** (z, t) as the continuous solution to

u " (x,t) A fu*(x,t) x > 0, t < t,4.8

We now solve this backwards in time for

Vo* == l**{O, t.+1/2).

Proceeding as in (4.24) and (4.25) we obtain

U;* = (t,+1) - 1kfA-'g'(t,+,) + k2  A-2 g"(t,,+,) + ...(t,+,/21 - I k(Af A-' -1)9(t-+,).

E'xanmple 4.1 Consider

[ V -2J v 0<z<l, t>o,

il(X,O) ---f(X), 0 < X < 1
(0, 1) = g(t), t > ,

where i! (u, v)T. ,or the splitting we take

Using (2.22) the splitting error is computed to be

-k
3 L~2 4''l,di,,(k) l k* - ' ' "I Cn: ,

It' we use the in,,-split method (2.18a,b) then, according to (2.21), the opLi mal stepsize
ratio is
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where e = max Iti1. For k = 2h and h 1/N, (2.18a,b) becomes

V"=V,-g, m=2,3,...,N

U',+ ' = U*_1 , m= , 2,..., N

t= Vm2, m= 2,3,...,N.

Notice that no boundary conditions need to b- specified at the outflow boundary z = 1.

On the inflow side we still need to specify U', Vo, U0 , and V "I For this problem,

A2A- - (2 1 -)2L 1 4 + 4IE2
-( 222 M22 4 + 412]

= +o(E).

and we can retain O(ek 2) accuracy aking

Uo = g(t,,+ 1 / 2 ) + -ck(AA - ' - I)g(t.)

4g(t+,11) + 2(2-f,2)12,2 el ' j "

Similarly we use

0" = g(t.,1,) - Jk(AA-' - I)g'(t.+,).

We still need to determine V and V +1 . We want Vol = v*(h, t.+ 1/2) = i*(O, t.+ 1 / 4 )

and so the appropriate value comes from the second equation of

i1(0, t,,+ 1 / 4 ) -, g(t+ 1 /4) + Ik(A;A - ' - l)g(t,),

i.e.,

VI = g2(t+,1/,) + (2- 2(g;'1 (t") + ,,IE2g(t.)),

where g= (gi, g2 )T. Similarly,

"- - j-+S4)- 2 1g (t"+,) + EE' 2 (t"+It)).

Computations confirm that these boundary conditions give an O(ck 2 ) globally ac-
curate split scheme. Actually, for this particular example with k = 2h, even greater
accuracy can be achieved. Computing F..(k) from (1.13), the truncation error for Lax-

Wendroff, shows that the 0((k 3) terms exactly cancel the O(ck 3 ) terms in E.plit(k), and
that the total truncation error ErT 'M (k)u is actually 0(c k2), giving O(ck 2 ) global ac-
curacy. By retaining more terms in the above boundary expansions we can match the
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error in the interior solution. Taking one more term, as in (4.27), gives O(ck3 ) boundary
data. Figures 4.4 and 4.5 show the some sample results using O(ek2) and O(ek 3 ) accurate
boundary data respectively. Errors in the first component U are shown at time t = 0.2.
Errors resulting from the boundary conditions have propagated in to approximately x -
0.4.

The oscillations in the error near the boundary are due to the fact that some of
the boundary conditions used (e.g., for 0 o+ 1) have zero error while others (e.g., for
0) have large errors. Since the split scheme is only mildly dissipative due to the O(e)

coefficients in the Lax-Wendroff step, these oscillations introduced at the boundary die
out very slowly as the wave propagates into the interior. This is in no way an indication
of instability. Stability for this example follows from the general results of Section 4.6.

4.3. Variable coefficient systems-inflow boundaries.

Defining the proper boundary data for variable coefficient problems is not significantly
more difficult than for constant coefficient problems. The only complication comes in
switching between z- and t-derivatives. Consider the system of equations

ut = A(z, t)u. (4.29)

and for simplicity suppose that A/ is constant, while A. - A.(z, t). Proceeding. as in
(4.24),

2kAzu " t")+
u*(0, t. + k/2) = u(O, t.) + IkAuf(0, t.) + k 2 , u2 f(, ,) + "

Now we must be more careful in switching back to t-derivatives. We have

us(0, t.) = A-1(O, t,,)ut(O, t.) (4.30)

and by differentiating (4.29) we find that

utt = Atux + Au.,

t Afu. + Aut,

so that
u = A - 1 [A- (utt - AeA- 'ut) - A.A-Zu].

Higher order derivatives can be computed similarly. Continuing as in (4.25), we obtain

u*(O, t") = g(t4} + IkAA-(O, t,)g'(t,) + jk 2 A A- 1 (0, t")[A-' (0, t.)g"(t) .
- (A-'(0, t,)A,(O, 4) + A,(0, t,,))A-' (0, t.)g'(t,)j + 0(k).

This can be truncated in the usual manner to obtain an appropriate expression for U0 .

Example 4.3. Consider the standard quarter plane problem for the scalar equation

=- -(I + ())U
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with Al = -1, A. = -,c(z) and i < 1, la(z)l < 1. Then (4.31) gives

.o.- 1 + () + +o(O))

x gl(t,,) + ,Eo'(O)g'(t,)J + o(k3).

We thus find that the boundary condition

U o = g(t, + k/2(1 + ca(O)))

is O(ek2) accurate. By retaining the next term of the expansion as well we obtain the
0(dk3) accurate boundary data

Uo = g(t,. + k/2(1 + 6a(o))) + ik2(( 1 +al(o))) (0)"

The other necessary boundary data can be generated in a similar manner.

4.4. Inflow-outflow boundaries.

Next we consider a constant coefficient problem ut = Au. for z, t > 0 with an
inflow-outflow boundary at z = 0. This means that A has both positive and negative
eigenvalues. For simplicity we suppose that A is in block diagonal form,

A =[A 0 (4.32)

with the eigenvalues of A' negative and those of A" positive. Partition i - (U, V)T

conformally with A. Then at z = 0 the elements oF u are inflow variables while those oF
v are outflow variables. The boundary conditions are assumed to be of the form

u(o, t) = SV(o, t) + g(t) (4.33)

where S is a constant matrix and g is a given Function. We now split A as A = A/ + A.
with A1 and A, again block diagonal. Moreover we suppose that the eigenvalues of A,
are negative and those of Ar' positive.

We consider only the problem or computing UC and will suppose that exp(kAL9.) is
known exactly. Then Vo is determined from the interior and we need only specify U;.
As usual, we introduce il (z,t) which solves the subproblem 11 = A1 il and find as in
(4.24) and (4.25), that

£'(o, t. + k/2) = i1(o, t.) + JkAA-'ilt(o, t') + k'A A-21tt(O, t,) +....

For simplicity, suppose that A2A -2 = I + O(c). Then for O(ek2) accurate boundary
conditions we can take

Us = i1(O, t.- ,/2 ) + 1-k(A/A - 
-/ )i1t(O, t.). (4.34)
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Introducing the matrix

• ~[A'- 0~("- -  = n
B=AjA-l-I= I AllJ=I ~'[B1 0

we can rewrite (4.34) as

Uo = u(O, tn+1 /2) + IkBIIut(O, t,,) (4.35a)

Vo = '(O, t4+l/S) + IkB 22a,(O, t.). (4.35b)

By differentiating the boundary conditions (4.33) we obtain

u,(O, t,,) = S,(O, t) + g'(t,).

Using this and (4.33), (4.35a) becomes

U; = [Sv(O,t,+t) + g(tt/ 2] + 4kB1 f[Svt(O,t,) + g'(t)]. (4.36)

Recall that V; is already known. We can thus solve (4.35b) for V(O, t.+ 1 /2 ). Using
this in (4.36) yields

U o = S(V* - IkB2Sv,, + g(t,+ 1 2 ) + ikBiII Svt(O,t,) + g'(t.))0 1 (4.37)
= SVe + g(t.+ 1/2) + jk[B,,g'(t.) + (B1,S - SB22 )V,(O, t,,). 4

The vt term must in general be approximated by a finite difference, e.g.,

Uo = SV +.g(t.+,1,) + 1k ,,g'(t,)
+ (A,S - SB 22 )(VO - V3-I). (4.38)

Alternatively we can replace vt by. Allv. and approximate this by a finite difference of V
at time tn. This approach is particularly uscrul when more terms or the series are kept
and higher order derivatives must be approximated.

The use of such boundary conditions is illustrated in the next section, where the
one-dimensional shallow water equations are considered.

Boundary data at points near the boundary can be found in a similar manner. For
example, if data U7+1 is needed for some 0 < j < p we can expand u in x-derivatives,
switch to t-derivatives along the boundary, convert these to t-derivativ es of V using uV =
Sii + g', and finally switch back to z-derivatives of v, obtaining

u(j, t.+,) = u(O, t.,+) + jh(A) - ' (SA",v(0, t,,) + g(t,,+t)i (4.39)

+ Yjh (A')-[S(At)2 , g(O, tn,) + g"(t,+.) +

These boundary conditions are suggested by Goldberg & Tadmor[21[22) for general
inflow-outflow problems.
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The shallow water equations In order to illustrate the derivation of intermediate
boundary conditions for a more realistic example, we will consider the one-dimensional
shallow water equations on a strip,

u - Ui. 0 < z < 1, t > 0, (4.40)

with initial conditions
1(z, O) = 1(z), 0 < z < 1, (4.41)

and, for example, the boundary conditions

00, t) = 9(t), (4.42a)
u(, t) = (1, t) - o. (4.42b)

Here 00 is the mean value of # as in Section 2.0 and the boundary condition (4.42b)
represents nonreflection at the boundary z 1 1. At the boundary z = 0 we have chosen
to prescribe 0. Other boundary conditions can be handled similarly.

As in Section 2.9, the equations (4.40) can be written in the characteristic form
(2.46). As usual we suppose that Jiul C 0. Then the Riemann invariant u + 4. always
flows to the right with velocity 0/2 + u while the Riemann invariant u - 4$ always flows
to the left with velocity 0/2 - u.

The problem of specifying intermediate boundary conditions is simplified if we
change variables and compute directly in terms of the characteristic variables, which
we denote by p and o:

p(Zt) U(z, t) + O(z,t),
0(Xt) (Zt)- O(zt).

We can always transform back to find u = (p + a)/2 and 0i = (p - o')/2. Rewriting the
differential equation (4.40) in terms of p and a gives

[: - [3+,, 0 (4.42)o0 pP+3ar[]

which we split as in (2.48) by taking

'-[ , 0 p + 3" + 2o"

The boundary conditions (4.42) become

p(O, t) = a (0, f) + 2g(t) (4.43a)

ff(l, t) = -0. (4.43b)

At the left boundary p is the inflow variable and the boundary condition (4.43a) is of
the general form (4.33). At the right boundary a is the inflow variable. The boundary
condition (4.43b) indicates that a is constant, and hence the outgoing wave is not
reflcetel.
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For k - 4h/0o, the split scheme on 0 < z < I with h 1/N is simply

R, L W- Aa,) m R1, 2,...,1N

L-- R, +, m -1,0,...,N- I

SJ,, I S1J,,
R"+  -- It_, ,M --1, 2,..., N

, +t= $** m 0,1,..., N - 1.

At the left boundary it appears that we need to specify R*, R*1 , R + 1 and *. In fact
So* is not used in computing S"+ 1 and so we only need to specify the R values. Note
that by specifying R-_1 we avoid having to specify any boundary values for R".

The given boundary conditions (4.43a) provide Ro + ,

Rn+ t = S"+ ' + 2g(t,+l). (4.43)

We next apply the procedure of section 4.4 to compute R*. The expression (4.34) provides
O(f k2 ) accurate boundary data for the quasilinear problem provided A- is evaluated at
(p(O, t.), a(0, t,)). The matrix B = A 1A - 1 - I is given by

[2o ~ 0 1
B rpo t -2#8 =0(C)

and the expression (4.37) becomes

#OO(P + a) ' (2#o _R= S;+2(t.+1 1 2 )+ at 3 (0,)t.)(+
(3+a( 8+ ( +3a ) 3p +0 a.

83p( ++ a)Wt

-S o + 2g(t. + 2#Oo/(3 p + o)) + -Lk t)(p+3) t '
where~~~~~ ~~~ ( n r vlatda 0 M.~ 3p + IT)(p + 3a.))(O

where p and a are evaluated at (0, t.). This can be approximated by

R;= So + 2g(t,, + ak)+ (l0+ 1 S'+ )(S- - S"-) (4.44)

where 0

3I1n + S*0

In order to find R-_t we approximate p*(-h, t,, + k/2). This is equal to p(0, t, + k)
and proceeding as in Section 4.4 we find tie approximation

/8.(i? + so-),
R*-' S'+2g(t"+2a)+ -(o+ '3, -Sr - ) (4.45)

with a as above.
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At the right boundary we still need to specify So, S* and 80"+'. Since the boundary
condition (4.43b) is time-independent, applying the general procedure at this boundary
yields simply

S; = S = S + = -o. (4.46)

Figure 4.6 shows the result of some computations using the boundary conditions
(4.43), (4.44), (4.45) and (4.46). The boundary conditions at the right boundary have not
affected the interior solution. Errors do arise at the left boundary, but these are seen to
be the same order of accuracy as the interior solution.

As in Example 4.1, the oscillations near the boundary are due to the different
boundary conditions being of different accuracy.

4.6. Stability of the initial-boundary value problem.

In general stability theory for initial-boundary value problems is considerably more
complicated than for pure initial value problems. Only recently has a general theory
been developed. The fundamental paper on this subject is by Gustafsson, Kreiss &
Sundstr6m[30.

We will first consider an inflow boundary with boundary conditions as derived in
Section 4.2. In this situation stability can be proved directly from the Cauchy stability of
the interior scheme without resorting to the theory of Gustafsson, Kreiss and Sundstr6m.
This is because the boundary conditions we arc considering are independent of the interior
solution. Consider, for example, the expression (4.25). Our approximation U 0 can be
bounded a priori in terms of an appropriate discrete Sobolev norm of the given boundary
data g(t). The same is true of the other required boundary data.

Stability of the time-split method can then be proved using the following general
theorem, which states that any Cauchy stable scheme is also stable for the initial-
boundary value problem provided that the specified boundary data {U",}) o0 is inde-
pendent of the interior solution.

TIIEOREM 4.1. Suppose Q(k) is Cauchy stable. For the initial-boundary value
problem define U" + ' by

Un+1 Q(k)Unin M > p,in = + ,=ol .. ,p.

Then the approximation is stable in the sense that

IlJUnJll < KTllU 0ll . + kTIIGI? for nk < T, k < ko, (4.47)

where KT and kT are constanL depending only on 7'.

lcre the following norms are used:

00

IIull12 = h , lUl
m=O

T/k p
I1(;11 = k E Z I 2.

qI j-=0

74

4



Proof. By the Cauchy stability of Q (Stability Definition 3.1' there exists a constant
a and a norm fl [[, equivalent to the Is norm, such that

IIQ(k)ll' < 1 + ak for k < ko. (4.48)

Extend the given initial data o to all m by setting

UO = 0, m=-1,-2.

Then solving the quarter plane problem is equivalent to solving the Cauchy problem and
then redefining (U'}'!... o at each step. Specifically, we set

U, +
1  = Q(k)U:,, m =0, ±I, ±2,...

and then take
M + !  1"'+) !  -- ~l..p (4.49)

"S otherwise.

The resulting {U, })' 0 constitute the solution of the quarter-plane problem.
By (4.48) we have

IIU1+'112 < (1 + ak)IIU"112 . (4.50)

By (4.49) we obtain the following bound for U"+I:

IIU"+ 1ll2 < If"'112 + IIc".+ 1 2  (4.51)

where

11,G" + 1112 = h ;7 G)1I2.
j=0

Combining (4.50) and (4.51) gives

IlU' 1 112 < (1 + ak)IIU1l2 + IIG'"+'II2

so that by induction we obtain

IlU"112 < (I + ak)"llU0112 + -(I + c)9llG"-9112
q=O

< eCT IIUO112 + j IIG"-91l2
q-0

ror itk < T. Since IU"12 _< 11(112, OIu0j12_ - IlU112 and

11G"-q11' = h, IG12 < -11G,12
9==0 q =O=0 k

for nk < T, we obtain the desired bound (4.47) with Kr eOT and kT - ecT/X. e *
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To see how this theorem applies to a time-split method, consider the method

U*' + l = Qt(k)Un
-, Q M(k)u. (4.52)

We have added the index n + 1 to U* for reasons which will soon be apparent. Suppose
that the boundary data are of the form

U + l -G + ,  O , p(4.53)u +1  = +t j =O 0,1,... ,p.
3 3 0 , ,P

For convenience we have asqumed that the same number of boundary conditions are
needed for both U *n+ ' and UI+l, but this is not essential. The quanities G;tI+l and
Gn+ 1 are determined as in Section 4.2 in terms of the given boundary function g(t) and

some or its derivatives (say d derivatives). Suppose that the corresponding Sobolev norm
or g(t) is uniformly bounded by sonic constant y/:

dIIMgIII2 = IIg(j)llI2  < _Y.
i=0

Then we have
JIG*11 < K-1  (4.54a)

and
IIG12 < K 211 (4.54b)

for some constants Ki and K 2 .
In order to apply Theorem 4.1 we rewrite (4.52) as

IJr 1 1 JU]. = [0Q,k )][U" (4.5
-Q2k) U0 J0 U

to obtain a Cauchy stable scheme for the "super-vector" (U*, U)T. Note that the method
is formally implicit even if the original method was explicit, as it must be since tire
boundary conditions specified for U*' 1 affect the compuLation of U" +l. The Cauchy
stability or (4.55) follows from the Cauchy stability or Q2(k)Q,(k), which gives

I'"lI < ChI(10 l1,

together with

IlUu 'l < Ci llU;ll
where C, = C(IQI(k)ll. Usking heoreni 4.1 and the bounds (4.54) wve find that (4.55) is
stable for the initial-boundary value problem and that, in particular,

1I11"112 < KT1110°112 + K.(kIt + ((2)Y.
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Inflow-outflow problems. Stability can also be demonstrated for inflow-outflow
problems with boundary conditions of the form discussed in Section 4.4. As above the
time-split nature of the scheme can be handled by introducing super-vectors. Hence we
will only discuss the stability of a general one-step scheme in which the inflow variables U
and the outflow variables V are coupled only through the boundary conditions. As usual
we assume Cauchy stabil-,,y. Our discussion will be rather brief but similar arguments
can be found in Coldberg & Tadmor[2l[221.

The scheme for V is independent of U and we will assume, as we did in Section
4.4, that the time-split method yields a one-sided scheme for V so that no boundary
conditions need be specified. Then from Cauchy stability we clearly have

IIV"Il :!_ IlVoll

since the introduction of the boundary does not affect the computation of {VI).}_ 0 .
Moreover such a scheme for V is also stable in the sense of Definition 3.3 of Gustafsson,
Kreiss & Sundstrom[301 (we refer to this as GKS-stability). This stability condition also
requires bounds on a norm of V along the boundary. The GKS-stability follows easily
from the theory of 1301 for a one-sided scheme.

GKS-stability of the outflow problem is just what we need to prove stability of the
inflow problem. Recall from Section 4.4 that the boundary conditions for U depend only
on g(t) and on values of V along the boundary, and can be bounded in terms of (1gl[ld
and JIVJIt. The former of these is assumed to be uniformly bounded while the latter is
bounded by the GKS-stability of V. Theorem 4.1 thus applies to the inflow problem and
hence the entire approximation is stable on the initial-boundary value problem.

These stability results are supported by large-time numerical calculations for all of
the examples which have been given in this chapter, including the boundary conditions
of Section 4.5 for the shallow water equations.
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5. Other applications of the theory

5.1. Introduction.

In this chapter some of the theory developed in previous chapters is applied to a
few different problems. In Section 5.2 hyperbolic problems in two space dimensions are
considered. Again we split between fast and slow subproblems although now spatial
splittings may also be used. Intermediate boundary conditions are derived for a scalar
example.

We then turn to the use of time-split methods for problems which are not hyperbolic,
since many of the techniques that have been introduced are applicable to other problems
as well.

In Section 5.3 the convection-diffusion equation ut = -cu, + cu,, is studied as a
model for general equations containing both hyperbolic and parabolic terms. An analysis
very similar to that of Section 2.5 is performeo with analogous results. For the Cauchy
problem the time-split method is more accurate provided the mesh ratio is chosen ap-
propriately. For boundary value problems the correct intermediate boundary conditions
at the inflow boundary can be computed using the general procedure of Chapter 4. At the
outflow boundary no special boundary data need be specified, but the solution generally
has a boundary layer at th'i boundary which causes special difficulties. The interior
solution (away from the boundary layer) can still be calculated more efficiently than with
the unsplit method, hut less efficiently than in the Cauchy problem due to mesh ratio
restrictions imposed by the boundary layer.

In Section 5.4 a very different kind of time-split, method is considered. The Peaceman-
Rachford ADI method for the two-dimensional heat equation ut = u., + uyV is viewed
as a time-split method with the splitting (1.43). By means of the procedure of Chapter 4,
intermediate boundary conditions are derived for a rectangular region which agree with
the classical boundary conditions for this method.

5.2. Hyperbolic problems in two space dimensions,

The time-split method can be used in two (or more) space dimensions in much the
same way as in one dimension. Locally oie-diiensional methods, where a tiic -split
method is used to red('-c a :iultidimi nsional probi in to a smqtence of one-ditnensional
problems, have already been discussed in (;hapter I. The techniques which have been
developed in the intervening chapters are applicable to such splitting,3 and can he used to
analyze their efficiency a,,d, in some cases, to generate boundary data for the intermediate
solutions. This will be done for the lPcacenian-itachford A)I netiod in Section 5.4.

In this section, however, we coniiUc to concentrate on hypecbolic )rohlems which
can Iw splil inirto "last" and "slow" siibproblens. Each of these sitbproblens will, it,
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general, still be a two-dimensional problem. In some cases it will prove useful to also use
spatial splittings in order to solve one or the other of these subproblems.

A general hyperbolic problem in two space dimensions has the form

ut = Au. +Bu. (5.1)

where the matrices A and B have the property that A + riB is diagonalizable with
real eigenvalues for all real values of and q. In the notation of Chapter 1, we have
A(u) = Au. + Bu. and we consider splittings of the form

Ai(u) = Afu. + Bu,& (5.2)

A2(u) = A~u. + Bu,.(

For the constant coefficient case the splitting error is easily computed by expanding the
exponential solution operators. Define the differential operators C1 and C. by

C, = AM, + B,61e

The splitting error is found .to be

Esplit(k) = t I3 f.2C. - ICiC.Cf + I C26, 4 , 1 1 4) (5.3)
-2.C + C.cC. - !CC2) + O(k).

which is analogous to the one-dimensional result (2.22). In particular the splitting error
is zero if all of the matrices Af, A., B1 and B. commute.

As in the one-dimensional case, a splitting of the form (5.2) will be useful if A1 and
Bf are sparse relative to A and B and if A. and B. have relatively small cigenvalues.
Suppose that hjAfl Ilsl 1 a while IIA.II ; IIB.I ; ca with e < 1 and that the
spectral radius of each matrix is comparable to its norm.

Let LW(A, B, k) denote the two-dimensional Lax-Wendroff operator, which is analo-
gous to (L.1 1) and can be found, for example, in Mitchell and Grifiths[41j. The stability
limit for LW(A, II, k) is given by

k max(p(A), p(B)) < -.h,/

The split scheme corresponding to (2.18a,c) is given by

Qo(k) = LW(A., B., k)

and
Q,(k/2) = (IW(A f , B1, k/rn))" '.

An eniciency analysis very similar to that performed on the one-dimensional problem in
Section 2.5 shows thai, the optimal mesh ratio on the fast scale is

k I- - -. (5J..4
rh .
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This, however, violates the stability limit for LW(Af, Bf, k/m), which is j
k 1

,nh-

We must use this smaller value of k/(mh) instead. Alternatively we can replace the
two-dimensional operator LW(A f , Bt3, k/m) by the split scheme

LW.(A,, k/2m)LW.(Bf, k/m)LW.(Af, k/2m)

where LW. and LW, represent one-dimensional Lax-Wendroff in the z- and y-directions
respectively. This does not increase the truncation error significantly but increases the
stability limit to

k 1
mh - a

so that the optimal mesh ratio (5.4) can be used. (Recall that this increase in the stability
limit was Strang's original goal in introducing the Strang splitting[49].)

On the slow scale the optimal value of x = k/h depends on the size of the splitting
error. If E5 plic(k) is negligible then

1
x)-.

fa

Again this violates the stability limit X < 1/(V/a) and we may wish to introduce a
spatial splitting in Qo(k).

In the more usual situation, however, when the splitting error is O(caaka), the
optimal mesh ratio is

1

This is well within the stability limit and there is no need to introduce spatial splittings.

Perturbed problems. The splitting (5.2) is also useful when the exact solution
operator corresponding to Ai(at) is known. This is perhaps not so common in two
dimensions as in one. In one space dimension we considered several examples in which
the coefficients had large mean values and small variations. We could then pull out
a constant coefficient subproblem u, = Afu: which could be solved by the method
of characteristics. Unfortunately, in two dimensions the method of characteristics is
applicable only if A f and B1 are simultaneously diagonalizable.

Here, however, we suppose that the solution operator for the fast part is known
exactly and consider the time-split method (2.18a,b) with

Qs(k) = LW(Ao, B., k)

and
Qf(k/2) = exp(lk(Afo + Btd,)).

An elieinit analysis similar to that or Section 2.5 shows that the optimal mesh ratio is
given by 1

X - if the splitting error is negligible, orfa

- ir the splitting error is O(k 3 a3 ).
a
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In the former case we can only acheive the indicated mesh ratio by using a spatial splitting
for Q.(k) but in the more usual situation, when splitting errors are present, this is not
necessary.

Boundary conditions for a perturbed scalar problem. We now consider a
perturbed scalar problem which can be split in this manner and show how to derive
appropriate boundary conditions for the intermediate solutions in two space dimensions.

Consider the problem

= (1 + a(z, Y, t))U. + (I + P(X, y, t))U, (5.5)

on the unit square [0, 11 X (0, 11 with boundary conditions

U(1, 1, t) = g2(Y, t), (5.6)U(X, 1, 0 -- 92(X, t),

and suppose that Ia(x,y,t) :_ c, 1(z, y, t)l < c for all z, y, and t with c < 1. It is
natural to split this by taking

At = 1, As= c(x, y, t),
Bf = 1, B. =3(x, y, t).

The subproblem ut = u: + %* can be solved exactly:

,,(x, ,t + k) = I't(z + k, y + k,t).

raking k = 2h and using Lax-Wendroff on thd slow problem, the split method becomes

U,,, ' U!,+1'i+ t  ra, = 0, 1.,N - 1,

U n, =LW(a,3,k)U, 1 , m, " = 1, 2,..., N - 1,
, ,,  U+,j+ m,j = 0,1,...,N- 1.

The values U+ and U",, are given by the boundary conditions (5.6) while the values

U0 . and U. o are not required in computing U " + ' and therefore do not need to be
specified. We do need to specify the following intermediate boundary data:

U*Nj, UN, j  0, ,,.N,

Um,N, UM*,N m=O, I,..., N,

First consider U,j. We begin as usual by introducing the function u*(z,y,t)
satisfying

t= U: + .; (5.7)

with initial conditions at time tn

U'(X, Y,) = ,,(X, y, t.).
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Then we want UN, , (1, pt, + k/2). Expanding in a Taylor series and using (5.7)

together with the fact that u: = u. and u = u, at time tn, we obtain

u(I,p,t. + k/2) = u(1,V,t,) + Iku (1,y,t.) + 1ku,4L(,y,t.) +.

-(,,IY, t) + I k(U(1, y, tn) + U(,,y, t.)) (5.8)

+ P (,,(], , t,) + 2u, (I, , t,,) + U,(1, ,tW)) +

We now use the original equation (5.5) to replace x-derivatives by y- and t-derivatives,
so that the given boundary data g1(y, t) and its derivatives can be used to specify U ,j.
We find that

u*,, ,,t. + k/2) =u + 2(1  )(Ut + (a - )u,) + 8( + Utt - 2(1 + #)Ug,

2(1+a -(1+ +3a U (+3

+ (I + /3)2 UVV + of -( ~+,Oa + + +

+ (1 + I)(1,- a=)- -(1 + a. )U,) +...

where the functions u, a, and P3 (and their derivatives) on the right hand side are all
evaluated at (l,y,t,). ir a, P and their first derivatives are all O(c), then this can be
simplified in the usual manner:

u-(1, ,I.+ k/2) = -yvt, + k/2(1 + a))+ k(, - -uv,(l, y, t,) + 0(ck2 ).

We can maintain the accuracy of the interior scheme by using the boundary values

U'N - gj(jh, tn + k/(l + a(tjh, tI))

+( k(a(l, jh, t.) - 13(1, jh, In)) g (, In).
+\ 2(l. + a(l, jh, tj) ~vih,)

+

The boundary values Um,N along the boundary y = I are found in exactly the same
manner. We obtain

U N = g2(jh, tn + k/(l + P(jh, 1,t,))

+ (k(1(jh, i, t) - a(jh, 1, t.)) '
+ 2( + 1 ;(jh, I, In)) )92x( h, In,

To compute boundary values for the second intermediate solution (/**, we proceed

as we did in the one (linensional case by delining u*(x, yt) as the solution of

,,; = ,+.;"

with U44 (z,,,,.) = u(X, V, t.,+_) and then solving backwards in time to find UNj
u"*(l,jh, t,,+1 - k/2). The expression we obtain for u"*(i, jh, t ., - k/2) is ,,xactly the
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same as the right hand side of (5.8) but with k replaced by -k an4 all functions evaluated
at (1,y,t.+1 ). We can thus take

V*, = gn(h,t,+, - jk/(t + a(1,jh,t,+,))

(k(,((1,h, t+,) - (l,jh, t.+,)) i(jh, t.I)

with a similar expression for U*,N.

Irregular regions. Attempting to compute on irregular (nonrectangular) regions
generally complicates the problem of specifying boundary conditions for any numeri-
cal method. Gridpoints frequently do not lie exactly on the boundary and so special
procedures must be used for points near the boundary even when the correct data are
known along the boundary itself. Here we will only consider the problem of transforming
boundary conditions for the given problem into boundary data for the intermediate solu-
tions. The problem of then using these data, defined along the boundary, to specify the
necessary solution values at nearby points can then be handled by standard techniques.

Consider the problem (5.5) in a region with boundary parametrized by (x(s), (s)),
0 < s < 1. The region is assumed to lie to the left of this curve. The boundary
conditions are

t(x(s), V4s), t) = g(s, t)

at inflow points. For convenience we will assume that a and Pl are independent of t and
will write a(s) for at(x(s),y(s)) and similarly for P. Then (x(s),V(S)) is an inflow point if

'(s)(l + #(a)) < ,(8)(l + a(s)).

This is illustrated in Figure 5.1.
For the rectangular region, we replaced x-derivatives by y- and t-derivatives at

the right boundary while at the top boundary we replaced i-derivatives by x- and t-
derivatives. These are both special cases of the general situation. At the inflow boundary
or a nonrectangular region we must replace both the x- and the y-derivatives by tangential
and t-derivatives in order to obtain expressions in terms of the given boundary data.

In determining u* at inflow p'oints we first obtain an expression analogous to (5.8),

u (x(s), y(s), in + k/2) = u(x(s), y(s), t.)
+ 1k(u.(x(s), y(s), t.) + u.(x(a), y(s), t,)) +....

Now we solve for u. and u. in terms of the given boundary conditions from the equations

9 (s, i) =t WS (), V(s), t.)
= (1 + a(s))u,(x(s), y(s), t.) + (I + fi(s)),(x,(s), y(.),

gs(,, in) = x'(.),,(Y(.),,y(s), 4n) + '(s),,,(x(.), y(S), t.).

Solving this systerm gives (dropping arguments for clarity)

U.I t - (I + P)g.
(I + j)x, - (I + 1 )Y,

x'gt - (I + a)g.
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(49), Y(s))

FiG. 5.1. Irregular region with boundary parametrized by (x(s), y(s)), mov-
ing counterclockwise as s increases. The characteristics in the x-y plane are
also shown. The. exact solution propagates along these lines, which have
slope (I + P(z,))/(/ + a(x, y)) = I + 0(i) at each point (x,p). The inflow
portion of the boundary, where the boundary conditions are specified, is
shown as a bold line.

so that ( X - y')g, + W - )g .
" + = (' - ')g,-+ + ( )1 -

Note that the denominator is nonzero at inflow points. Similarly, we can obtain expres-
sions For higher derivatives. When a, 83 and' their derivatives are O(c) we have

,(x(s), y(s), t. + k/2) = g(s,t(9)) + (t + (8))z'(s) -( + ck (s)) 's t) +

where k(a) - I

i (s-(1 +
C(° --t.,+ 2 (1 + P(s))xl(s) - (I + . ),s)

This formula reduces to those derived before on the unit square, in which case either
X'(s) = 0 or V'(s) = 0.

5.3. Convection-diftusion equations.

As mentioned in Section 1.6, ime-split fnethods are rre(Iiently used to solve equa-
tions of mixed type by splitting between the hyperbolic and parabolic parts and using
different methods on the two pieces. This is (one for example with the Navier-Stokes
equations for viscous fluid flow or convection-diffusion equations for miscible flow.

In this section we consider a simple model equation for such problems, the constant-
coefficient scalar convection-diuision equation

Utt -Cit 2 + fuzz1  (5.9)
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where c and c arc nonnegative constants. Consider the splitting Ai(u) = -cu., A2 (U)=
cu... For this scalar co!istant coefficient problem there is no splitting erroi so we do not
need to use the Strang splitting. If k/h = -p/c for some positive integer p then the
subproblem ut* = -cu* can be solved exactly. Using Crank-Nicolson for the remaining
subproblem gives the split method

U =+ CN(e, k)U, (.10

where CN is the Crank-Nicolson operator, which has the form

CN(A, k) = (I - 2kAD+Dj 1 (I + jkAJJ+D-.)

for a general constant coefficient system ist = uz
If we eliminate the intermediate solution U%, we can rewrite the split method (5.10)

as a one-step method:

(I - ' crD+D.)U4+' = (I1+ kED+D_)U".~ (5.11)

Figure 5.2 shows the stencil for this method when c =p =1

FIG. 5.2. Stencil for (5.1.1).

The method can thus be viewed as a "skewed Crank- Nicolson" method similar to
the skewed Lax- Wendrolt method of Example 1.2. The stencil of thle method follows the
charactcristic or' the hyperbolic part of tim problem.

Time-split methods similar to (5.10) can be used for more general systems; or the
form

ut = Au,, + Buzz

where A and B) may be functions of x, t, and ut. One way to proceed is to use the
splitting Ar(it) = Au. ard .42(U) = Buzz. In general neither subproblem can be solved
exactly, bu~t it may be advantageous to use different numerical procedures for the two
subproblems. This is the approach generally takeni with the Navier-Stokes equationsflI.

Another alternative is to use the splitting A, (it) = Afu. and A2(1&) = Asuz + liuxx
where ut = Afu,, can be solved exactly and Lte remaining suhproblem itt = A2(u)
corresponds to small pertuirbations, i.e., p(A8,) arid p(B) are small comrpared to p(Af).

of the new issues that arise when time-split methods are applied to such problems. In
particular, wheni is sinall there may bena boundary layer at the outllow boundary, which
poses special problems for tOw timei-split iniethod.
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Efficiency analysis for the Cauchy problem. Before considering boundary
value problems, however, we first perform an efliciency analysis for the Cauchy problem
similar to that of Section 2.5. The split method (5.10) will be compared to the unsplit
method

(I + 1kcDo -,ikcD+D-)Un~ 1

(1 - kcDo + ikcD+D_)U.. (5.12)

This method is second order accurate with a truncaton error

E(k)u = k{k 2[ &c3 + Te - c4 = + .a,
+ h'- c + -Lca]}uz= + o(k 4 ). (5.13)

We as -me that c 1 1, c < 1 and that u is smooth so that all deri,atives of u are
order unity. (This latter assumption will not be valid in the boundary value problems
considered later.) Then E(k) can be approximated as

E(k) - &k[k2c + 2h 2cJ8X.

We see that the error is dominated by terms arising from the hyperbolic part of the
equation. The global error at time t - 1 is roughly bounded by

kllE(k)ull A (k2c3 + 2h2c)lJU==ll. (5.14)

As in Section 2.5 the optimal mesh ratio is round by requiring k2c3 ; 2h 2c, for otherwise
we could increase one of the stepsizes without significantly increasing the error. This
gives the optimal value of the mesh ratio:

X 2vI1c. (5.15)

For comparison purposes we wish to normalize the error at t -- I by the amount of work
performed. A tridiagonal system of equations must be solved at each step but this only
requires work proportional to t/h.- The work required to compute the solution at t = I is
thus proportional to l/kh. The same is true in the split method, with a similar constant
of propo Oionality, and so we can normalize the error simply by dividing by kh. Using
(5.14) anJ (5.15), we find that

normalized error ;- ci =zzll. (5.18)

Now consider the split method (5.10). Since there is no splitting error and no error
is committed in solving the first subproblem, the overall truncation error is simply the
truncation error or CN(r, k), which is found by setting c = 0 in (5.13):

gT 5 (k)u = Iklk e3a= + h2 (0]Ju=2 + 0(k4 ). (5.17)

The olptimal mesh ratio is thus

I jje)4U1j
_ "'; "11 

(5 .18 )
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This indicates that large timcsteps are optimal, X = 0(1/e).
Using (5.18) in (5.17) gives the following normalized error at t = 1:

normalized error _ - 2 /lla _ luIlI ll. (5.10)

This is smaller than (5.16) by roughly a factor of ((/c)2.
These results are virtually identical to those of Section 2.5 for the pure hyperbolic

problem in the same situation, namely for a perturbed problem with no splitting error.
Other situations, e.g. splittings with error or the use of several steps of a difference
method on the fast problem, can be investigated in the same manner with analogous
results. Numerical experiments have confirmed these theoretical predictions.

Nonsmooth solutions. The advantages of the time-split method are most clearly
seen when computing nearly-discontinuous sohltions, for example shocks in the Navier-
Stokes equations or steep concentration gradients in miscible flow problems.

Example 5.1. Consider the model problem

ut = -us + Cu" (5.20)

with initial conditions
I , z < 0.1,
0z , X > 0.1.

This initial discontinuity smears out as it propagates to the right with speed 1. At time
I - 0.7 the true solution is seen as the dashed line in Figure 5.3 (with C = 10-3).

The unsplit method (5.12) performs poorly on such problems because of the convec-
tive term. The resulting solution is oscillatory as seen in Figure 5.3, which shows the
solution obtained with k = h = 10-2.

With the split method (5.10) the convection is handled exactly by shifting. Only the
diffusion is handled numerically and discontinuous initial data cause no problems. By the
efficiency analysis it is optimal to take X - 0(1/c). We choose to again take h = 10- 2

and take k = 0.7 which corresponds to X - 70. Figure 5.4 shows the resulting solution
obtained wit;, a single step of the time-split method (5.10).

Boundary value problems. We now turn to the most interesting case: the
boundary value problem (5.9) on 0 < x < 1. For definiteness we will take c = 1. When
t = 0 the equation is the familiar hyperbolic equation ut = -uz for which boundary
data need only be specified at the inflow boundary x = 0. The exact solution is a wave
moving to the right, unaltered, with speed 1. When c is small the solution is again a wave
which moves to the right, but now it dissipates slowly as it moves along. For ( very small
we might expect the solution to be very similar to that obtained with r = 0. Hlowever,
whenever ( > 0 the equation (5.9) is parabolic and bounlary conditions must be specified
both at x = 0 and at z 1 1. Equation (5.9) is a singular perturbation equation since the
limiting equation with £ = 0 has a singular nature quite different from that with c > 0.

For small ( the solution to (5.9) has a boundary layer near x = 1, a small region in
which the solution changes rapidly in order to match the boundary conditions at x = 1.
For (5.9) the boundary layer has width 0((). For z < I - ( the solution is simply a
rightward moving wave, slowly dissipating, and looks very much like the soution to the

87

u i - I i :... .:/



I* f'' I '' ' I' 'I I' ' ' I

1.00

0.75

0.50

0.25

0.00

0 0.2 0.4 0.6 0.8 1
FIG. 5.3. Solution or the convection-diffusion equation of Example 5.1 with - 10-3
at time t = 0.7. The dashed line is the true solution. The solid line is the solution
computed with the unsplit method (5.12) with k = h = 10- .

I I I 1 I I I I I I f I I I I I I
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0 0.2 0.4 0.6 0.8 1
FIG. 5.4. Solution or the convection-diffusion equation of Example 5.1 with = 10- 3

at time t = 0.7. The dashed line is the true solution. The solid line is the solution
computed with the split method (5.10) with h = 10- 2, k - 0.7.
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FIG. 5.5. True solution (dashed line) and computed solutions to the steady-
state convection-diffusion solution using the tire-split method (5.10) with
h = 10- 2 and several different values of k. Again c = 5 X 10- 2 .

pure hyperbolic problem. The solution is smooth and the convective term -u' dominates
the dissipative term cu... In the region I - c __ z < 1, however, the solution is rapidly
changing and u., z lu,. Hlere both terms are equally important and the solution in
this region is quite unlike that seen for c = 0.

The presence of the boundary layer in this.problem causes difficulties in the applica-
tion of any numerical procedure. The time-split method performs quite well, particularly
in the interior, provided that moderate values or the timestep k are used. Using X I
gives results which are everywhere better than the unsplit method, by a factor of E in
the interior (see Example 5.2). This is to be expected based on the previous analysis of
the Cauchy problem. However, it is no longer possible to obtain even greater efficiency
by using larger timnesLeps. This is because or errors arising in the boundary layer. It is
illuminating to analyze the dilliculties which rise when larger timesteps are used.

In order to concentrate on the boundary layer itself, we first consider the. steady-state
problem (5.20) with time-independent boundary conditions

u(O, t) = I - e-

u(l, t) = 0

• initial conditions
u(, 0) = I -

The solution to this problem is simply

u(X, t) = 1 - e(-)/. (5.21)

for all t, as shown by the dashed line in Figire 5.5 for t = 5 X 10'.
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The numerical solution to this problem will also reach a steady state, though in
general the numerical steady state will be different from the true solution. For the unsplit
method (5.12) setting U" = U,+ 1 shows that the steady-state solution satisfies

(-cDo + cD+D_)U" = 0.

This solution depends on h but is independent of the timestep k used to compute it (and
hence is independent of X). The numerical solution is quite accurate if h is sufficiently
small. If h > c then oscillations begin to appear in the boundary layer. This will be seen
in Example 5.2.

Now consider the time-split method (5.10). In order to implement this method we
must specify some additional boundary values U0, U...U, at the boundary x = 0.
This can be done using the general procedure of Chapter 4, as will be seen later in
this section. For the present example with time-independent boundary conditions, these
simply reduce to

U*= l -e - I/ "  for j=0,1,...,p-1.

At the boundary z = 1, where the boundary layer is, we do not need to specify any
additional boundary data. Figure 5.5 shows the numerical steady-state solution for the
time-split method with c =.5 X 10- 2, h -1 0-2 and several different values of k. Note
that this steady-state is no longer independent of k and is far from the true solution even
for moderate values of x.

In order to understand this phenomenon we must consider the individual steps of
the time-split method in more detail. In the first step of (5.10) the solution shifts to the
right and much of the boundary layer is lost. If k > c the boundary layer shifts almost
completely out of the interval. We then have

Un, ;1 (5.22)

for all m. The solution U* is nearly independc . k for k > c. In the second step of
(5.10) we are using Crank-Nicolson to solve the heat equation with initial values (5.22)
and boundary values U"+' , U' + 1 = 0. For large values of k the solution U" + '
tends to U,"+ = 1 - Xm, which is the steady-state solution of ut = cu., with boundary
conditions

u(0, t) = 1, u(,t) = 0.

This explains the "over-diffused" na:-ire of the solutions seen in Figure 5.5 for larger
values of k.

Where does the time-split method break down? Recall that there is no splitting error
for this problem so that if both subproblems are solved exactly we should obtain the
exact solution to the original problem, for any value of k. Let us now do this. The lirst
suhproblem u; = -u*_ is already being solved exactly (modulo the boundary conditions
at x = 0, but these have a negligible effect on the results seen here). We now wish to
also use the exact solution operator for the se.ond subproblem

U;*(X t4 u*(Z,t), 0 < X < 1, t_ < t < ,+

with initial conditions

0

II- ~ ~ ~ ~ ~ ~ ~ ~ *X --. f l II I ""-...



FIG. 5.6. The correct boundary conditions u**(l, t,, +T) for 0 < T < k with
-- 5 X 10-2 and k 1.

In order to apply the exact solution operator we must also speciry boundary conditions
"'(I, t,, + T) for all T with 0 < r < k. This can be done in the standard way. We will

use the fact that we know the true solution u('ryt,+l) = u*(x, t,,+l) and expand about

"(1, t, + T) = u"(I, t+,)+± (r - k)u7'(1, t+,) + (T-(I k )2U;(1,t,,+I) +

- (1, tn+[) + (T - k)i4*(l, tn+,) + j(T - k)22U =(I,t.+,) +

This can be evaluated directly using the steady-state solution (5.21). We find that the
proper boundary conditions are

tl + r) 1 -

This is shown for k = I in Figure 5.6. Note that Lie boundary value remains nearly
constant through most of the time interval. Only at the end does it suddenly drop to
the final value u* (I, t,+I) = 0. This explains why the resulting solution is not "over-
diffused" when the true solution operator is used. No diffusion occurs until near th ond
of the time interval, for k - __ r < k, anti the length of this interval is independent or
k, as it must be since the resulting true steady-state solution is independent of k.

'this shows where the iime-split method breaks (own for large k. When Crank-
Nicolson is apflied in the second ste) the correct boundary valies are used at the ends or
the tirTie interval, hut no account has been taken of the nonsmoothl behavior of u**(I, t,+
T) for 0 < - < k. Since Crank-Nicolson is only accurate for smooth boundary data, we
get poor results. It is as if we hai used the exact solution operator with smooth boundary
data obtained by linearly interpolating between u**(I, t,) = 1 and u* (I, t,,+) ---=0.

It, appears tihat this diiliculty with the time-split method can be avoided only by
taking k snilliciently small. I1f k < ( then the boundary layer is not, entirely shifted out
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of the interval and the resulting true boundary conditions for u"° are much smoother.
Moreover, reexamining (5.18) shows that we also want k/h smaller than ws optimal for
the Cauchy problem. From the steady-state solution (5.21) we see that

Using this in (5.18) gives an optimal mesh ratio for the split method of

rather than 0(1/E) as was optimal for the Cauchy problem.
To summarize, we find that for boundary layer calculations we should take k s h <

e, for the split method, just as we would for the unsplit method. The resulting solution
is more accurate than that obtained with the unsplit method, by a factor of e in the
interior.

Intermediate boundary data at the inflow boundary. Now consider the
unsteady boundary value problem (5.20) with boundary conditions

u(0, t) = g(t) (5.23)
U(1, t) = 0.

We must specify additional boundary values Uo, U ... ,U,_. Consider the step from.

t. to t.+1 and let u* satisfy

<:1 = ">(5.24)u(Z', = u(Z, W') 0 < X < 1.

Then we want
U; = u*(jh, t.+ k)

= (0,t, + k-jh).

Let r = k - jh. Expanding about u*(0, t.) and using (5.24),

UO = U'(o, t.) + ru,(o,t.) + 'T 2 ',,(0, t.) + 0(k0)
= U'(0, t.) - 7-'(o, t.) + . '2u.(0, t.) + o(k 3 ) (5.25)
= U(O, t.) - U.(o, t.) + 17 2U., t,) + 3(k).

In order to use the given boundary data (5.23) we wish to replace z-derivatives of u by
t-derivatives using (5.20). After some manipulations we find that

utt = us - 2eu... + e 2ZSXZ

and so
U = -u + CUZs

= -Ut + cutt+ 2c ugz -fa sX= - ut + cutt - 2t utt + O (e 3).
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Continuing to replace x-derivatives by t-derivatives, we obtain a power series In e which
involves only time derivatives. Similarly we find that

t.. -U - Ileum + O(e).

Using these expressions in (5.25) gives the desired expansion:

U*= u(0, t.,) - 7(-ut + cutt - 20ut,,+ ** + jv(vta - 2cutt + ) (5.26
= g(0, t. + ,r) - ' c'(t,) + (270 -_,e)g'(t.) + O(e2 k + 'C').

Note that this approach works only when e < 1.

Example 5.2. Consider (5.20) with e = 10 - 3, initial conditions

u(z,0) " 1- a,

and boundary conditions

u(O, t) = g(t) = 1 + 0.1 sin(2rt)
U(1,t) = 0.

Figure 5.7 shows the solution at time t = 2 using the unsplit method with k = h -10 - .

Figure 5.8 shows the results with the time;-split method (5.10) again with k =--= 10-2
(p = 1) using (5.26) for U;. Note that the oscillations in the boundary layer have
disappeared. Moreover the interior solution is more accurate by a factor of e, as can be
seen in the accompanying error plots.

5.4. The Peaceman-Rachford AD! method for parabolic problems.

As a final example we will derive intermediate boundary conditions for the Peaceman-
Rachford method (1.42) by viewing this as a time-split method for the problem ut =
uzz +u,, with the splitting (1.43). We consider the problem on the unit square 0 < z <
1, 0 < y 1 and assume that Dirichlet boundary data is supplied at all points on the
boundary. Since U* is differenced only in the x-direction in (1.42), we need to generate
intermediate boundary data only on the boundaries z = 0 and z = 1. We will consider
only the boundary at z = 0. The other boundary is completely analogous.

The given boundary data is

U(0, Y, t) = g(p, t- (5.27)

We seek to determine Uo,,n s u*(O,mh,t, + k) where u* is the solution to the first
subproblem from (1.43),

-t = YU:, + ') + I k(t4..s - s,), (5.28)

with inital conditions

'(a, Y, t,) " ,(2, p, £,,), V , ,. (5.29)
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FIG. 5.7. (a) Numerical solution for Example 5.2 with e - 103 obtaned
using the unsplit method with k = - 10-2. (b) Errors in the computed
solution.
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Differentiating (5.28) shows that

ot -;,. =(-'. + 2,.,, + t,,,,,) + o()

and so, proceeding as in Chapter 4,

u(0,m h,*. + k) = u'(0, mh, t.) + k.u(O, mh,t.) + I1k.t4(0, mh, t.) + O(k 3)

= -" + k1 (u. + -,,) + jk(-'... - -;,,,)l

+ lk'1 YU:... + 2u" ,,, + ,O;,,,) + o(k)] + O(W.).

In view of the initial conditions (5.29), we can replace u" by u everywhere on the
righthand side of the last equation. By expanding u(O, mh, t, + k/2) about u(0, mh, t.)
and comparing this with what results above, we find that

*(O,mh, t. + k) = u(O,mh, t. + k/2) + jk'(u... i(O, mh, t,) (5.30)

- v,,,,(o, mh, t)) + 0(13).

We retain 0(k2) global accuracy provided the boundary conditions have 0(k') local
accuracy. We can thus neglect the 0(k') terms in (5.30) and take

Uo.n = u(0, mh, t, + k/2) = g:,+/2

where g +1l1 t g(mh, t,, + k/2). Higher order accuracy at the boundary can be obtained
by including the next term as well. The u... term cannot be calculated directly from
the given boundary conditions (5.27). However, from the original differential equation
we find that

U = - Ugggi + 2ei.., + U,,,,,

and so
utt - 2ut,-11 -= u--,,, - uvvvv.

Since utt and utp can both be computed along the boundary, we can use this expression
in place of uffz, - u.... in (5.30), giving the 0(k3) boundary conditions

Uo,, , = g(mh, t,, + k/2) + j k2(ge (mh, t.) - 2gt,,(mh, t,)). (5.31)

It is interesting to note that if we approximate the derivatives of g appearing in (5.31)
by 0(k3) accurate finite differences or g," and g +1 at the meshpoints, we obtain

Uo. = (g,. + g+) - jkD+VD_j(g + ' -g-.)
= (1 - IkD+,D_,)g,+' + 4(1 + jkD+,D_,)o..

These. are precisely the standard boundary conditions for the Peaceman-Rachrord method
as derived by Fairweather and Mitchell[1gj using different techniques.

For irregular regions it is not in general possible to replace the z- and V-derivatives
in (5.30) by tangential and time derivatives which can be evaluated directly from the
given boundary data. However, the expansion (5.30) is still valid and one-sided finite
differences could be used to approximate the rourth derivatives.
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