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1 Abstract. "‘his thesis concerns the use of time-split methods for the numerical solu-

i tion of time-dependent partial differential equations. Frequently the differential operator
splits additively into two or more picces such that the corresponding subproblemns are
each easier to solve than the original equation, or are best handled by different tech-
niques. In the time-split method the solution to the original equation is advanced by al-
ternately solving the subproblems. In this thesis a unificd approach to splitting methods
is developed which simplifies their analysis. Particular emphasis is given to sphttlngs of
hyperbolic problems into subproblems with disparate wave speeds.

Three main aspects of the method are considered. The first is the accuracy and
efflciency of the time-split method rclative to unsplit methods. We derive a general
expression for the splitting error and use it to compute the overall truncation error for
the time-split method. This is then used to analyze its cfﬁcuency, ecasured by the amount
of work required to obtain a given accuracy.

“—\The second topic is stability for split methods After a demonstration that in
general the product of two stable operators need not b \: stable, some important classes of
hyperbolic spliltings are identified for which the proguct of stable approxnmatc solution
operators is in fact stable.

CiThe final topic is the proper specification of boundary data for the intermediate solu-
tions, c.g., the solution obtained after solving only one of the subproblems. A procedure
is described which, for many problems, can be used to transform the given boundary
conditions for the original equation into arbitrarily accurate boundary cor itions for the
intermediate solutions. S&ablhty of the initial-boundary value problem. 8 also discussed.
C >™The main emphasis is on hyperbollc problems, and the one-dimensional shallow
water equations are used as a specific example throughout. The final chapter is devoted to
some othicr applications of the theory. Two-dimensional hyperbolic problems, convection-
diffusion equations, and thc Peaceman-Rachford ADI method for the heat equation are

considercd/\
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1. Introduction

1.1. Overview.

Splitting methods of one form or another are frequently used in computing numerical
solutions to partial differential equations. This thesis concerns one wide class of splitting
methods which will be referred to as time-split methods. Such methods are also known as
fractional step methods. These methods apply to time-dependent equations of the form
u¢ = A(u) for which the differential operator 4 splits additively into two or more picces,
say A(u) = A;(u) + Az(u), such that the subproblems

u = Ay(u)

and
ue = Ag(u)

are cach easier to solve than the original problem, or are best handied by different tech-
nigues. In the time-split method, the solution to the original problem is advanced by
alternating between (approximately) solving each of the two subproblems. For example,
a multi-dimensional problem may be split into one-dimensional subproblems, convection-
diffusion or the Navier-Stokes equations may be split into hyperbolic and parabolic sub-
problcuis, or a purely hyperbolic problem may be split into subproblems with disparate
wave specds.

The aims of this thesis are twofold. The first is to present a unified framework
for studying various aspects of time-split methods. The main idea is to decompose the
derivalion of a time-split method into two steps. First the exact solution operator for
the original problem is approximated to second order accuracy by a product of exact
solution operators for the subproblems, Then these exact solution operators arc replaced
by second order accurate numerical approximations. Many commonly-used splitting
methods can be viewed in this manner (see Section 1.8). This viewpoint is not new, but
some of its consequences have not been fully exploited.

One advantage of this approach is that the errors in the resulting numerical ap-
proximation can be decomposed into errors due to splitting the exact solution operator
and errors duc to numerically solving the subproblems. The latler errors are well uader-
stood when standard numerical methods are applied. Scetion 2.3 conlains some general
expreasions for the splitting crror. This decompaosition of errors aids in analysing the
efMiciency of the time-split method, defined as the amount of work required to obtain
a given accuracy. The size of Lhe splitting error relalive to the truncalion errors of
the numecrical methods employed plays a critical role in determining the optimal choice
of mesh ratio lor the time-split imethod and in determining how efficient Lthe resulting
method will be relative to unsplit methods. This is investigated in detail in Chapter 2.
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Another advantage of this viewpoint is that the intermediate solutions (e.g., the solu-
tion obtained after solving only one of the subproblems) take on physical meaning. They
are second order accurate approximate solutions to some differential equation (though
not to the original equation). This is an important realisation, particulary when we
attempt to specify boundary conditions for the intermediate solutions. Such boundary
conditions are often required to implement the time-split method and have frequently
been specified in an ad hoc manner, e.g., the boundary conditions from the original equa-
tion are imposed on the intermediate solutions as well. More sophisticated approaches,
such as the method of undetermined functions[58], derive correct boundary conditions
based on the finite difference equations. However, by viewing the intermediate solution
as an approximation to a differential equation, it is often possible to derive appropriate
. boundary conditions without regard to the finite difference methods employed. The given
boundary conditions for the original equation are transformed into boundary conditions
appropriate for the subproblems. This is the subject of Chapter 4.

The second aim of this thesis is to investigate the applicability of the time-split
method to one particular class of problems, namely to hyperbolic systems of equations
which are split into subproblems with disparate wave spceds. The original problem
either has all fast waves or some fast waves and some slow waves. This splitting may be
advantageous if the “fast” subproblem can be solved more efficiently than the full system.
The remaining subproblem can also be solved more efficiently than the full system since
only slow waves are present. Such problems are deseribed in deiail in Section 1.4.

Time-split methods for hyperbolic problems have not been studied extensively in
the past, but the results presented here indicate that in many situations they are quite
valuable.

Hyperbolic problems also provide specific examples for the general theory being
developed. For cxample, both the efficiency analysis of the time-split method and the
procedure for spec(fying intermediate boundary conditions arc introduced by considering
hyperbolic examples. A few other applications are treated in Chapter 5.

1.2. Some partial differential equations and finite difference methods.

Time-dependent partial differential equations arisc in modeling a wide variety of
physical phenomena. Simple examples in two space dimensions include the parabolic
heat equation ,

Up == Ugg + Uyy (1.1)

and the hyperbolic wave equation

‘u“ = uz’ + uyv- (1.2)

The latter cquation can be rewritien as a first order hyperbolic system of equations in
the variables ue, 4., and u,. A general first order hypcrbolic system has the form

uy = Au, + By, (1.3)

where u is now a vector and A and B are diagonalizable matrices with real eigenvalues.
For the wave equation (1.2) A and B arc constant, but in a more general variable
coefficient problem, A and 13 could depend on =, y, and £&. If A and B also depend
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on the lolution t then the problem is said to be guasilinesr. The inviscid Euler cquations
of gas dynamics are of this form, for example.

Practical problems often include both first and second order spatial derivatives.
The simplest example is the scalar convection-diffusion equation in one space dimension,
which has the form '

for some constants ¢ and ¥ > 0. More realistically, the compressible Navier-Stokes
equations for viscous flow in two dimensions constitute a quasilinear system of the form

Up == Clig + Vg, (1.4)

w; = Aug + Buy + Cuyy + Duy, + Eu,, ' (1.5)

where each of the matrices is a function of u.

Inhomogencous terms can also arise in practice. For example, the primitive equations
of atmospheric flow (the shallow water equations) are a quasilinear system of the form
(1.3) with an undifferentiated vector F(u) representing Coriolis forces added to the right
hand side.

Lower-order terms also occur in reaction-diffusion equations of the form

e = gy + uyy) + Flu). (1.6)

Here F represents the chemical kinetics of a reacting system with diffusivity v > 0.
All of the examples given above are of the general form

where A(u) depends on u and its spatial derivatives. It may also depend on ¢ and the
spatial variables although this dependence is not explicitly shown.

Initial boundary value problcms will be discussed in detail later in this thesis, but for
now we restrict our attention to the Cauchy problem, whick consists of the equation (1.7)
on the unbounded spatial domain —00 < z < 00, —00 < y < oo (in two dimensions)
together with initial data u(z,y, %) = f(z,v).

If the problem is well-posed (as all of the examples above are) then the initial
conditions uniquely determine the solution at any later time ¢,. We write

u(ty) = S(t1, to)ul(to). (1.8)
In gencral the solution operator S(¢,, o) is noﬁlinear, but satisfies the semigroup property
S(ta, to) = S(t2,t1)S(t1, o) (1.9)

iftg <ty <ty

If ¢ does not appear explicitly in the cocflicients of the diflcrential equation, then the
equation is said to be autonomous and the solution operator depends only on the time

+ elapsed:

S(ty, to) = S(t1 — to).

For nolational convenience we will assume Lhat this is so unless otherwise staled.




Most practical problems cannot be solved exactly. Instead the solution must be ap-
proximated numerically. We will be concerned only with finite difference approximations.
For such methods a grid is laid out over the spatial domain and an approximate solution
at all gridpoints is obtained at each of a sequence of times #g, ¢1,.... In general we
assume thal £ = 0 and that ¢,, = nk for some timestep k. For convenience we assume
that the grid is uniform with equal mesh spacing h in all spatial coordinate directions,
although this is not necessary. We will always use \ to denote the mesh ratio:

A= k/h-

Numerical approximations are denoted by capital letters. In one space dimension
U, is the approximation to u(zm,%s) where zwm = mh. In higher dimensions more
subscripts are added.

We will restrict our attention to two-level difference schemes. This means that U™+! -

is determined solely by U™ via some relation
Ut = Q(k)un. (1.10)
This is the difference analogue to

Wtns1) = S(k)u(tn)

and the finite difference operator Q(k) is an approximation to the solution operator -
S(k). The mecthod is said to be accurate of order p if, for smooth functions u, the local
truncation error (Q(k) — S(k))u is O(kP+') as k — 0 with some fixed relation between &
and A. : .
As an example, consider a one-dimensional constant coefficient hyperbolic equation

U = Au,.

Here u € IR" is a vector and A € IR" %" is a square matrix. By Taylor series expansions
we find that the exact solution satisfies

u(z, t + k) = u(z, t) + kue(z,t) + Jhduee(z,8) + -+
= u(z,t) + kAus(z, t) + 1k*APugs(z,t) + -
= (I + kAd, + §k*A%33 + - Yu(z, t)
= exp(kAd)u(z, t).

We thus have S(k) = exp(kAd,), as defined by the series expansion for the exponential.
IL is convenient Lo use this cxponential nolalion for the solution operators of constant
cocflicient problems.

The Lax-Wendroff method. If thc expansion for exp(kAd;) is truncated after
the first threc terms and the differential operators @, and 32 are replaced by appropriate
finite diffcrence operators, we obtain the familiar Laz- Wendroff method:

Unt! = (I + kADg + $k*A2D, D_)UT, . (1.11)




A where . | 1
rL . DoUm = 2—’.'(Um+l - Um—l)o ‘

1 .
D+U... = 'i;(unu-l - Um)}
1

1

The: value U%*! is thus determined by the values U%_;, U™, and Un,,,. This is
. conveniently denoted by showing the stencil of the the method as in Figure 1.1.

|

FI1G. 1.1. Stencil for Lax-Wendroff.

The numerical operator Q(k) is defined by equation (1.11). This Lax-Wendroff
operator appears so often in the sequel that we will introduce the following notation
for it, which shows thc dependence on the cocfficient matrix A explicitly:

LW(A,k) = I + kADg + }k*AD,.D_. (1.12)

Strictly speaking, this operator also depends on A, or, cquivalently, on the mesh ratio
A = k/h, but A will be assumed to be fixed. Analogous mcthods can be dcfined for
variable coeflicient or quasilincar hyperbolic systems. The same generic symbol LW(A, k)
will be used for all of these methods although in general they will be more complicated
than in (1.12). :

. T;m Lax-Wendroff method is second order accurate since the local truncation error
is O(k3): :

[LW(A, k) — exp(kAD,)ju(z, 8) = — $43(A% - 4 A)uzss + O(KY). (1.13)

The Crank-Nicolson method. As another example, consider the onc dimensional
heat equation :
’ U == gy (1.14)

The solution operator for this problem is S(k) = exp(kd2). Explicit mcthods for
parabolic problems are generally stable only il the limestep & is very small relative to




h. For this reason implicit methods are often used instead. One popular method is the
second order accurate Crank- Nicolson method,

(1 = }kD+D_)JUSH = (1 + }kD,D_)UR, (1.15)
for which _
' Q(k) = (1 — kD D_)Y(1 + }¥D,D_).

This corresponds to using a rational approximation to the exponential solution operator.
To implement this method a tridiagonal system of linear equations must be solved at each
iteration. This can be done quite efficiently. Because all of the U™+! must be determined
simultaneously, the method is said te be implicit. Lax-Wendroff, by comparison, is an
ezplicit method. The stencil for Crank-Nicolson is shown in Figure 1.2.

F1G. 1.2. Stencil for Crank-Nicolson.

In two space dimensious the heat equation (1.1) can be solved by a similar method:
(1 - %k(D+z -z + D+VD—U))U”+1 = (l + ik(D+=D—= + D+vD—v))Um W3 (1.18)

where, for example, D, is the forward dilference operator in the z-direction. Unfortun-
ately, this no longer leads {o a tridiagonal system of cquations but rather to a more com-
plicated system which cannot be solved nearly as efficiently. It was this problem which
led to the introduction of some of the first splitting methods. One such method is the
locally one-dimensional (LOD) method in which the solution to (1.1) is advanced by first
solving ¥, = u,, approximately using (1.15) and then solving u; = u,, approximately
using the same method in the y-direction. In this manner only one-dimensional problems
need be solved. The LOD method is one special case of the time-split method, which will
now be described more generally.

1.3. The time-split method.

Consider again the general problem (1.7) and suppose that the function A(u) splits
additively into two or more picces which arc most naturally handled scparately. Restricting
our attention to two pieces, suppose 4 is of the form

A(u) = Ay(u) + Az(u), (1.17)

where each of the subproblems

U = Ay(u) (1.18a)




and
U, = Aa(u) ’ (1.18b)

is easier to solve than the full problem (1.7). As we have alrcady seen, this is the case for
the heat equation (1.1) when 4;(u) = u,; and Az(u) = u,,. It may also prove useful to
handle the different space dimensions in the hyperbolic system (1.3) separately. For other
equations the natural splitting is between terms describing different physical processes. In
the convection-diffusion equation (1.4) we may take 4;(u) = cu, and A3(u) = vu,,, thus
spiitting the mixed problem up into separate hyperbolic and parabolic equations. The
reaction-diffusion cquation (1.8) might be handled similarly. The Navier-Stokes equation
(1.5) could well be split into five separate pieccs.

Splittings have long been used for all of these problems and in many other contexts
as well. Some history and references are given in Section 1.6.

We now discuss in more detail the implementation of the time-split method once a
splitting of the form (1.17) has becn decided upon. The subproblems (1.18a) and (1.18b)
have corresponding solution operators S;(k) and Sa(k). The basic assumption is that
these operators are easier to approximate than S(k) is. The time-split method is based
on the fact that

when k is small. In some cases this splitting is in fact exact. For the heat equation (1.1)
with the LOD splitting, for example, we have S(k) = exp(lc(a2 + 82)) while Sy(k) =
exp(k2), Sz(k) = exp(kd3). Since the differential operators 92 and 8% commute, we
find that S(k) = Sg(k)Sl(Ic) For variable coeflicient problems, or systems ol cquations, -
the splitting (1.19) is not exact in general. For example, the same LOD spllttmg on the
constant coefficient hyperbolic system (1.3) has an error

Sa(k)S1(k) — S(k) = exp(kBdy) exp(kAd;) — exp(k{Ad. + BA,))

= $k¥(BA — AB)3,9, + O(K°) (1.20)

as can be verified by expanding the exponentials. In this case the splitting is exact only if
the matrices A and B commute. Otherwise the local error on smooth solutions is O(k?)
and hence the splitting is only first order accurate.

A simple sccond order splitting was introduced for this problem by Strang{49] «who
noted that

exp(K(Ad; + BA,)) = exp(4kA,) exp(kBd,) exp(LkAd,) + O(kY).

In fact Lhe same type of splitting is second order accurate (on smooth solutions)- for
gencral problems of the form (1.7). The gencral Strang splitting is

S(k) == S:(k/2)S2(k)S1(k/2). ' (1.21)
Il the equation depends explicilly on' ¢, then the appropriate form of the splitting is
S(t+ k,t) = Sy(t+ k,t+ Lk)Sa(t + k,8)Si(t + Sk, 0).
By the semigroup property (1.9), this can be written as

S(t+ k,t) == [Si(t + k, t + LE)Sa(t + k,t + L&)
X [Sa(t + 1k, 8)S:(t + Lk, 1))

(1.22)




When vicwed in this way it is apparent that second order accuracy may also be retained
by using a splitting of the form (1.19) but reversing the order of S; and S in alternate
time steps. :

Strang[49)] proves that this splitting is second order accurate on a general nonlinear
problem. Tkis proof is repeated in Section 2.3, where we also compute a general
expression for the error in the splitting.

Once the appropriate splitting of the exact solution operator has been chosen, the
time-split method results from replacing the exact solution operators S;(k) and Sj(k)
by approximations @;(k) and Qz(k). A numerical method based on the splitting (1.21)
would thus be

UnH = Qu(k/2)Qa(k)Q:(K/2)U2,. (1.23)

"In practice U™*! is computed via the sequence

Upm = Qi(k/2)Un,
U = Qa(K)U,, (1.24)
U = Qu(k/2)U,,
where we have introduced nonphysical intermediate solutions U* and U*®. When several
steps of (1.23) are applied successively the adjacent Q((k/2) operators can be combined

into Q;(k), and the half-step operators need only be applied at the beginning and
immediately before printout, i.e.,

Un, = Qu(k/2)Qa2(k)Q1(K)- - -Q1(k)Q2(k)Q1(k/2)U7,.
When the original problem is split into more than two pieces, say
Alu) = Ai(u) + Ag(w) + - + Ap(u),
the following splitting is second order accurate:
S(k) =~ Sy(k/2)Sz(k/2) S ~1(k/2)Sp(k)Sp—1(k/2)- - -S2(k/2)S1(k/2).

This is easily proved by induction (see Gottlieb]23)).

 1.4. Hyperbolic splittings with disparate wave speeds.

This thesis is mainly an investigation into the applicability of time-split methods to
pure hyperbolic systems whose solutions consist of waves traveling at disparate specds.
Consider the onc-dimensional hyperbolic constant cocflicient system

Uy = Au,. (1.25)

The r X r matrix A is assumed to be diagonalizable with real eigenvalues p,, pa, . . ., gy.
If X is the matrix of right eigenvectors of A, then

A= XMX!




where M = diag(p1, p3, . - -, ) is a diagonal matrix. The solution to (1.25) with initial
conditions ’ ‘ '

u(z,0) = f(2)

is given b
is given by u(z, t) = exp(tAas)u(zv 0)
=X exp(tMas X—‘f(z)'

Set v(z) = X! f(z). Then

vi(z + tp)

w(z,) = X vg(z + tpsa)

va(z + tpy)

In general each component u;(z,t) of the solution is a linear combination of waves
traveling at the various speeds py, pg, ..., 4. Eigenvalues u; with large amplitude give
rise to fast waves, Lhose with small amplitude, to slow waves.

Suppose now that the eigenvalues are ordered by magnitude, and that some of them
are much larger than others:

el < lpal < -o- < oyl K [ptpaa] < -0 < e (1.26)

Now consider the use of a finite difference scheme for solving (1.25). Throughout this
thesis we will restrict our attention to the Lax-Wendroff method for hyperbolic problems,
both in computational examples and in some of the theory (for example in Section 2.5).
The same sort of analysis can be applied Lo other methods with similar results, but it
secms most instructive to concentrate on one particular method.

The Lax-Wendrofl method, like all explicit methods, is only conditionally stable.
This places a restriction on the size of the time slep that can be used. For Lax-Wendroff
this stability condition is

Eod) < 1. (1.27)

where p{(A) = |u,| is the spectral radius of A. The fastest waves thus dictate the size of
the timestep that can be taken. Accuracy considcrations also influence the size of the
timestep. In fact the faslest waves are compuled most cfficiently (in the sense that the
least work is required to achieve a given accuracy) if the mesh ratio k/h = 1/p(A) is
used. This will be shown in Section 2.5.

Slow waves, on Lthe other hand, can be accurately (and more efficiently) computed
using much larger limesteps. The question is whether a split method can be used lo
compule accurale overall solulions more cfficiently.

[f the matrix A is diagonal, then the system decouples into r separate sealar equa-
tions, cach of which can be solved independently using the appropriate mesh ratio. More
generally, we can splil the matrix A into picces A, and Ay corresponding to slow waves
and last waves,

Ay =XMX", Ay=XMx! (1.28)




where "
M, = dlag(l‘l, co ey bipy 0.0 ~ro)

My = diag(0,...,0, ftp41, .- Br)-

This essentially decouples the system into slow and fast parts. Since the matrices A, and
Ay commute, splittings of the form (1.19) or (1.21) are exact and nearly optimal mesh
ratios can be used for cach part.

Realistic problems can never be split so easily. For variable coefficient or quasilinear
systems therc will almost always be a splitting error to contend with. It is also generally
undesirable or even impossible to use a splitting of the form (1.28), since the eigenvectors
are themselves variable.

However, it is not necessary to split by characteristic variables as in (1.28), and
the time-split method is often advantageous cven when the splitting error is nonsero.
Suppose, for example, that r is large but that the matrix A has only a few large
eigenvalues. It may be the case that relatively few clements of A contribute to the fast
waves. We could then split A as A = Ay + A, in such a way that A is sparse compared
to A while A, has only small cigenvalues. Because of its sparsity, taking small timesteps
on Ay requires less work than taking small timesteps with the full matrix A. The matrix
A, can be handled more cfliciently using larger timesteps. We could thus consider u~ing
a scheme of the form

U = Q(k/2)Qu(k)Qy(k/2)UT, (1.29)
with
Qc(k) = LW(A., k)
| Q(k/2) = (LW(Ag, k/m)™/2
for some even integer m. The accuracy and the efficiency of such a method rclative to

an unsplit method, say LW(A, k/m), depends greatly on the nature of the splitting error.
This will be studied in detail in Chapter 2.

(1.30)

Example 1.1. An interesting model system for problems of this form is a block
triangular system with :

— A An
A [ 0 Aml (1.31)
Suppose the eigenvalues of A); are large relative to those of A3 and consider the splitting
=|Au 0 — |0 A
Ay [ o 0], A, = 0 Aml (1.32)

The effectivencss of the split method depends greatly on the coupling A3 between the
different time scales. This is analyzed in Scclion 2.7. In Scction 2.8 we present a simple
procedure for changing variables Lo reduce the coupling.

Perturbed problems. The time-split method can also be very effective on equations
which arc amall perturbations of some equation for which the exact solution operator is
known. We will refer to such problems as pertrubed problems. For example, consider a
variable cocllicient problem in which the cocfficients have large mean values and small
varialion. Il may then be possible to split off a constant cocflicient problem u, = Ajyu,
that can be solved exaclly, leaving behind the small perturbations for A,. We can then
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use (1.29) and take Qy(k;2) = exp(}kA;9.) with no error. Since the dominant part
of the operator is being handled exactly, substantial increascs in efficiency are possible.

- - The one-dimensional shallow water equations introduced in the next section are of this
form. :

More generally we may divide the computational domain into subintervals and split
out a different constant matrix A; on each subinterval. This might be appropriate if the z
coefficients are slowly (but widely) varying so that perturbations about the local mean |
valuc are small. In this case A; would be piecewise constant. Alternatively we can view :
this as a hybrid method in which a different scheme is used on each subinterval. '1

In other cases the matrix A; may be variable, but of a special form such that the
problem u; = A u, can be solved exactly.

We continue to use the “fast” and “slow” notation even though for such perturbed
problems all of the eigenvalues of A may be roughly the same size. Nevertheless in the
splitting A = Ay + A, we assume that A; has cigenvalues much larger than those of A,,
and so the subproblem u, = Aju, has waves which are fast relative to those occurring
in the subproblem u; = A, u,.

Example 1.2. A simple example is the scalar problem
' 4 = (1 + a(z))u, (1.33) ?
where |a(z)| € 1 with the splitting
A, =1, A, = afz).
Take k = 2ph for some integer p. The operator exp(§kA;9.) is known exactly:
exp(} kA8 )u(z, t) = exp(phd:)u(z, t) = u(z + ph, t).

If Lax-Wendroff is used for the remaining subproblem u, = a(z)u, then the method
(1.24) becomes ' |

U:n = U:l-H’ ‘
Up = IW(a(z), YU, |
= Up + 92 )(Urngs = Un—y) + 922 m) {(@(Zms1) + &)} ({Urngr = Ur)

— (@(zm) = &(Zm—1))(Umy = Usn—1)} !

untt=u

-9 -
m+p’ i

Notice that even though this is a scalar problem, the operators 3, and a(z)d, do not
commute and so Lhe Strang splitling must be used to achicve a second order method.
This sequence is shown schematically in Figure 1.3 for p = 3.

Eliminating the intermediate sotutions U® and {/°°, we can rewrite this as a one-slep
method:

| ) . U:‘n+l =U :H-?p + pa(Zm4p (U :l+2p+l -U :'u+2p-|) + P’“(zmﬂ)
X [(“(3m+p+l) + a(zm4p))(U ,v:|-|-2p+l - U:‘n+2p) (1.34)

oo — (a(zm+p) + a(zm+p—l))(ua+2p - U:H-?p-l)]‘

11




U+

U - .
Zon Zm+p : Tm+3p

FIG. 1.3. Schematic diagram of the method (1.34) in split form.

U». . .

FIG. 1.4 Stencil for the method (1.34) viewed as a one-step mcthod which
approximately follows the characteristic of the problem (1.33) (shown, e.g.,

by the dotted line). Note that values of a(z) are used from near Lhe middle
of the interval. i

12.




The stencil for this method is shown in Figure 1.4. The value U%}! is determined by
the values of U™ at Zw4gp—1) Zm+3p) 80d Zmigp+1. This scheme can be interpreted as
a “skewed Lax-Wendroff” method whose stencil approximately follows the characteristic
of the equation, which has slope —(1 + a(z)) at each point z. The value of ¥(Zm,tn+1)
should thus be equal to the value of u(2,t,) for some point % near Zm43p. The exact
location depends on the values of a(z) for all z between z,, and #. We thus expect such a
skewed method to be quite good if a(z) is small. Just how good it is depends on the sise
of a(z) and also on how rapidly a(z) varies. Note that in the split method (1.34) only
values of a(z) near the middle of this interval are used. It turns out that the splitting
error for this problem depends on derivatives of a(z). As we will see in Chapter 2, when
a(z) is rapidly varying it is most efficient to use small values of p, but the resulting
method is still more efficient than using Lax-Wendroff on the unsplit problem.

1.5. The shallow water equations.

Throughout this thesis the shallow water equations will be used as an example to
illustrate the general theory being developed. The theory applies to this system in a lairly
straightforward but nontrivial manner, and thus studying these cquations provides some
insight into the issues which arise when splitting mcthods are applied to other practical
problems. ’

In one space dimension the shallow water equalions are

i A 39

These equations model flow in a channel where g is the gravitalional constant, h is the
height of the water and u its velocity. This system can be symmetrized by setting ¢ =

Vgh to obtai
L

We will make the realistic asumption that 4 is small compared to ¢ and that variations
in ¢ arec small compared to some mean value ¢p:

|¢ - ¢0| S €¢0r
lul < edo

with ¢ € 1. Moreover we assume that vz, ¢z and higher derivatives arc also O(ed). We
split the system (1.36) by taking

(1.37)

A=l P} A=foSon ¢H s |

The cigenvalues of Ay arc +¢9/2. The cxact solution operator exp($kAs3;) can be used
on the grid provided that

k 4
P = o (1.39)

for some integer p > 1. The matrix A, has cigenvalucs u + (¢ — é0)/2 which are smaller
by a factor of € than those of Ay.
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We will see in Section 2.9 that using a time-split mcthod on this problem reduces

. the errors by a factor of ¢ (using the same amount of work). The method is stable for
S the frozen-coefficient problem, as seen in Section 3.5, and in practice is stable for the
nonlinear system. The proper specifications of boundary conditions for this preblem is
discussed in Section 4.5.

e SO

1.6. A brief history of splitting methods.

Now that the basic form of the time-split method and a wide variety of possible
splittings have been introduced, we pause briefly to review some of the extensive work
that has been done on splitting methods. This survey is far from complete, but it provides
some historical perspective and references, particularly to the sources which have had
the most impact on this thesis.

Splitting methods have been most extensively studied in the context of spatial
splittings of multidimensional problems. The first splittings were of implicit methods
for solving parabolic problems and were also used as iteration procedures for solving
steady-state elliptic problems.

The locally onc-dimensional methods were devcloped primarily by D'Yakonov([11],
Marchuk[38], Samarskii[48] and Yanenko[65). The basic form of such methods has
already been indicated in Section 1.2. For the heat equation (1.1) using Crank-Nicolson,
for example, the scheme is

(1 - §kD4oD_u)U,, = (1 + kD, .D_,)UD (1.40) o
(1 - §kD4,D_,UR*' = (1 + §kD4,D_, U .. .

This clearly fits into the general framework introduced in the Section 1.3 with the splitting
.41(14) = Ugs, .ﬂ,(u) = Uyy. (1.41)

The LOD method, however, was not the first such splitting method to be used.
In the mid 1950’s the Alternating Direction Implicit (ADI) method was introduced by
Peaceman & Rachford[45] and Douglas{8]. On the equation (1.1) this method, known as
the Peacemnan-Rachford method, has the form

(1- %"D-HD—‘)U;- = (1+ §kD4yD_4 U3, -

(1= §kD4y Dy S = (1 4 kD4 D_)U (43

The philosophy behind the ADI method is somewhat different from that behind the LOD

method. Each cquation of (1.42) is, by itself, a first order accurate scheme for solving

the original equation (1.1} on a timestep of length /2. The combination provides a

sccond order accurale solution on a step of lenglh k. In some sense it is thus a more

natural approach to solving the problem. than the LLOI) method, since the individual

cquations composing (1.40) do not, by Lhemsclves, provide consistent approximations to

the original systein. On the other hand, Lthe LOD method can be viewed more naturally -
as a time-split method of the form discussed in Section 1.3, since each cquation of (1.40)
is a sccond order accurate approximation to one of the subproblems determined by (1.41)
on a timestep of length k.

14
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In fact, the Peaceman-Rachford method can also be viewed as a time-split method
of this form, but with a different splitting. Instead of (1.41) suppose we split the operator

Alv) = u..+u,,u

Al(u) = xuss + uyy) + &k(ussss - uuwy);
Ag(u) = 4(“:- + tyy) - *"("“n — Yyyyy)-

Then the equations of (1.42) are second order accurate approximations to uy = A(w)
and u, = A3(u) on timesteps of length k.
There are many other ways of relating the ADI and LOD methods, see for example
Gourlay & Mitchell[25] or Morris & Gourlay[42]. One advantage of viewing ADI as
. a time-aplit method is that, in some cases, appropriate boundary conditions for the
intermediate solution U® can then be easily determined using the general procedure
described in Chapter 4. This is discussed in Section 5.4.

Numerous variations on the Peaceman-Rachford method have been proposed over
the years, for example by Douglas & Rachford[8], Fairweather & Mitchell[19), Douglas
& Gunn{7], and D'Yakonov[12]. The last of thesc is particularly interesting since it
is based on approximale factorization, an approach that is currently quite popular
in computational fluid dynamics. D'Yakanov’s method, which he calls the method of
disintegrating operators, results from the approximations

(1.43)

1- *k(D+;D—= + D4yD_y) = (1 = §kD4+.D_.)(1 — §kD4yD_y),
1+ %k(D.}.’D-—g + D+'D_') ‘s (l + ikD.g.,D_,)(l + %kD+vD_').

Each of these has an error }I: DyeD_.D4yD_,. When both approximations are used
in (1.18), the resuling error is O(k3). This leads to the split method

(1 = §kD4aD_s)U,, = (1 + }kD4oD_o)(1 + §kD4yD_y U5,
(1 — §kD4y D UL = U,

which can also be viewed as a time-split method with the splitting

Arv) = ugs + Juyy — fhuyy,,
Aa(u) = %"w + *k"ww-

A great deal of work has gone into the proper specification of intermediate bound-

* ary conditions for such splitting mcthods. See, for example, Lawson & Morris[84], |

Fairweather & Mitchell[19), or D’Yakonov[13]. General discussions of splitting methods :

for parabolic problems can be found in many places, including Yanenko|58], Marchuk([40}, j
and Mitchell & Grilfiths[41].

As opposed Lo parabolic problems, many hyperbolic systems of equations are solved
using explicit methods. As we saw for the onc-dimensional system (1.25), the stability
limit frequently allows timesteps that are rcasonable from the standpoint of cfliciency,
and su Lhere i8 no need to use imnplicit methods. In more space dimensions, however,
the stability limit is often severely reduced. (For example, the stabilily limit for 2D Lax-
Weundrofl on (1.3) is Xmax(p(A) A1) < 1/v8.) Strang(49] showed that if the locally
onc-dimensional method is used on (1. 3), then the stability limit is more reasonable (for
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Lax-Wendrofl, X\ max(p(A), (B)) < 1). Thus the LOD method has the use, for explicit
methods, of increasing the stability limit. '

Implicit methods are often used for certain classes of hyperbolic systems. Recall that
the timestep for an explicit method is restricted by the fastest wave speed. For certain
systems of equations with disparate wave speeds the physically meaningful solutions con-
tain no fast-wave components, or at least the fast waves have small amplitude compared
to the slower waves. For an explicit method applied to such a problem, stability con-
siderations limit the timestep to a value much smaller than that required for accuracy.
For this reason, implicit methods are frequently used instead. In more than one space
dimension LOD, ADI or approximate factorization methods again prove useful.

Such problems arise, for example, in modeling atmospheric flows. The simplest
such system is the two-dimensional shallow water equations. The general solution to
these equations includes both fast “gravity waves” and much slower “Rossby waves”. In
practice, however, the gravity waves contain little energy and, it is thought, have little
effect on the weather. Gustalsson[29] has studied an ADI method for this problem.

Another approach to such problems has been taken by Kreiss[32],{33] and Browning,
Kasahara & Kreiss[3]. They properly prepare the data so that fast wave components are
climinated. Majda[87] has considered using filters to suppress the fast waves in the same
context. :

Approximate lactorization methods for hyperbolic problems have been studied by
Warming & Beam(54], primarily for the Euler equations of gas dynamics and for mixed
hyperbolic-parabolic problems such as the Navier-Stokes equations. Again they are
dealing with problems where the fast waves have little cflect on the solutions of interest.

Another possible approach for such problems is to split the coeflicients into fast and
slow terms and use an implicit method only on the fast part. This can be quite efficient if,
for example, the fast part is sparse. The splitting between implicit and explicit methods
can be cffected in various ways. For the problem %, = Au; = (A; + A,)u,, a time-
split mcthod of the form (1.29) could be used with Qg(k/2) implicit and Q,(k) explicit.
Alternatively, one-step methods can be derived that are implicit only in A;. For example,
the trapezoidal furmula and leapfrog can be combined into the hybrid method

(T = kA DQYURFY = (I + kA D)UDY + 2kA,DoU,. (1.44)

Such methods are called semi-implieit methods or ezplicit-implicit methods. Elvius &
Sundstrom(16] have analyzed the two-dimensional analogue of (1.44) for the shallow
water equations. Ilarlow & Amsden(31] have applied a similar methed to the Euler
equations.

The idea of using different timesteps on various parts of the system has been used in
one form or another by several authors, including Engquist, Gustafsson & Vreeburg(17},

1add[20), and Turkel & Zwas|52).

Many nonlincar hyperbolic systems have solutions involving shock waves - discontinu-
ous solutions which can arisc even from smooth initial data. For such problems a wide
variety of special methods have been devised. Often these methods are dircctly applicable
only in one space dimension. For higher dimensional problems, L.LOD splittings are again
frequently used. Since the soluticns are not smooth, splittings are more difficult to
analyze in this context. Crandall & Majda(8] have proved that the splittings (1.19) and
(1.21) do give convergent methods when applicd to scalar conservation laws.
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For mixed problems such as the Navier-Stokes equations the time-split method has
been used to split between hyperbolic and parabolic parts. Abarbanel & Gottlieb(1] split
the full three-dimensional Navier-Stokes equations into nine pieces—the hyperbolic and
parabolic terms in each space dimension and three cross-derivative terms. They then
use the time-split method to derive an explicit method with good stability properties.
MacCormack|85){86], Strikwerda[50], and Dwoyer & Thames[10] have studied similar
methods.

Approximate factorization methods for this problem have been proposed by Beam
and Warming(2][54). This approach appears to have certain advantages in steady state
calculations. The numerical steady state is independent of the timestep k used to compute
it, and the calculations can be performed in an “increment form” that is computationally
efficient. '

Convection-diffusion equations similar to (1.4) arise in transport problems that in-

clude diffusion, for cxample in multi-phase miscible flow or in modeling heat flow in a

moving material. When the problem is convection dominated (v < |¢| in (1.4)), the
propagation of sharp fronts is often of interest. These are difficult to handle numerically.
It is often advantageous to again split between the hyperbolic and parabolic parts and
handle the hyperbolic part using characteristics. This is studiced in Section 5.3. Similar
methods have been proposed by MacCormack[36] and Douglas & Russell[9]. Another
possibility is to use the finite element method for the parabolic part[9](15]{47](53].

1.7. Outline and summary of results.

There are thrce main issues to be dealt with when considering the use of a time-split
method for any differential equation. These may be summarized as efictency, stability,
and the proper choice of boundary condstions.- These are, of course, major issues in the
choice of any finite difference scheme, but the use of time-split methods introduces new
complications into cach area.

Efficiency. The first quantily to compute in the analysis of any finite difference
scheme is its truncation error. In Section 2.2 we show that for the time-split method the
truncation error is simply the sum of the splitting crror and Lhe truncation errors for
the approximate solution operators @, and @3 (plus higher order terms). The splitting
crror thus plays a fundamental role and techniques for computing this error for general
splittings are discussed in Section 2.3. '

In comparing mcthods, however, it is not in general suflicient to compare their
truncation errors, since one scheme may require much more computation than another.
This is particularly true where time-split methods are concerned. Instead we must
comparc some measure of the cllicicney of the methods such as the amount of work
required Lo achieve a given accuracy.

Since split melhods generally involve Lhe conjunction of several different numecrical
methods, there may be several free paramelers, such as stepsizes, Lo be chosen. For the
method (1.30), for example, we must choose both k/h and m. We can essentially choose
the mesh ratios for the two time scales independently. As we will see in Scction 2.5,
the optimal choice depends on the size of the splitling error and is not always obvious a
priori. In particular, the optimal mesh ratio k/h is often far fromn the stability limit of
the method used on the slow problem.
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Stability. For some time-split methods applied to certain problems, the operator
Q1(k)Qs(k) is stable whenever the operators Q1(k) and Q3(k) are each stable operators on
their own. Unfortunately, this is not true in general; the product of two stable operators
may be unstable. An example of this is given in Chapter 3.

Of course the stability of Q(k)Qa(k) can always be determined directly by eliminat-
ing all intermediate variables and viewing the split method as a one-step method. How-
ever, the resulting method is generally quite complicated, making direct analysis difficult.
For this reason it is useful to identify special classes of problems for which the individual
stability of Q(k) and Q3(k) does guarantee the stability of Q;(k)Q2(k). Several such
classes of hyperbolic splittings are identified in Chapter 3.

Boundary conditions. All practical calculations are performed on finite domains.
If periodic boundary condstions are used (e.g., u(0,t) = u(1,t) V¢ on the strip 0 < z <
1), then the same finite difference scheme can be used at all points, simply by wrapping
around at the boundaries. Otherwise, onc or more points at each boundary will have
to be determined in some alternative manner (unless a one-sided scheme is used). Some
boundary values will be provided as part of the problem, but frequently finite difference
approximatlions require more boundary conditions than the original differential equation.
The remaining boundary values must be determined by some other procedure. A variety
of techniques arc used lor this purpose, depending on the context. The easiest approach is
often to extrapolate the interior solution at time ¢,y oul Lo the boundary. Alternatively,
one-sided (or lopsided) finite difference schemes can be used to compute the solution at
points on (or ncar) the boundary. At some boundaries other desirable properties of the
solutions, such as nonreflection of outgoing waves, may be used to determine the proper
boundary values.

For time-split methods the choice of boundary values is complicated by the necd
to supply boundary data for the intermecdiate solutions, such as U®. These solutions
arc obtained not by solving the original differential equation but rather by solving one
of the subproblems. Because of this, appropriate boundary data for the intermediate
solutions is never available directly. Extrapolation from the interior can still be used,
but is generally undesirable both for reasons of stability and accuracy.

The gencration of boundary dala for the intermediate solutions is discussed in
Chapter 4. We describe a general procedure for transforming given boundary data for the
original equation into appropriate data for the intermediate solutions. This procedure
is based on the following idea. We introduce a new function u"* which satisfies the
subproblem that is actually being solved in the first step of the splitting. We then expand
the desired boundary valuc for 4° in a Taylor series about the initial time ¢, at which
u" = u. Using the differential equations for u* and u we then reexpress this as a scries
expansion involving only the function u and ils time derivatives along the boundary.
This can then be evaluated from the given boundary conditions for u.

Bach of the next threc chaplers is devoted to onc of these issues. The emphasis
is on gplittings of hyperbolic problems into subproblems with disparate wave speeds, as
discussed in Seclion 1.3. However, many of the techniques used are also applicable to
other splitlings of the form u; = A((u) + Az(u). Whenever possible, the discussion is in
terms of the more general splitling to facilitate application Lo other problems. Hyperbolic
splittings are always used as concrele examples in these chaplers, and most of the specific
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results are for such problems. In particular, the one-dimensional shallow water equations
are frequently used as an example. '

In Chapter $ we discuss several other applications of the time-split method using the
theory developed in previous chapters. We first consider applications of the time-split
method to hyperbolic problems in two space dimensions. The main intent is still to split
betwcen dilTerept wave speeds, bul in conjunction with this spatial splittings may also
be used.

Finally we consider two applications of the theory of time-split methods to non-
hyperbolic splittings. In Section 5.3 the simple convection-diffusion equation (1.4) is split
and solved as a perturbed problem with a skewed Crank-Nicolson method analogous to
the skewed Lax-Wendroff method (1.34). The efliciency of this method can be analyzed
using the techniques of Chapter 2. Intermediate boundary conditions at the inflow bound-
ary can be specified using the procedure of Chapter 4. When the diffusive parameter v
in (1.4) is small the equation becomes a singular perturbation equation with a boundary
layer at the outflow boundary that causes additional difficulties.

In Section 5.4 the Peaceman-Rachford method (1.42) is viewed as a time-split method
with the splitting (1.43). For a rectangular region the boundary condition procedure of
Chapter 4 can be uscd to derive appropriate boundary conditions for the intermediate
solution U°. These arc seen to agree with the classical boundary conditions of Fairweather
and Mitchell[19)].

Chapters 2-4 are esscntially independent of one another and can be read in any
order. The scctions of Chapter 5, which deal with other applications, are disjoint from
one another, but build upon the results of the previous chapters, particularly Chapters
2 and 4.
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2. Accuracy and efficiency

2.1. Introduction.

This chapter begins with a computation of the truncation error for a general time-
split method. Neglecting higher order termns, this is simply the sum of the error com-
mitted in splitting the exact solution operator (the splitting error) and the truncation
errors of the schemes used for the subproblems.

In Section 2.3 we present general expressions for the splitting error in both the first
order splitting (1.19) and the Strang splitting (1.21). The splitting error is explicitly
computed for some model problems, including the one-dimensional shallow water equa-
tions.

For the type of splitting with which this thesis in most concerned, namely where
HA2(u)ll < clA1(u)l] with € < 1, the error in the Strang splitting is seen to be O(ek3%). A
simple modification of this splitting is proposed with O(c2k3 + ek*) splitting error.

Once we are able to compute the splitting error for specific problems, we can analyze -
the efficiency of the split method relative to unsplit methods. It turns out that the size of
the splitting error greatly affects what size timesteps should be used in the split method
and what increasc in efficiency can then be expected. This analysis is presented in Section
2.5 and continues in Section 2.6 where phase errors are computed.

In Section 2.7 these results are interpreted for a block Lriangular system of the form
considered in Example 1.1. For this problem (and also for more gencral partitioned
systems) Lhe splitting error can be reduced by the use of a simple change of variables.
This is discussed in Section 2.8.

In Section 2.9 the one-dimensional shallow water equations are studied. The theory
developed in Section 2.5 is confirmed numecrically for this system.

2.2. Truncation error of the time-split method.

In order to compute the truncation error for the time-split method we first introduge
the truncation error operators I£;(k) for the approximate solution operators @;(k). These
are defined by

(k) = Q;(k) — S;{k), k=1,2.

We will assume throughout that @y and Q3 are at least sccond order accurate. Then
Li(k)u is O(k%) for smooth u. Vor shorthand we somctimes write E;(k) = O(k3).
Similarly, we introduce the splitting error operator E,p.(k) defined by

Eypiin(k) = S\ (k/2)S2(k)S1(k/2) — S(k).

This is also O(k?) for smooth u.
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The truncation crror operator for the time-split method is

ET*¥(k) = Q1(k/2)Qa(k)@1(k/2) — S(k).

If the operators Ay(u) and Az(u) are linear, this can be easily computed in terms of E;,
E; and E,p); using the fact that S;(k) = I+ O(k) and Q;(k) = I + O(k):

E™M(k) = (S1(k/2) + E1(k/2)) (Sa(%) + Ea(k)) (S1(k/2) + E1(k/2)) — S(K)
= 81(k/2)S2(k)S1(k/2) — S(k) + 2E1(k/2) + Ea(k) + O(k*)
= Ewpue(k) + 2E1(k/2) + Ea(k) + O(K*). (2.1)

If the operators A;(u) and Ag(u) are nonlinear, then the @, S, and E operators will also
be nonlinear. More care must then be used in deriving ET5*(k), but the O(k®) term of
the result is exactly the same as above, and the expression (2.1) holds in general.

The truncation error for the time-split method is thus seen to be essentially the sum
of the splitting errcr for the problem and the truncation crrors for the finite difference
operators. This allows us to casily compute the accuracy and investigate the efficiency
of the time-split mecthod relative to unsplit schemes. This will be done in Section 2.5.
First we must be able to compute the splitting crror E,pie(k).

2.3. The splitting error.

We will (irst prove the assertions made in Chapter 1 regarding the accuracy of the
splittings (1.19) and (1.21) when applied to the solution operator for a general equation
of the form

uy = A(u,t). (2.2)

The opcrator 4 may also depend on spatial variables, but this dependence will not
be explicitly shown. The proofs are completely independent of the number of space
dimensions.
We denote by A'(u,t) the tolal time derivative of A assuming u satisfies (2.2). This
is given by :
Alu,t) = Au(u,t) + Au(u, t)u,
= Au(u,t) + Auln, t)A(u,t).

In the latter form this depends only on u at the time ¢ and does not depend explicitly
on u;. This is crucial in the proofs that follow, where we will be switching between
solving different differential equations, which means that time derivatives of u become
ambiguous. ol .

A few words should be said about the quantity A, (u,t). The vector-valued function
A generally depends both on % and on one or more spatial derivatives of u. In onc space
dimension, for cxample, we could write A = A(u, Uz, %za,...,t). The derivative A, is
then defined as

(2.3)

04 04 3R
Ay = o —— 0O+ —— 2 + ... 2.4
. bt 0u+6u, ’+8u,, =+ (2:4)
where A/Au, dA/du,, ete. are ordinary Jacobian malrices with respect to the ap-
propriale veclors u, 45, clc. More will be said about evalualing Lthese expressions later
in Lhis section.
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Now suppose that 4 is split as A(u,t) = A(u, ) + Aa2(u, t). One consequence of (2.3)
is that A'(u,t) # A)(u,t) + A%(u,t). This is because A(u,) is the time-derivative of 4;
assuming u satisfies u, = A;(u, t) rather than (2.2). We find instead that

A=A + A4
= (A1e + Az¢) + (A1 + Azu)(ArL + A2)
= (Are + A1uf1) + (A2e + A2uA2) + Aufa + A2u Ay
= A} + A2 + A1uf2 + Aau 1. _
We are now ready to prove the results indicated earlier, beginning with a standard
proof that the splitting (1.19) is first order accurate (i.e., that the local error is O(k?)).

THEOREM 2.1. Suppose that u(tp) is a C* function of all spatial variables and that
A, 41, and Ag are smooth functions of u and t related by (1.17). Then the corresponding
solution operators S, Sy, and Sy satisfy
Sz(to + k, to)sl(to + k, to)‘u(to) - S(to + k, to)‘u(to)
= }k%[Asu(ulto), to) A1(u(to), to) — Aru(ulta), to) Az, {t0), to)] + O(K)

(2.5)

(2.6)

as k — 0.

Proof. We begin by computing S(to + k, fo)u(to). If u satisies (2.2) then this is

" simply u(to + k) and expanding in a Taylor series gives

S(to + k, to)u(te) = u(to) + ku.(to) + Lk ue,(to) + O(k?) (2.7)
= u(ty) + kA + 1k2 4" + O(K%). ’

Here and below, when no arguments are shown for A4 we mean A(u(to), to) (similarly for
Ay and A;). We now compute the solution using the split operator. Alter the first step
we have

Si(to + k, to)u(to) = u(to) + kA; + 1k2AL + O(k®).

Set u* = Sl(to + k, to)’u(to). Then
Sa(to + k, to)u‘ =u’ + kAg(u’, to) + Lk? Mu',to) + O(K®)

= u" + k[Az(u(to), to) + Azu(u(to), to)(u" — u(to)) + O(K?)]
+ k2[45(u(to), to) + O(K)} + O(k*)

= [u(to) + kA1 + LE2A, + O(ks)]
+ k[Az + Azu(kAy + O(K?)) + O(K?)]
+ $K2[AL + O(K)] + O(k?)
= u(ty) + k(Ay + A2) + LK%(A} + 242, 4, + AY) + O(K®).
Using (2.5) and (2.7) we find that

Sa(to + k,t0)S(to + k, to)u(to) — S(to + k, to)u(te)
= %kz(ﬂzuﬂl — A fa) + O(ks).

This proves the theorem. |
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Example 2.1. The formula (2.8) can be used to compute the O(k?) term of the :
splitting error for any particular problem. Consider, for example, the problems . ;
I (a) we = Au; + Bu, with 4,(v) = Au,, A3(u) = Bu, and A and B constant.
The solution operators are simply exponentials, so the splitting error can be computed
; directly as in (1.20). We get the same result by (2.8) since Aj, = A9, and A3, = Ba,.

(b) ue = (1 + a(z))u, with 4;(u) = u, and Az(u) = afz)u.. From (2.6) the splitting
: error is
1, 1k (a(2)8:u, — Bz(a(z)us)] + O(K®)

i = — 3k o/(z)u. + O(K?).
l For this problem the solution operators are again exponentials, S;(k) = exp(ka,) and
: Sa(k) = exp(ka(z)d;), so this can also be checked directly.

(¢) ue = (c+u)us with ¢ constant and u scalar. Take 4;(u) = cu. and Az(u) = uu,. ‘
Then A A2 = A2,A1 = c(u? + uu,,) and the O(k?) term in the splitting error is zero.
In fact, for this problem the splitting error is identically zero. This is intuitively clear i
since solving the subproblem u, = cu, simply translates the solution in z. The remaining
subproblem u, = uu, does not depend explicitly on z, and so solving this problem and
shifting the result is equivalent to solving the original problem.

Note that if u is a vector this is no longer true, since in general different eigen-
componcnts of u propagate at different speeds and hence move relative to one another. ;
The splitting error for a system of equations u, = [Ay + A,(u)]u, will be computed later '
in this section.

The next theorem asserts that the Strang splitting (1.21) is in general sccond order -
accurate.

THEOREM 2.2. (Strang[49]) Suppose that u(tg) is a C* function of all spatial
variables and that A, Ay, and Az are smooth functions of u and t related by (1.17). Then
the corresponding solution operators S, Sy, and Sy satisfy

Si(to + k, to + 3k)Sa(to + k, t0)Si(to + §k, to)u(te) — S(to + k, to)u(te) = O(k3)
ask—0.
Proof. Procecding as in the proof of Theorem 2.1,
Si(to + %k, to)‘u(to) = ‘u(to) + %kﬂl + ik’ﬂ'l + O(ka).
Again denote this by u”°. Then
Sa(to + k,to)u” = u” + kdz(u’,t0) + K A5(u", t0) + O(K®)
= ufto) + k(A1 + A2) + K3 (3 A} + Asu A1 + A%) + O(K®).
Cali this quantity u**, Then
Si(to+ k to + §k)u™ = u™" + Lk (u™, to + §k) + JR2AY(w", 6o + LK) + O(KD).
Expanding Ay and A} in both u and ¢ about (u(to), to) and collecting terms, we find that
S|(to + k,tg + %k)scz(to + k,to)sl(to + %k, to)
= u(to) + k(A1 + Az) + K23 AT + HAie + Aruhy) + A
+ Arufg + A2 A1) + O(K3)
= uftp) + kA + §k2 A’ + O(k?)

in view of (2.3) and (2.5). Comparing this with (2.7) shows that the crror is indecd
O(K"). u

£ 1)
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Keeping the O(k?) term everywhere in the proof would have given us a formula
analogous to (2.8) for the k3 term of the error. In general this is quite complicated. For
the relatively simple autonomous case where £ is a function of u alone, the splitting crror
is found to be -

— 14 NuA )2 — A1 Aa)u Ry + YA A1)y
— HAzuda)u A1 + (A2uA1)u Az — Y AruAz)u Aa) + O(KY).

Example 2.2. The errors in the Strang splitting for the problems considered in
Example 2.1 are relatively easy to compute: ‘

(2.8)

(a) v¢ = Au + Bu, with A and B constant. By expanding the exponential solution
operators the splitting error is seen to be

— }£%((3A%B - §ABA + 1BAY)9%0,
~(34B*A — BAB + }AB?)3.03)u(to) + O(k*).

The splitting error is zero only if A and B commute.

(2.9)

(b) ue = (1 + a(z))us. Again expanding the cxponential solutior operators shows
that the splitting error is

- 15K [(3 +a(z))a"(z) ~ (o(2))"|uz(to) + O(K").

A higher order splitting. The fact that the Strang splitting is sccond order
accurate can be seen more dircctly by viewing the Strang splitting, as in (1.22), as two
applications of the first order splitting with S, and Sz applied in the opposite order in
the second application. By Theorem 2.1 the truncation error in the first step is

%kz('d%‘(“(to)v to) A1 (u(to), to) — Aru(u(to), tO)AZ("(tO): to)) + O(kz) (2.10)
and in the second step:
LE3(A1u(u’, to + LK) Aa(u’, to + §£) — Aau(u’, to + L)AL (u", to + 1K) + O(K%). (2.11)

The full-step truncation error can be shown to be simply the sura of (2.10) and (2.11)
plus O(k*) terms. Expanding (2.11) aboul (u{to), to) and adding (2.10), the O(k?) terms
cancel and hence the Strang splitting is O(k3®) accurate. This cancellation occurs because
the O(k?) term of (2.8) is skew-symmetric in the variables 4; and 4.

For the Lype of problem we are considering here, where |jA2(u)l] < ¢j|A(u)]| and
similarly for their derivalives, a similar trick can be applied to the Strang splitting to
increase the accuracy even further. The O(k%) term of the splitting crror (2.8) is generally
dominated by the first three terms, which contain two factors 4;(u) and a single Aa(u).
" The other terms arc smaller by a factor of ¢ and hence the Strang splitting is O(ek®)
accurate. But now supposc that on cvery third step we reverse S and Sz in the Strang
splitting, so that the approximate solulion operator over three timesteps becomes

S(3k) = Sa(k/2)S:(k)S2(k/2)S1(k/2)S2(k)S: (k)S2(k)S 1 (k/2).

Then the O(k%) term of the error is simply twice the expression (2.8) plus the expression
(2.8) with A(u) and Ag(u) interchanged. The O(ek?) terns then cancel leaving only the
O(e?k*) terms, plus of course the higher order terms, which are O(ck?). Unfortunalely in
practice these higher order lerms often dominate, especially when large timesteps k are
used. Numerical results indicate that Lhis modification has little praclical value except
when a very fine mesh is used. This idea will not be developed any further here.
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2.4. Computing the lphttmg error for quasilinear systems.

The expressions (2.8) and (2.8) for the splitting errors look deceptively nimple
Evaluating them for practical problems is actually quite a chore, mainly because of the
matrix derivatives which occur. We will now discuss the proper way to evalueate such
expressions and give several examples. We are paticularly interested in the situation
where A(u) = A(u)u,.

We begin by discussing derivatives of matrices. If A(u) € IR"*" is a matrix valued
function of a vector u € IR’, then its derivative A,(u) € IR"*"*" will be a threc-tensor.
It is convenient to think of this as an array of matrices:

Aufv) =

A OA OA] (2.12)

Fur Bur " B
A tensor multiplied by a vector gives a matrix. There are two ways to perform this
tensor-vector multiplication and it is important to distinguish between them, since they
give different resulte.

If B is the tensor
B =By, B,...,B,)

where B; € R"*", and if v € IR", then the first type of multiplication, denoted simply
by Bv, is obtained by taking a lincar combination of the matrices B,:

By = Byv; + Bavg + - -+ +Brv'€lR""

where v = (v;,...,v,)T. The second type of multiplication will bc denoted by B@v.
This product is given by the matrix whose jth column is the vector Bjv:

BRv = [B,vlﬂ,vl--- IB,v] e R™*".
J
It is ensy to verily that if w € IR" is some other vector then

(BRvIw = (Buwjve R". (2.13)

Both forms of multiplication play a role in differentiation. Consider the vector-valued
function f(u) = A(u)w, where w is a constani ¥cctor and u is itself a function of z. Then
dilfercntiating f with respect Lo z gives the veccor

)
520 = (A o
= (Ay(u)us)w € IR"

where Ay (u) is the tensor (2.12) and the multiplication is of Lhe first type. On the other
hand, differentiating with respect to u gives Lthe matrix

% J6) = Au(w)@u € R™*". (2.14)
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This can be verificd by directly computing the Jacobian matrix corrcsponding to

1(v) = A(w)w
2w G15(u)05].

2 i Orj(w)w;

Also note that if B is a constant tensor, then

-O%(Buu) = Bu + BRu.

Now let A(u) = A(u)u, and suppose, for simplicity, that A,(u) is constant, so that
Avyu(u) = 0. (Otherwise this would be a four-tensor.) We then find that

Au(u) = A @u: + AD;
Auu(v) = 24, ®9:.

Example 2.3. Consider the problem u, = {A; + A,(u)]u, with Ay constant and A,
a function of u alone. Take Ai(u) = Aju and As(u) = A,(u)u,. Using (2.8) we can
compute the O(k3) term of the splitting error for the first order splitting (1.19):

_ §52(A2u A1 (u) — AruAg(u))
| = %k[(A,.@u, + A.&,)A,u, - A,&,(A.u,)]
t_ = i’kzl(Anu®“zAfus + AJA['“:: - (AI(Alsuz)“z + AIAcusz)}
| = Jk¥[(AsuAptiz — ApApuz)uz + (AuAs — AfAL)us,).

(2.15)

[ To obtain the last line we have used (2.13) to rewrite A,  @u:Asu, a8 Ay Asu u,. Note
that in order for (2.15) to be zero Ay must commute both with A, and with A,.

As a concrete example, consider the onc-dimensional shallow waler equations (1.36)
with the splitting (1.38). For this system, the tensor A,, is given by

=1

-
%%.

We compute that

(Aw(Agtie)uz = —"—(A[f) ::]

o1 Pl Y

Ju.é. ].

‘?;¢+ﬂ'
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Similarly,. .. as
As(Antiz)ue = .¢2_0 *;;:;f‘]’ .
— do [udes + ¥¢ - ¢0)"ss
Ay = A Ay = 107 00" S0 ]
and hence

§F (A ) — Aradalal) = Book(o2 = fuete + 93] 1]

Example 2.4. The error in the Strang splitting can be computed analogously. In
interpreting the expression (2.8) it is important to recall (2.14), which indicates that, for

example,
(AreA2(u))uA1(2) = (A1ea @ Aa(u) + A1uAau) A1 (u)
= AruuAi(u)A2(u) + AruAaufi(u).

Evaluating (2.8) for the shallow ‘water equations requires a tedious calcuatlon In view
of (1.37), the dominant terms of (2.8) are the terms

%k’(-— }(ﬂlgkl(u))uﬂz(ﬁ) + ﬂﬁluﬂz(“))uﬂl(“) - i(-"-'u‘l(“»vﬂl(“))'
This turns out to be

98 (UsrPze — Prlizz
All other terms in the splitting crror are O(e393k3 + e2g3k*).

ﬁ $zPzz — u,u,,] = 0(€2¢8k3)‘ (2.16)

2.5. Efficiéncy analysis for the time-split method on hyperbolic problems.

The remainder of this chap'ter deals only with hypcrbolic problems of the sort
described in Section 1.4, although the same type of analysis can casily be applied to other
problems. For definilcness we also restrict our attention to the Lax-Wendroff method.
Other schemes can be analyzed in the samc manner. In Scction 5.3 a similar analysis
will be performed for the Crank-Nicolson method on a convection-diffusion problem.

For the constant coefficient equation

u = Au, = (A; + A,)u, (2.17)
we wish to compare the unsplit method
LW(A, k)
with the time-split method (1.29) using

Qa(k) = LW(A,, k). (2.18a)
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g For Q(k/2) we consider both . '
- | Qy(k/2) = exp(}kA;,) (2-18b) .

nd
) Qs(k/2) = (LW(Ay, kym))™/? (2.18¢) i

1 for some even ihteger m. The split scheme defined by (2.18a,c) might be used if A; were
" sparse relative to A,, while (2.18a,b) would be appropriate for perturbed problems where
exp($kA;3,) is known exactly. .

In each case we assume that A\ = k/h is fixed as k — 0. In comparing the split
methods with the unsplit method, it does not suffice to compare the local truncation
errors. For fixed k and h the two methods may take quite different amounts of work to
implement. Furthermore the optimal mesh ratio may be different for the two schemes.

Instead we compare the amount of work required to compute a solution with an
error bounded by 7, say. Specifically, we consider the z-interval [0, 1] and determine the
amount of work required to compute solutions at time ¢t = 1 with error no greater than
7. Strang[49)] takes an equivalent approach and compares the accuracy obtained with a
fixed amount of work. In comparing numerical results it is convenient to take yct another
approach and simply normalize the resulting errors by multiplying by some measure of
thc work required to obtain them. This will be done in later sections.

For theoretical analysis the approach taken here seems to be the most natural. It
determines the optimal mesh ratio and also provides (rough) expressions for the values
of k and h which must be used to achicve a given accuracy.

For this analysis we will assume, as does Strang, that the variables have been
normalized (or the norm appropriately chosen) so that

plA) = ||Al| =a

where p(A) is the spectral radius of A. This means in particular that ||A3|| = a3. For
the splitting indicated in (2.17) we suppose that

lAfll = a, 14}l ~ ea | (2.19)

with the spectral radii again comparable to the norms and € <« 1. Set b = ca. Also
suppose that ||uzzz|| = 1. This is for convenience only, since il rcmoves onc common
factor from all of the bounds helow.

Efficiency of the unsplit method. We will first analyze the unsplit Lax-Wendroff
method LW(A, k). Supposc that W is the work required to compute LWIA, k)UD, at a
single point z,,. Then the work required Lo advance the solution on a unit z-interval by
one unit of time is W/kh = AW /k? il k = \h. The truncation error for the Lax-Wendroff
method is given by (1.13),

EY (kyu = ~ §k(k*A® = b3 A)tzas + O(KY). (2.20)

Applying this roughly 1/k times gets us to time ¢ = 1 and
(LW(A, E))V* = (exp(k(As + A,)D.) + EEW (k))V/*
= exp(43,) + [P (k) + O(k")] + O(k).




The error after one unit of time using the unsplit method is thus bounded as
(LW (A, k))"/* ~ exp(Ad,))ll
1
< ',;(W"IIA’II + kh?||A))) + O(k*))
< $46%(a® + a/2%) + O(&?).
Since we require an error =5 7, we set
e +aN\Y) =1
ivin
e k% = __ &
~ aa? + 1/2\3)°

Thus w(7;\), the work required to achieve a given accuracy 7 using Lax-Wendroff with

mesh ratio ), is given by
AW

a?w
= (X —_
(Ma + 1/Xa) =
We have not yet specified \. Choosing X\ to minimize w(r;)\) gives A\ = 1/a and the
minimum work w(r) is

a?w

w(r) = S for unsplit Lax-Wendroff. - (2.21)

Note that the optimal mesh ratic A = 1/a is also the stability [imit for this problem.
We can actually see that this is the optimal mesh ratio by looking only at the error at
time ¢ = 1. Since this error is bounded by

{k?a® + h%a) + O(k*)

it is clearly optimal to choose k and A so that the two terms k2a3 and h%a are roughly
the same size (for otherwisc we could increase k or h, and decrease the amount of work
we do, without substantially increasing the crror).

So far this analysis is complctely standard and our results agree with those of
Strang{49]. However, the same (ype of analysis, when applied to time-split methods
under the assumption (2.19), yields some illuminating ncw results. This will now be
dong, first for the method (2.18a,b) and then for (2.18a,c).

Efficiency of the split method (2.18a,b) on perturbed problems. Let W, be
the work required to apply Lax-Wendrofl on Lhe slow scale and W',”‘” the work required
lo compule exp(kAyd.)U7,. Then the work required for a single step of the Lime-split
method is W7o = W, + 2W7*P. Typically W™ =~ W. The crror over one unit of
time for the split scheme is bounded by

|(@s k@)@ k/2)”* - expla0,)) o
< -,l;||E,,,m(k)u + By(k)u + 25 (k/2)u + Ok,
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For (2.18b), Ey(k/2) = 0. The truncation error for Lax-Wendroff on the slow scale is

bounded by
IEE)ull < (k22 + A%)
= &3(6® + b/AY).
The splitling error for (3.17) is easily computed to be
Eqpic(k) = exp( *kA,O.) exp(kA,8;) exp( }kA,&,) — exp(k{A; + A,)8,)

= - §83(1A4%A. — §A4,A.4; + 14,4} (2.22)
- iA:A[ + A, A7A, — *A,Af)@: + O(k*)

so that
| Espiis(k)ull < §5%(a®d + ab?) = }k*a?b,

although it may be much smaller for some problems. Since our results depend very much
on the size of this error, we will suppose for now that

VBl < $h30
for some o, so that
%"E-vm(k)u + Ey(k)uf|l < §k%(0 + 6 + 5/2%).

In order to obtain accuracy 7 we must take

2 _ 67
. o+ b3+ /22

w(T;\) = AWTEM |2

wT#M
= Ao + b3 + b/\%) T (2.23)
The optimal stepsixe ratio A\ now depends on the size of the splitting error and is given
b
A= s (2.24)
so that
w"'UM
w(r) = /b(o + %) for the time split method (2.18a,b).
If ¢ < b (e.g., when A; and A, commute), then (2.24) gives A = 1/b and
bzw’uu .

w(r) = e (2.25‘)
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TABLE 2.1

Reduction in work over (2.21) obtained by using the time-split method
(2.18a,b) on (2.17). The results depend on the sise of the splitting error.

case Eopue(k) optimal A reduction in work

€
general ok? -;1—3,—“; Velo + 3a3)

best 0 c_lc; e?
. a s l
typical ea’k p €

When WT2™ =~ W this is better than (2.21) by a factor of €2, meaning greatly improved

efficiency. Note that when o = 0 the only error incurred is the error in using Lax- -

Wendroff on the slow scale. From our previous discussion of Lax-Wendroff it is clear why
A = 1/b is optimal in this case. ’

On the other hand, if the splitting error is as bad as (2.22) indicates, then o = a%b
and A = 1/a in (2.24), giving
abwfl“

3r

This is still an improvement over (2.21), although now by only a factor of €. Note that
now X is chosen appropriate to the fast scale, even though the fast part of the problem
is solved exactly. This is nccessary because of the splitling error. Indeed, if we try to
use A\ = 1/b when ¢ = a2b, we obtain no improvement over (2.21). For this reason it
is advisable to always use small timestcps with the time-split method (2.18a,b) unless
Epiir(k) is known to be very small, in which case even greater efficiency is achieved by
using larger timesteps.

These results arc summarized in Table 2.1.

Efficiency of the split method (2.18a,c) with sparse A;. When Lax-Wendroff
is used for both operators, the work for a single step of the Lime-split method is given
by WM = W, + mW;, where W, is the work required Lo apply Lax-Wendroff on the
fast scale. We arc assuming thal Wy « W, == W. Suppose that W; = W [or some
4 € L. In this case, the best we can hope for is to decrease the required work by a lactor
of 7. We will sce that in general we can reduce the work by a factor of roughly v + /€
by choosing the mesh ratio appropriately. When the splitting error is negligible, we can
improve this to v+ €. :

Beeause we are still free to choose m in (2.18¢), the mesh ratios we usc on the fast
and slow scales are cssentially independent for this problem. The local Lruncation crror

w(r) =

3t

n ralaLame et
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- in practice. The best we can do is to take

for (2.18¢) is
Eq(k/2) = (LW(A7, k/m))™/* — exp(}kA;0;)

= (expl 2 A70.) - K543 - £1247)83)"" — expl o)

= - (e A} - §424,)02 + O(K").

The optimal value of m is that which makes k2a®/m? = A?, or m =4 \a where \ = k/h
is the mesh ratio for the slow scale. The optunal mesh ratio on the fast scales is thus
k/mh = 1/a regardless of ).

Using this value of m, we compute the following bound for the error at time ¢ = 1,
using (2.1),

%"E.,m(k)u + E,(k)u + 2E,(k/2)u]| < }k*(o + b + b/2? + a¥/m? + a/2\?) + O(k?)
= }k%(o + 6% + 2a/)?).
(2.26)
We then obtain
W, + \aW;
6r

The optimal \ is most easily determined by rcquiring that the terms in the error (2.26)
balance. This gives

w(7;)\) == Mo + b° + 2a/)\?) for (2.4a,c). (2.27)

' 2a
A=4/—z. 2.2

o+ b3 (2:28)
Again we will consider the best and worst cases, 0 = 0 and ¢ = a%b. When the splitting

error is negligible, (2.24) gives
A=y e L (2.29)

b €3/2q

In this case the optimal mesh ratio appears to be larger than the optimal mesh ratio
for the slow problem alone (which would be 1/ca). This counterintuitive result is duc to
the fact that otherwise the error on the fast scale dominates the error on the slow scale.
By taking larger timesteps on the slow scale we decrease the work wilhout increasing
the error, or so the efficiency analysis tells us. Unfortunately, the mesh ratio (2.29) is
larger than the stability bound for LW(A,, k), which is 1/ea, and so this cannot be used

A= i—
€a
with corresponding work
€a 6r
— 92 Wt Wy
67
a®Ww
~ (e + 7)-——

w(r) =
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TABLE 2.2

Reduction in work ov& (2.21) obtained by using the time-split method
(2.18a,c} on (2.17). The results depend on the size of the splitting error.

case . Egpiin(k) optimal A reduction in work
1 2a o + ¢3a?
3 in = %8 gt
general ok min (ca' pry e3a3) max (e, 2 +9
1
best 0 — €+
€
: 313 1 ‘
typical eadk —_— vVe+q
Vvea

which is better than (2.21) by a factor of ¢ + 7).
In the more typical situation, when o = a2b, (2.28) becomes

. 2a 1 1
Ay — = —
a%b Vvab ea
with corresponding work
3 -1/2

w(r) = 3ea® W, + ¢ W,

Vea 6r

aVeW, + Wy

=qg—"

27
a2w
~ (Ve + '7)—-2T .

We thus sece that if /¢ < 4, an increase in efliciency by the best possiblc factor of
roughly « is always possible. These results are summarized in Table 2.2.

2.6. Phue errors.

When solving differential equations with wave-like solutions, it is frequently desirable
to compute the phase errors of the finite difference scheme employed. Comparing the
phasc crrors for the time-split method with those for the unsplit method provides some
further insight into the results of Scction 2.5.

Consider again the constant cocfficieat problem u, = Au, and denote Lhe cigenvalues
and eigenvectors of A by u; and 4, respeclively,

A’ﬁj=ﬂjﬁ,‘, j=1,2,...,r
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with the u, ordered as in (1.26). As usual we suppose that ||A]] &~ p(A) = p,. Il we take
as initial conditions a single mode )

u(z, 0) = €¢*4; (2.30)
for some j and some wavenumber €, then the true solution at time ¢ is simply
u(z, t) = 5 €(=+19,;,

The wave thus propagates with a phase speed u;.
Now suppose we apply a single step of unsplit Lax-Wendroff to u(z,0). By (1.13) we
obtain v

LW(A, k)u(z,0) = u(z, k) — }k(k®A3 — h®A)u,..(z, 0) + O(k*)
= e*¢=(e*mk — Lk(k?ud — h2u,)(i€)%)5; + O(KY)
= exp{i€[z + k(p; + $5*(ud — p;/N))ED)} 45 + O(K).

The phase speed of the nuinerical wave is

ps + $E3(n2 — 4 IN2)E + O(K3).

The optimal mesh ratio for Lax-Wendroff is X\ = 1/|u,|. In practice, of course, onc never -

has exactly the optimal mesh ratio, so we suppose only that X = 1/u with g > |u.|. We
then find that the error in the phase speced for the jth eigenvector with wavenuniber § is

phase speed error = $k%(p? — u;0?)€% + O(K%).

For comparison purposes we again wish to normalize by some measure of the work
required to compute the solulion. We define the normalized phase speed error ¢;(€) as

$,(£) = (phase speed error)/kh.
For the unsplit method we have
¢;(€) = glnd — u;u?)E* + O(k).

If pj = p exactly then there is no error in this mode of the computed solution. In
general, however, the error is roughly

¢;(§) =~ — {njn €2 (2.31)

Now counsider the split, method (2.18a,b) where cxp'_%kzl;c’),) is known exactly and
suppose o begin with that there is no splitting crror for the splitling A = Ay + A,.
Then the matrices are simultaneously diagonalizable and so the @, are also cigenvectors
of Ay and A,. We then have

Aty == plagit;
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with [u,;| < €lu,|. The optimal mesh ratio as found in Section 2.5 is then X\ = 1/ep.
When applying (2.18a,b), the only error is the Lax-Wendroff error on the slow scale, so
after applying one step of the split operator Q(k) we obtain

Q(k)u(z,0) = u(z, k) — Jk(k* A3 — h?A,)u,z2(z, 0) + O(K*).
Procecding exactly as before we find that the normalized error is

$(€) = ghid; — p;n?)E* + O(k) (2.32)
~ - %ép,,‘p,fg
This is always better than (2.31). Just how much better it is will depend on the velocity
of the mode (2.30). For slow waves, those for which |u,| < €|p,|, say, we have |p,;| =~
Jte;] and so (2.32) is better than (2.31) by roughly a factor of ¢. For fast waves, on the
other hand, for which |u;] = |u,|, (2.32) is better than (2.31) by a factor of €. The
improvement in phase errors is thus more dramatic for fast waves than for slow waves.
This is to be expected since it is the fast subproblem which is being solved exactly.

How do these results fit in with the results of Section 2.5? There we saw that for the
method (2.18a,b) with no splilting crror, the work required to obtain a given accuracy
should be reduced by €2, or, equivalently, that the normalized error should be reduced
by ¢2. Yet here it scems that the error in slow waves is reduced only by €. This apparent
contradiction is resolved by reexamining (2.31). This shows that for the unsplit method
phase errors in slow waves arc alrcady smaller by a factor of € than those in fast waves.
Hence with the unsplit method errors in the fast waves dominate, and reducing those
errors by €2 (and errors in the slow waves by €) causcs the overall global error to decrease
by €?.

This has an important consequence which was not directly apparent from the analysis
of Section 2.5. For problems in which fast waves are absent from the solutions of interest,
and only slow waves are present, the use of the time-split method can be expected to
decrease the normalized errors, and hence improve the cfficicncy, by at most a lactor of
¢, even in the absence of splitling errors.

Now suppose that the splitting crror is nonzero. For the constant coeflicient system
this means that Ay and A, do not commute and the cigenvectors @&; of A are no longer
cigenvectors of Ay and A,. Because of this initial condilions consisling of a single mode
(2.30) no longer lead to a single-mode solution and we are not able to consider cach mode
separalely.

Instead we take more gencral initial conditions

u(z,0) = %4
where

i= ) omiim (2.33)

and look at phase errors in the jLh mode. We assume that the a,, are order unity and
for convenience take a; = 1.
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The truncation error for the split mcthod is now the sum of the truncation error for
Lax-Wendroff on A, and the splitting error (2.22). So

Q(k)u(z,0) = u(z, k) — }kBuges + -+ (2.34)

where :
" B=(k*A} - h?A,) + B[} A%A, - JA[A A + §ALAG

— 3A%A; + A, ApA, — ALAY).
Assuming as usual that [jA,|| < €]|Af|| = ep, and using the optimal mesh ratio k/h =~
1/|us| gives a rough bound on B:

IBI) < 2k%eu? + O(K2e24s2). (2.35)

Now we must make an additional assumption on the matrix A, namely that the
eigenvectors of A are well-conditioned. If X is the matrix of eigenvectors %,, then we
assume

IX (X = of1).
This means that we can expand B4 as
B = E Bmbim
m=1
with |Bm| of the same order as ||B||. This is because 8 = X !BXa and so ||8]| <
1B NXI X 1) llall = ||B)]. Using (2.33) in (2.34) then yields

Qkyu(z,0) = Y a,,,e?'f(=+#m'=)am — 3k(i€)* Y Bumitm + O(KY)

m==1 m=1
= Y amexp{it[z + k(pm + $€2Bm/cm)} iim + O(KY).
m==1

Using (2.35) we can compute the normalized phase speed crror in the jth mode:
$;(€) = Jepre®.

Note that unlike the previous cases the phase error here is the same for fast waves and
slow waves. Comparing this with (2.31) shows that for fast waves (u; = p,) the error is
reduced by € while for slow waves (pu; < ¢p,) the error is not reduced at all. This indicates
that when computing a solution containing only slow waves, the time-splil method with
splitling errors may be no more ellicient than the unsplit method.
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2.7. Block triangular systems.

Since the efficiency of the split scheme is limited primarily by the splitting error,
it is interesting to investigate how this error depends on the coupling between fast and
slow scales in a simple model system. Consider the block triangular system with

1A Am]
A= 11
[‘ 0 Ax

and the splitting

1 0 0 A
Ap = [.%u 0], A, = [0 A;:]

and suppose that |[|A;;|| = 1 and that ||A;2]| = a < 1. For variety we have chosen a
problem in which Ay — oo as € — 0 rather than A, — 0. The theory developed in the
previous section applies equally well in this situation.

Here Aj2 is the coupling between fast and slow scales. If A;2 = 0, the problem is
uncoupled and E,pj;(k) = 0. In general, from (2.22),

3 1 1
Esplit,(k) = —%[g EA“(:A“At;z - 2A12A22)]82 + O(k‘).

Thus || Espiic(k)ul] &~ ak®/24¢%. The efficiency of the splitting depends on the size of a.
In the notation uscd above, we have

a=1fe, b=1 o= laa%.
For unsplit Lax-Wendroff, (2.21) gives

1w
W(T = 6—23—1'. (2.38)

The time-split method (2.18a,b) is always more efficient if we choose
A = (1 + }aa?p)1/2,

For example, if @ =2 1 we should use A = 2/a = 2¢ in order to reduce (2.36) by a factor
of €. The maximum cfficicncy indicated in (2.25) is achievable only if a < €2, in which

casc taking A = 1 reduces (2.36) by a factor or €.

2.8. Reducing the splitting error.

For block triangular systems in which A3 is not small, it is possible to reduce the
coupling through a change of variables so Lhal the optimal cficicney can be achieved. A
change of variables amounts to replacing u by @ = Bu for some nonsingular matrix B.
The system u; = Aug Lhen becomes fie = BAI3~'az. Clearly, if 13 is chosen to be the
cigenvector matrix of A then the problem complelely decouples into independent scalar
equalions. We arc secking suracthing less expensive which only decouples the fast and
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slow scales. Thus we want a (well-conditioned) matrix B such that

1¢ 0

BAB™! = |1 2.37
[fon (2.37
with ||Cy1]| = ||Caal] = 1. In the block triangular case, it suffices to consider B of the
“form

_|I B -1 _|I —Bis
B‘[o I]’ B ‘[o I]’
Then

BAB-! = [}Au —1A1Bia + Az + Blezz]
0 Aaz

and so Byg should be chosen to solve
1
;Aanz —~ B1gA3zz = Aj3 (2.38)

in order to completely decouple the fast and slow scales.

In the present context solving for Bz from (2.38) is not worthwhile. In order to
achieve optimal efficiency we need only reduce the coupling by one or two lactors of e.
Further reductions do not gain anythmg once the Lax-Wendroff errors dominate. This
suggests taking

Bys = €Al Apg (2.39)
so that .
BAB! = [%Au A‘m’]
A2z
where

Aglg) = GAl—llAlezz.

We now have ||A(ll.‘,)|| ~~ ca provided [|[A7{|| & 1. The coupling is thus reduced by a
factor of ¢ through the use of a very simple change of variables. This pracess can be
repeated to obtain additional factors of ¢. This change of variables has been suggested
by Kreiss(32] in a similar context.

For full systems of the form

[lAu Al?]
Ay Az

we can obtain a similar reductlon in the size of both ofl-diagonal blocks and again reduce
the splitting error by several orders of magnilude. In this case we consider I3 of the form

g=I" K[t o] _[r+KL K
w rlie 1 L 1f

It is easy to verify that the lower corner of A is annihilated by taking I, to satis(y

-:—LAH —~ AgaL — LAaL+ Ay = 0.
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The matrix K can then be chosen as before to remove the remaining upper corner. This
results in a system of the form'(2.37). This particular transformation is discussed more
completely by O’'Malley and Anderson[44]. Again, however, we are not interested here in
completely annihilating the corners, but rather in reducing them by a factor of ¢. This
is easily accomplished by taking

.

K = eAjt Ay
L= —EAggAl_ll.

Example 2.4. This problem is designed to illustrate the effects of the splitting error
and the use of the change of variables (2.39). Consider

(L weszsneze e

with initial conditions 2
u(zl 0) = ‘v(z, 0) = e—lOO(z—l/z)

and periodic boundary conditions

u(0, t) = u(1, ¢), t20,5=1,2
v(0,t) = v(1,¢), t>0,5=1,2.

Figure 2.1a shows the results alter 236 time steps using Lax-Wendroff with A = 1/50 and
k = h/10 on the unsplit problem. Figure 2.1b shows the results based on the splitting

efo f el
We used k = h = 1/50 with

Qu(k) = LW(A,, k), Qy(k/2) = (LW(Ay, k/10))°.
In this case E,(k) = Ef(k/2) = 0 by a judicious choice of k/h and m. The ~second
component v is compuled exactly and the errors in u are due entircly to the splitting
Cl'l'Ol’I-r the change of variables suggested in (2.39) is applied twice to (2.40) with e = 0.1,

we obtain the new variable

d=u—(e+c)v=u~-0.1lv (2.41)

b =[o L

and (2.40) becomes

If we solve this syslemn with the same split scheme as belore and then transform back to
the original variables by u = @ + 0.11v, the crrors in u are reduced to O(10~3) as scen
in Figure 2.1¢.
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FIG. 2.1. True (dashed line) and computed solutions at t = 4.72 for Example
2.1. The first component, u, is on the left and the second component, v,
is on the right. The schemes used are: (a) unsplit Lax-Wendroff, (b) the
time-split method (2.18a,b), and (c) the time-split method with the change

of variables (2.41).
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2.9. The shallow water equations. : ;

. In this section the efficiency analysis of Section 2.5 is applied to the one-dimensional L
shallow water equations (1.36). We will use the splitting (1.38) and assume that the f
condition (1.37) holds. In Section 2.4 we computed the splitting error for Lhis system. "
In general this error is nonneglible. Since all of the waves in the solution to the original
problem are last waves, the analysis of Sections 2.5 and 2.6 leads us to expect the time- ]
split method to be more efficient than the unsplit method by a factor of e. i

Taking the mesh ratio as in (1.39), the time-split method (2.18a,b) becomes '

= 'ﬁ[Um--p m+p + ‘pm—p <l’:‘n+;a] f
= %{Um—p m+p + q’m—p + ‘pnm-{-pl

[:1;‘=w-,»r;1;

U;+l = %[U:v:—p + Un:+p + q’:—p - (p:r:+p]
entt=4u -U,.

m—p m+p + ¢:—p + ¢:::+p]'

Since %, = A,ii. is a quasilinear problem, an appropriate generalization of the Lax- i
Wendroff operator must be used for LW(A,, k). We have used MacCormack’s method
(sec [41]).

We wish to compare the efficiency of the split method with that of the unsplit .
method. For convenience in checking our predictions against experimental results, we
choose to compare the error at a fixed time normalized by the amount of work required
to compute it (rather than the amount of work required to compute a solution with a
given error). Since the split and unsplit methods take roughly the same amount of work
per grid point per timestep, it suffices to normalize the errors at a fixed time by dividing
by kh, as we did to normalize the phase errors in Section 2.6.

We first consider the unsplit MacCormack’s method applied to (1.36). Since A =~ A;
with small, slowly varying pelurbations, the errors in applying MacCormack’s method
on A are roughly the same as thosc in applying Lax-Wendroff on the conslant coeflicient
matrix Ay. We can thus use the results of Scction 2.5 directly to analyze the efliciency
of the unsplit method.

Since p(A) =~ p(A,) = ¢o/2, thc optimal mesh ratio is A =& 2/¢g. The crror at time
~ t =1 is boundcd using the truncation error (2.20) by

1 , - -
FIEEY (k)3 = YEF1A%| + A2 A} (lizzal. (2.43)

For smooth solulions we can assume thal ||iz,,|] = O(cdp). Then taking A = O(1/¢p),
we (ind the normalized error by dividing (2.43) by kh:

normalized error = O(c¢3) for the unsplit method. (2.44)

Now to analyze the split method. The splitting error (2.22) is in general O(e2¢gk3)
for Lhis problem. The results of Section 2.5 indicate that for the Lime-split method with - 3
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E; = 0 and E,,;;(k) nonnegligible, we should again take X\ = O(1/4o) and hence the
cptimal p in (1.39) should be some small integer, indcpendent of both € and ¢9. Numerical
experiments confirm this prediction (sec Example 2.5 below) and in fact p = 3 or 4 seems
to be optimal over a wide range of values of € and ¢s.

Using this ophmal value of )\, the normahzed error should, in theory, be reduced by
a factor of ¢ over (2.44), ie,

normalised error = O(e?¢3) for the split method. (2.45)

This is also confirmed in the following example.

Example 2.5. Consider the shallow water equations (1.36) on 0 < z < 1 with initial
conditions
u(z,0) = €¢g cos(2xz)
&(z,0) = &o(1 + €sin(2nz))

and periodic boundary conditions

u(0,t) = u(1,t)
#(0,t) = ¢\1,¢).

We first compare the error obtained at a fixed time using various values of p in the
time-split method (2.42). Figure 2.2 shows the normalized errors as a function of p for
#0 =1and e = 10~2,1073,10~* with h = 1/50. Other values of ¢g, ¢, and h have also
been tested and lead to graphs which are qualitatively very similar to Figure 2.2. In all
cases p = J or 4 is optimal.

We can also compare the error in the split method with that of the unsplit method
using the optimal values of X for each. For the split method we take p = 3 (corresponding
to X = 12/¢g) and for the unsplit method we use A = 1/¢g. Figure 2.3 shows the results
for ¢9 = 1. We sec the normalized error plotied as a function of e¢. This confirms
the prediction that using the split method reduces the normalized error by a factor of
€. More significantly, it show that even for (.irly large (i.e. realistic) values of ¢ the
time-split method is superior. For example, at ¢ = 0.1 the errors are reduced by a factor
of roughly 100. .

Simple waves. The splitting crror for the quasilinear problem (1.36) with the
splitting (1.38) depends on u and ¢ and the relation between them. In general it ia
nonnegligible but for certain special solutions, namely simple waves, the splitting error
is identically zero.

The cquations (1.36) can be written in characteristic form as

(u+0)e = ~(§¢ + u)(u + ¢):
(v — @) = (§¢ — u)(u - ).

The Riemann invariants u + ¢ and u — ¢ are cach constant along characterislic curves
in z-¢ space defined by the ordinary dillerential equations

(2.46)

d = {p(z,t) 2 u(z,t)
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FIG. 2.2. Normalized errors in the shallow water equations of Example 2.5
as a funclion of the parameter p occurring in the mesh ratio (1.39). In all
cases t = 0.96, ¢o = 1 and h = 1/50.
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FiG. 2.3. Normaliszed errors in the shallow water equations of Example 2.5 as
a functior: of € for the unsplit method with \ = 1/¢g and the split method
with X = 12/¢g. In the computations shown hcre t = 0.96, ¢g = 1 and
h = 1/50.
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and

dz ', |
&= (im0~ uls0)
respectively. - |
A solution for which one of the invariants is in fact constant for all z and ¢ is called

a simple wave. For simple waves the splitting error is identically zero. This is most easily
seen by changing variables. Set

Az, t) = u(z, t) + ¢(z,1),
o(z,t) = u(z, t) — ¢z, ).

(2.47)
The equation (1.36) becomes
Pl _ _1|3p+0 0 ||r
[,]‘ = 4[ A 4 (2.48)
The matrix occurriag herc is SAS~™! where
_t
s=[t 1]

| Applying the same similarity transformation to A; and A, leads to the following splitting
‘i . of (2.48):

-1 _1|~¢ O -1 __ _1|3p+0—2¢g 0
SA;87 = 5[ 0 ¢o]’ SA,S7 = 4[ 0 p+3c+2| (2.49)

Since we have applied a constanl similarity transformation, it is easily verified that
the splitting crrors corresponding {o the splitting (1.38) and (2.49) are also related by
the samc similarity transformation. Thus it sulfices to show that for simple waves the
splitting error in (2.49) is zcro. This is easy to do, as we will sec momentarily.

We note in passing Lhat solutions to the shallow water cqualions can be computed
directly in terms of p and o using the splitting (2.19). With R and S denoting approxima-
tions to p and o, the time-split method (2.42) then becomes

R:n = Rp,_,

Sm = S:‘n+l
IZ *h Ie -

= LW(A,, k 2.50
sl = (], a0

nil __ p**
Rm - Rm—l .
ntl __ o** 3
Sm = sm+l' ‘
This lorm will prove particularly convenient when specifying boundary conditions for the
intermediale solutions, as we will sec in Section 4.5.
Suppose now that we are compuling simple waves and thal onc of Lhe invariants p
or o is constant, say ¢ = —¢g. Then clearly S3 = —¢p in (2.50) and so the sccond
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component of the splitting crror is zero. The cquation for p is pp = — %(3p+ a)pz = A(p)
and it remains only to show that there is no crror in using the splitting 4,(p) = — $dops,
Az(p) = — X3p+ o —2¢0)p:. Since o and o are constant, this is essentially the problem
of Example 2.1(c) and so the splitting error is zero. Note that the expression (2.16) is
consistent with this, since for simple waves u;, = ¢, and Uy = Pg..

It follows that the optimal mesh ratio for computing simple waves is O(1/¢¢o) leading
to normalised errors which are reduced by a factor of €? over (2.44):

normalized error = O(e3¢3) for the split method on simple waves.

These predictions are also confirmed by numerical experiments, as the following example
shows.

Example 2.6. Consider the shallow water equations (1.36) on 0 < z < 1 with initial
conditions
u(z, 0) = e¢yp sin(27z)
#(z,0) = Po(1 + €sin(2xz))

and periodic boundary conditions. Since u — ¢ is constant, the solution is a simple wave.

We again comparc the normalized errors at a fixed lime using various values of p in
the time-split method (2.42). We expect p = O(1/¢) Lo be optimal. In order to test this
theory when € is small we must run the computations out to large times, t = O(1/¢). For
each value of ¢ we will compare the normalized error at ¢ = 0.96/(100¢), using values of
p < 12/(100¢). This is roughly the stability limit of the method. (In Section 3.5 it will
be shown that the stability limit is k/h < {/(2¢¢p) which corresponds to p < 1/(8¢).)
Since the stability limit is smaller than the optimal p predicted by the theory, we expect
the normalized errors to be monitonically decreasing up to the stability limit. This is
confirmed in Figure 2.4,

The theory also predicts that the resuling normalized crrors at a fixed time should
be O(c*$3) at the optimal p, and hence that the errers at time O(1/€) should be O(e2¢3).
This i8 also confirmed by Figure 2.4.
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FIG. 2.4. Normalized crrors in a simple-wave solution to the shallow water
equations of [ixample 2.6 as a function of the parameler p occuring in the
mesh ratio (1.39). In all cases ¢o = 1 and h = 1/50 while t = 0.96/(100¢).
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8. Cauchy stability

3.1. Introduction to stability theory.

In this chapter we investigate the stability of the onc-dimensional time-split method
when applied to a constant cocflicient hyperbolic problem on the entire real line, —oo <
z < oo, ot on a finite interval with periodic boundary conditions.

We will first engage briefly in a general discussion of Cauchy stability for a marching
scheme of the form :

Ut = Q(k)U™ (3.1)
appled to a constant coefficicnt: problem. More details can be found in Richtmyer &

Morton(46] or Thomée[§1]. We use a standard definition of stability, which can be
wrilten in several equivalent forms. We begin with the most natural of these.

STABILITY DEFINITION 3.1. The operator Q(k) is stable if for any fixed time T there
exists a constant My such that
™kl £ Mr (3.2)
for all k sufficiently small (say k < ko) and nk < T.

The condition (3.2) ensures that for all initial vectors U®, the solution U™ =
Q" (k)U© satisfies
Uil < Mellv®)] (3.3)
fornk <T.
Herc || - || represents some norm over all meshpoints at a fixed time. For example,
the discrete €3 norm is given by .

[ -]
W iz=r 3> WP
m==—oc0
with | - | representing the usual vector two-norm.,

Up until Section 3.4, where we introduce Sobolev norms, we will always suppose that
the norm || - || is equivalent to the ¢3 norm in the sense that there exist constants M, and
M3 such that

Mi|jUll: < {IUII < M:flUlla

for all U. With this restriction, Stability Definition 3.1 is independent of the norm used.
If Q(k) is stablc in the £ norm then it is also stable in any cquivaleat norm.

The lollowing cquivalenl definition of stability is sometimes casier to work with
since it only requires a bound on |J@Q(k))| rather than a uniform bound on ||@™(k)]|. The
difficulty in applying the new definition is thal such a bound, when it holds, will often
hold only in a very special norm tailored to the problem, and will generally not hold in
cquivalent norma,
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STABILITY DEFINITION 3.1'. The operator Q(k) is stable if there exists a norm || - ||
and a constant a& > 0 such that

QB < 1+ ak (3.4)

for all k < ky.
Clearly (3.4) implies (3.2) since
™M)l < QU™ < (1 + k)™ < e
if nk < T and we can thus take M7 = €¢®T. The converse, that such a norm exists for
any s!able scheme, is proved constructively in Chapter 4 of Richtmyer and Morton(46]
as part of the Kreiss Matrix Theorem.

In some cases bounds of the form (3.4) can be obtained directly. This method
of proving stability is referred to as the energy method since for physical systems the
required norm is often simply the energy of the system. Of.en, however, it is easier to
determine stability by an alternative approach known as the von Neumann method. We
take U™ to be a single Fouricr mode, U], = e$mh (1™ where U" is the vector of Fourier
cocflicicnts at time n, and insert this into (3.1). We find that U™*! is again a single

Fourier mode with cocllicients
An+tl

0" =G, k0"
for some matrix G(&, k), called the amplification matriz. Stability Definition 3.1 is
cquivalent to the following definition based on this amplification matrix.
STABILITY DEFINITION 3.2. The operator Q(k) is stable if for any fixed time T
there cxists a constant My such that powers of the corresponding amplificalion matrix
are uniformly bounded by My,

HG™(&, k)l < Mr (3.5)
for all £, k < kg and nk < T.

Corresponding to Stability Definition 3.1” we have the following definition of stability,
which is again equivalent.

STABILITY DEFINITION 3.2'. The operator Q(k) is stable if Lhere exists a norm || - ||
and a constant a > 0 such that

IG(& R < 1+ ak (3.6)
for all € and k < kg.

Since every matrix norm is bounded below by the spectral radius, we find from
Stability Definition 3.2’ that a nccessary condition for stability is the so-called von
Neumann condition:

mMG(E k) < 1+ O(k). (3.7)
This condition is frequently suflicient as well. Chapter 4 of Richtmyer and Morlon[46] has
a Lhorough discussion of sullicient conditions. Here we will mention only a lew examples
which will prove particularly useflul.

If for all £ and k, G(&,k) is a normal matrix, i.c., if G commutcs with its conjugate
transpose, then ||G(&, k)|l2 = p(C(&, k)). By using the 2-norm in Stability Definition 3.2/
we sce Lhat in Lhis case Lhe von Neumann condition is sufficient for stability.

More generally, il suffices that the matrices G(€, k) be simultaneously normalizable,
as defined in the following theorem (see Richtinyer & Morton[46]).
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THFEOREM 3.1. Suppose there exists a constant matrix S such that SG(€,k)S™!
- is a normal matrix for all £, k < kg. Then the von Neumann condition is sufficient for
stability.

Proof. Define the vector norm || - ||s by

llslls = [ISylla-

This vector norm is equivalent to the 2-norm. The corresponding matrix norm is
llAlls = (ISAS~la. (3.8)

In this norm we have
NG(&, B)lls = ISG(&, k)5l : _
= p(SG(¢,k)S7") !
= p(G(£, k) "
and the thcorem follows by using the norm || - ||s in Stability Definition 3.2’. §

An important application of this thecorem provides the result that the von Neumann
condition is suflicient for stability if the G(€, k) are simultancously diagonalizable (since
any diagonal matrix is normal). Many mcthods for the problem u; = Au; have the
property thal their amplification matrices are polynomials in the matrix A and hence
are diagonalized (for all £ and k) by the eigenvector matrix of A (by the assumption -
of hyperbolicity, A is diagonalizable). In particular, the Lax-Wendrolf opcrator and the
exact solution operator have this property, and the von Neumann condition is sufficicat
for their stability.

3.2. Stability of the time-split method.

We now turn to the stability analysis of the time-split method (1.23). When Q%(k/2) =
Qy(k), as is true for the splittings (2.18), for example, Cauchy slability of the Strang
splitting (1.21) is equivalent to stability of the first order splitting

U = Q(k)Qu(K)U™. (3.9)

I'or simplicity we restrict our attention to this splitting, and set Q(k) = Qs(k)Q.(&).

Let G4(&, k) and G,(£, k) be the amplification matrices corresponding to the operators
Qy(k) and Q,(k) , respectively. Then it is casy to verify that the amplification matrix
G(&, k) for (k) satisfies

G(fr k) = ("f(Ev k)Ca(Ey k)'

This allows us Lo ealeulate the zunplﬂicabion matrix for the Lime-split method relatively
casily. In general the stability of Q (k) and Q,4(k) separately does not imply that Q(k) is
slable, or even that the von Neumann neeessary condition is satislied for G(&, k), since the
spectral radius is not submulliplicative (i.c., the inequality p(G) < p(Gf)p(G,) does not
hold). [t is easy to find examples for which Q(k) and Q.(k) arc both stable operators
but (3.9) is unstable. In fact, this ean happen even when Q(k) and Q (k) arc exact
solution operators lor well-posed hyperbolic problems, as Lhe following example shows.
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F1G. 8.1. Spectral radius of the amplification matrix G(§, k) of IExample 3.1
for p = 5,10, as a funciton of £k between —x and x.

{Incidentally, the converse can also occur, i.e., the product may be stable even if one of
the operators in unstable on its own. Sce Abarbancl & Gottlieb(1] for an example of
such a scheme.)

IExample 3.1. Let
11w _{0 1
w=lp i} a=lt )
Then the problems u, = Aju, and u, = A,u, are well-posed, strictly hyperbolic

problems for any value of the paramecter g, and so is uy = (A + A )ug if p > —2.
Let

Qr(k) = exp(l_cAfc'),), Qs(k) = exp(kA.dz).
The corresponding amplification matrices are
G (&, k) = exp(ik€Af)

%€ uisink§
0 e—ik(

and

Go(&, k) = exp(ikgA,)
coskf tsinké
=[isink€ coské |
We have p(Gy(€, k) = p(G.(€,k)) = 1 for all £ and k. On the other hand, the
amplification matrix G(§, k) for the time-split method has p(G(€, k)) = 1 for all € and k

only if || < 2. When ju| > 2, the method (3.9) is unstable. Figure 3.1 shows g (.,raphs of
p(G(&, k) for o == 5 and 10.
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3.3. Simultaneously normalizable splittings.

As we have just scen, the individual stability of Qg(k) and Q,(k) is not sufficient
to guarantee the stability of Q(k) in general. However, for certain special cases (which
include some fairly broad and important classes of problems), the individual stability
is sufficient for overall stabili.y. Since the matrices G(€, k) and G,(§, k) are gencrally
much easier to-work w.ih than their product G(¢, k), it is useful to identify such classes
of problems. For these problems stability is relatively easy to determine.

We first note that if there exists a norm || - || and a constant a such that

IGHERN S L+ak  VE k<ko (3.10a)
and

IG& K < 1+ak V& k< k. (3.10b)
Then

NG(E k) < IG5(&, B NG (€, kI

1+ 2ak + o%k®
1L+ apk VE k< kg

where ap = 2a + akp, so Q(k) is stable.

Of course if Q(k) is stable then by Stability Definition 3.2 there exists a norm such
that (3.10a) holds. Similarly, if Q,(k) is stable then (3.10b) also holds in some (possibly
dilferenf) norm. Only in certain special cases can we easily show the existence of a single
norm in which both (3.10a) and (3.10b) hold.

As one such case, suppose that all of the matrices Gf(€, k) and G,(€, k) are simul-
taneously normalizable by a single matrix §. Then the individual stability of @¢(k} and
Qs(k) guarantees the stability of Q(k), since then (3.10a) and (3.10b) both hold in the
S-norm defined in (3.8).

Some opcralors, such as LW and exact solution operatlors, have the property that
if the coefficient matrix is normal then the corresponding amplification matrix will also
be normal, for all £ and k. Restricting our attenlion to such schemes, we find that it
then suffices for the stability of @(k) that the two matrices Ay and A, be simultancously
normalizable and that Qs(k) and Q,(k) be individually stable.

This result is quite useful, since in many practical problems Lhe matrices Ay and
A, are simultaneously normalizable. This class includes, for example, scalars, symmetric
matrices, and commuting matrices (which are simultancously diagonalizable).

These results can easily be extended to splitlings involving more than two terms.
Since this is frequently useful, we summarize Lhe above results and their proofs in a more
general setting.

IAIA A

TueorkM 3.2. Let Ay, Ag, ..., A, be constant malrices. Approximate each solution
operator exp(kA;d;) by some operator Q (k) with amplification matrix G;(§, k). Supposc
there exists a single norm || - || and a constanl « such thal

“G,(f,k)“ <l+tak V& k<koj=12..,m (311)

Then the scheme
U™ = Qi(k))Qa(ka) - @ (km)U™ (8.12)
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is stable.
Proof. Let Q(k) = @.(k)---Qm(k) and let G(&, k) = Gi(&, k) - -Gum(€, k) be the
corresponding a.mpliﬁcaltion matrix. Then

NG k)l < IG1(&; K)II- - IGm(&, K)II
<1+ apk

for ag = ma + (T)a%kg + -+ + a™kJ ! and hence Q(k) is stable. §

THEOREM 3.3. With the Ajand G;(£,k) as in Theorem 3.2, suppose there exists
some nonsingular matrix S such that SG;(€,k)S~! is a normal matrix for all j, €, and
k. Suppose furthermorc that each satisfies the von Ncumann condition,

G k) <1+ak V& k<ky,j=12,..,m
for some constant a. Then Q(k) is stable.
Proof. Using the S-norm defined in (3.8) and the fact that SG,(£, k)S~! is normal,
we have s
NG5(& B)lis = ISG,(£, k)S™ ||
= p(SG,;(¢&, k)S7)
<1l+ak
and stability follows by Theorem 3.2. @

3.4. Block triangular systema.

A similar stability result can be obtained for the standard block triangular system

b= Al
v), 0 Az]v],
with Lhe splitting (1.32). The solution v does not depend on u. In solving for u, the
cotnputed v, cenlers essentially as a forcing function. Because of this we obtain only

a woak stability result, in wheih the norm of ||JU™|| is bounded in terms of a discrete
Sobolev norm of the initial conditions. The Sobolev aorm ||| - ||| has the form

Ul = Ul + 11D+ Ul

With the splitting (1.32), Lhe schemes Q,(k) and @ (k) will be ol'.the form

aw=[1 2l g =[eu® 9 (3.13)

Suppose that Q1(k) and Qa2(k) arc stable schemes. Then, in partlicular, there exists a
norm || - || and a constant a > 0 such that-

NRukl < L+ak V< k. , (3.14)
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All of the following estimates will be in this norm. We also suppose that
IQu(RVI < EMIDLVI YV, k< ko (3.15)
for some constant M. For example, if Q,(k) = LW(A,, k), we have

Qua(k) = kA;aDo + §k*A12A29D D_
= %kAlz(D.;. + D_) + %k)\AlgAgg(D.g. - D_)

since D, D_ = (D, — D_)/h. Since |D_V|| = ||D+ V||, we have
1Quz(FWV I < k(llAszll + M| A1z Az2 || D+ V.

For fixed X this is of the form (3.15).
With these assumptions we then have the following theorem.

THEOREM 3.4. Suppose Q(k) and Q,(k) are stable schemes as above. Then the
split scheme Q,(k)Qy(k) is weakly stable:

U™l < K(U°)+ 1D+ VOl (3.16a)
v < KoIvell (3.18b)

for nk < T. Here Kt and Ky are constants depending only on the fixed time T.

Proof. When the full scheme 01" = Q.(k)Q(k)U" is written out we obtain

U™t = @u(k)U™ + Qui(K)Qua(k)V™ (3.17a)
V= Qpa(k)V ™. (3.17b)

The bound (3.16b) follows immediately from (3.17b) and the stability of @22(k). Morcover,
by linearily, an identical bound holds for the linear combination of solutions D V™, i.e.,

IR+ V"ll < KrllD+ VO
Using this together with (3.15) in (3.17a) gives
™ < QuuIIU™ + kMK || DL V).

~ When iterated n times this gives

NI < NQudRmIHUCH + kM f(r(llQu(k)ll“"' +l@n (k)2
(3.18)
+e 4 [QuiB +1 )P4 V7L
By (3.14), IQuu(k)lI™ < (1 + k)™ < e°T if nk < T. Using this in (3.18) gives
WU < eT(WU° + TMKZ||D4VO)

for nk < T, which is of the desired form (3.16a). 8

53




3.5. The shallow water equations.

We will now investigate the stability of the splitting (1.38) for the shallow water
equations. Since this is a quasilincar system of equations, a complete stability analysis ia
diflicult to perform, even for unsplit methods. We will perform only a linearized stability
analysis for the corresponding frozen coeflicicnt problem with

Ay =] .0 ¢%/2]’ A,_—__[gg 3:] (3.19)

Here the constant Up is a representative value of u while ®g is a representative value of
(¢ — ¢0)/2. One hopes that if a method is stable on the frozen coeflicient problem for all
values of Up and @ in the appropriate range, then the method will also be stable on the
nonlincar problem. It is well known that this is not necessarily so; nonlinear instabilities
may arise. Nonetheless, the linearized stability analysis is valuable because an instability
for the frozen coefficient problem will almost certainly lead to instability of the nonlinear
problem, and thus we at least obtain upper bounds on the stability limit. Moreover, for
the shallow water cquations computalions indicate that the nonlinear scheme is usually
stable when the frozen coeflicient problems are.

Stability of the scheme (2.42) applied to (3.19) is easy to determine using Theorem
3.3. The matrices Ay and A, arc both symmetric and so @Q(k) is stable provided Q(k)
and Q,(k) are both stable. Since Q (k) is the exact solution operator, it is always stable,
and so stability is determined entirely by Q4(k). The eigenvalues of A, are Uy + ¥ and
so Q.(k) = LW/(A,, k) is stable if (Up + ®o)k/h < 1.

Suppose that (1.37) holds, i.c., [u| < ¢¢o and |¢ — @o|/2 < egp for all z and ¢ for
the solutions of interest. Then all of the relevant frozen coefficient problems are stable

provided
k 1

Ll I
h — 2¢do.
Note that for the unsplit method LW(A, k), the stability limit is roughly

(3.20)

k 2
- < —.
h — ¢o

The split scheme is Lthus stable for much larger values of k. Recall, however, rom Section
2.9 that for the split method an accurate solution is obtained most cfficiently using
k/h = 1/¢o. Such mesh ratios are well within the stability limit (3.20) and long-lime
calculations on the full noulinear system have revealed no instabilities.




4. Boundary conditions for the intermediate solutions

4.1, Introduction and a simple example.

So far we have considered the time-split method appliced only to the Cauchy problem
on the unbounded spatial domain or to problems with periodic boundary conditions.
In practice we must be able to deal with more general boundary conditions. The
implementation of finitc difference schemes frequently requires more boundary data than
arc supplied with the differential equation. In particular, when using a time-split method,
special boundary data must be gencrated for the intermediate solutions.

For the most part we will restrict our attention to the time-split method (2.18a,b)
for solving perturbed hyperbolic problems, although Lhe same techniques can be applied
to a wide varicty of other problems and splitlings. Some examples of other applications
are given in Chapter 5.

We begin our discussion with a simple example which illustrates the problems
encountered and the gencral methodology used to determine the correct boundary data. -

A constant coefficient scalar problem. Consider the equation
ue = —(1 + €)us (4.1)

on the strip 0 < z < 1, ¢t > 0, with initial conditions

e o e B e

uz0)=fz)) 0<z<I, (4.2)

and boundary conditions
w0, ) =g(t), 0. 43

For € > —1, this is a well-poscd problem as it stands. Boundary data is prescribed only
at the inflow boundary z = 0. Values ai the outflow boundary z = | arc determined as
part of the solution. ,
The exact solution to this problem is a wave moving to the right, unaltered, with
spced 1 + €
u(z, t) = [z — (1 +)¢), 0<z<Lt>0

where for £ < 0 we define

J) =9(-¢/(1+¢), €<0.

We will first consider the unsplit Lax-Wendrolf mcthod. If the mesh spacing in
the z-dircetion is A == /N for somne integer N, then the grid points of interest are
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Z0,Z1,-.-,ZN. The Lax-Wendroff method is

U::l+‘ = U:‘n - %x(l + ‘)(U::li-l - U:‘—l) : (4.4)
+ N+ P UN 20N +UN,), m=12..,N-1

This scheme cannot be applied for m = 0 or m = N and so UJ*! and UN" must
be determined in some different manner. At the left boundary we simply use the given
boundary data (4.3),

Ugt! = g(tnsr)- (4.5)

At the outflow boundary we must cither extrapolate from the interior, e.g.,
UR = R, - U, (4.6)
or use a one-sided difference scheme, e.g.,
UNM'=UY - M1+ (Ux —U%_,y) (4.7)

Both (4.6) and (41.7) have local truncation errors which are O(k2). This is sufficient to
retain the O(k?) global accuracy of the Lax-Wendrolf method. In genecral the overall
accuracy of a method is not degraded by errors in th~ boundary values provided the
local error at the boundary is no larger than the global error for the interior scheme (see
Gustafsson[28]). In addition, of course, the lotal method (including boundary schemes)
must be stable. Stability is more difficult to determine for initial boundary value problems
than for Cauchy problems and is discussed in Section 4.8. l'or this simnple problem both
(4.6) and (4.7) yield stable methods.

Now consider a time-split method applied to the same problem (4.1) with
Af = —l, A. = —€.

We now assume that ¢ < 1. Since the operalors commute, there is no need to use the
Strang splitting and so we need introdusc only one intermediate solution. Taking k = ph
for somne integer p > 1 and using the exact solution operator on Lhe fast part together
with LW(A,, k), the split method is

U:,.=U:‘,‘_,,, m=pp+1,...,N+1, (4.8a)
Upt' = Upy = 49U a1 = U 1) + $9° (U — 2U, + ULy, (4.8b)
m=12...,N.

Nolice that we use (4.8a) to define Uy, even though it is not within the domain of
interest.  Nonctheless, it can be used in computing UNY' (which is of interest) in the
Lax-WendrolT step (4.8b). Because of this we do not need any special procedure Lo specify
U ',(,'H. This is one advantage of using Lime-splil methods (or such perturbed problems.
Since they are cssenlially skewed (one-sided) Lax-Wendroff methods which follow the
characteristics of Lthe problem, arlificial boundary valuces are often not nceded at outflow
boundaries.
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Instead, we need to sp(,cll'y additional values at z = 0. We still usc (4.5) for U"+l
but we must also specily Ug,Uj,. .,U;_, Alternatively, we can lcave these values
unspecified and apply (4.8b) only for m = p + 1,...,N. We must then dectermine
Ut*,...,Uz*! by some alternative procedure.

Since there is no splitting error for this problem, the results of Section 2.5 indicate
that for opt:mal efficiency we should take p =~ 1/c. Howcver, for simplicity we first
consider the case p = 1. Then we only need o specify Uo or U""'

Three possibilities for specifying UT*! are immediately apparent The first is to
interpolate between the known values Ug a+1 and U3*!,

Un+l 2(U'n+l + Uﬂ+l) (4.9)

This is O(k?) accurate. Ilowever, when € is small this choice causes a severc loss of
accuracy in (4.8) and completely negates the increase in efficiency obtainable through
the use of the time-split method. The reason is that the Jocal truncation error for the
method (4.8) is O(ek®) giving O(ek?) global crrors. It is this factor of ¢ which makes the
time-split method advantageous over the unsplit method (4.4). By using (4.9) we lose
this advantage.

Figures 4.1a,b show the errors at time ¢ = 0.4 using this time-split method with the
boundary conditions (1.9) when ¢ = 0.1. Signals propagate with velocity 1 +¢ = 1.1 and
so errors from the improper specification of U}'“ have propagated in to approximately
z = (.44 at this time. To the right of this point all crrors are due solely to the interior
scheme. It is this accuracy which we would like to match at the boundary. Clearly
the boundary approximation (4.9) is causing a loss of accuracy. When ¢ is smaller, as
in Figures 4.1¢,d where ¢ = 0.001, this disparity in the size of the crrors is even more
apparcnt.

In order to maintain the advantage of the time-split method, we must use a more
accurate boundary scheme, one with local error O(ek?). One possibility is to use higher
order interpolation. Using quadratic interpolation on the points Ug*!, U+, Us+!
would give O(k3) errors. For k sufliciently small (k < ¢), this provuloa sufficiently ac-
curate data. Tlowever, ti~ ase of higher order interpolation can cause stability problems.
Morcover, when p > 1 there witl be several values UTH!, .. .,U;‘“ to be determined and
inlerpolation is unsatisfactory. »

The second obvious choice for I/T+! is to simply use Lax-Wendrolf on the unsplit
probicm,

Ut = LW(—(1 + ¢), K)UT. (4.10)

This also has O(k®) local crror and provides sulficiently accurate data for small k. Again,
however, stability may be a problem and for p > 1 Lhe scheme is certainly unstable.

The final approach to specilying UV 1 is based on Taylor serics expansions in from
the boundary. This is the best approach and, for this simple problem, gives the correct
value of (/P! exactly. We want UTH! Lo approximate w(k, tny1). We can expand this
in a Taylor serics aboul, %(0, tny4):

wWhytagr) = w0, tnps) + hua(0, tas1) + Sh%uzz(0,tngr) + - (4.11)

Approximating Lhis dircetly by differcneing the known values U;-"H would give us the
interpolation scheme rejected above, 1owever, using the differential equation (4.1) we
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(a) k= 1/25, € = 10~

(c) k=1/25, e=10"3
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FiG. 4.1. Errors in the computed solulion of (4.1) using the split scheme
(1.8) with p = 1 and thc intcrpolatory boundary condilion (4.9). The errors
arc shown on a logarilthmic scale for various valucs of k and €. Note that
the interior error is O(ck2) while the boundary error is O(k?).
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una vhat

. -1V, : '
0’31‘ = (m) 8‘:“, J 2 0, (4.12)
We can thus rewrite (4.11) as

(b, tat1) = (0, tat1) = Peuel0, turr) + 12D wee(0, tts) + -+ (4.13)

The desired data is now expressed in terms of t-derivatives of u along the boundary, i.e.,
derivatives of the known function g(t) from (4.3). For this snmple problem (4.13) can in
fact be evaluated in closed form, giving the desircd value of Uj n+1 exactly:

UTH = gltast — h/(1 +¢€)). (4.14)

The calculations shown in Figure 4.1 have been repeated using (4.14) instead of (4.9).
The results are shown in Figure 4.2. Since for Lhis problem the boundary data (4.14) is
exact, the crrors are actually smaller near the boundary than in the interior.

This same approach can be used in a wide variety of problems to determine boundary
data for points ncar the boundary. In general it will not be possible to obtain the exact
data in closed form as in {4.14), but a series solution can be developed and evaluated
to arbitrary accuracy. Goldberg & Tadmor(21](22] explain how to do this for general
inflow-outfllow boundaries. This will also be discussed in Scction 4.4.

It scems that we have completely avoided the need to specify boundary values for
the intermediate solution U®. Vor this simple problem that is true. Iowever, for many -
problems it is not possible to avoid specifying intermediate boundary values. This is
particularly true when implicit methods atre used in the splitting. In other situations it is
simply more convenient computationally to specilfy boundary values for the intermediate
solution than to leave these poinls unspecified.

The remainder of this chapter is devoted to showing how, for many problems, the
same approach used above to compute UT*! can be extended to compute arbitrarily
accurate intermediate boundary data.

Computing U(',. We now return to our original plan Lo speeify Ul') for the scalar
problem (4.1). We require data at the poinl zg, which is on the inflow boundary. At
this boundary the data (1.3) has been supplied, but is not usable directly since U'is
oblained not by solving the original equalion bul rather by solving the subproblem
u; = ~uy. This is the fundamental step in correctly computing intermediate boundary
data: introduce a new funciton u* which solves the differential equation actually being
approximated in the relevant step of the splitting. The desired boundary data can then
be expanded as a Taylor serics in this function. In many cascs this can be reexpressed as
a series in the original variable and evaluated in terms of g(£) as before. We will sce that
for many problems it is possible to generate stable O(ck?) boundary data quite casily.
For the problem (1.1} we can in lacl generale boundary data which is exaclly correct,
just as we did for UPF!,

Consider a single slep (4.8a) of the Lnne-spht mcethod starting at time ¢, and suppose
that /% = u{xm,t,). Since in this problem we have used Lthe exact solution operator
exp(kApdz) in (1.8a), U™ is then the exact solution at Llime ty 4 p 1o the subproblem

u = —u, 220,28y, (4.15)
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with initial conditions

u’(z,t,) = u(z, ), >0 (4.18)

at time ¢,. The idea is to use the dilferential equations (4.1) and (4.15) to transform the
given boundary conditions (1.3) for u into boundary conditions for u*. We wish to find
an appropriate value for Uy, which should be an approximation to 4*(0,¢,,1). This we
can expand in a Taylor scries. Using (4.15), we find that

w' (0,8 + k) = u"(0,£,) + ku, (0, 8,) + $k2ug(0,2,) + -+ (417)
= u(0,£a) — ku_(0,tn) + §k%u_ (0, ,) +---.

Since the initial conditions (4.16) hold for all z, that relation can be differentiated with
respect Lo z, giving u_(z,%,) = ux(z,¢s) and similarly for higher derivatives. So (4.17)
becomes

4" (0,8, + k) = u(0,£,) — kug(0, tn) + Sk uz(0,2,) + -+ . (4.18)

We can now use the original equation (4.1) governing u to rewrite this in terms of ¢-
derivatives of u. Using (4.12), (4.18) becomes

w'(0, tn + k) = u(0, tn) + 55 ue(0,20) + J742) uee(0, 80) + -+ (4.19)
= g(ta + k/(1 + €)).

This is the desired boundary datla Uy, expressed in terms of the given boundary data
(4.3).

IFor such a simple example it is casy to verify that this is the correct boundary value.
According to the scheme (4.8a) we would really like

Ug = U™, = u(—h,t,).

(Recall that p = 1.) Of course u i$ not really defined for z < 0, but using the differential
equation (4.1) it can casily be extended backwards in time from the boundary. Since
(4.1) has characteristics with slope 1/(1 + ¢), we find that

u(—h,t,) = u(0, ¢, + h/(1 + ¢)) = g(tn + k/(L +¢))

exactly as in (4.19).

Because the characteristics for the problems {1.1) and (4.15) have dilferent slopes,
we see Lhat the value w(—h, ¢,) is equal 1o both w(0, ¢, + k/(1 + <)) and u’(0, ¢, + k) and
therelfore Lhey are equal Lo each other. This is illusteated in Figure 4.3,

When p > | we can compule U; for 0 < j§ < pin a similar manner. Using the
fact that we know the exact solution operator for the subproblem (4.15), we can project
these values back Lo the boundary along the characteristics,

Uy =u"(jh,tn + k)
=u (0,tn + k — jh).
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F1G. 4.3. Characteristics for u, = —u_ and u, = —(1 + €)u, (for ¢ > 0)

showing that if u’(z,4s) = u(z, tn) then u™(0, ty + k) = u(0, t, + k/(1 + €)).

This boundary value can be computed as before, giving the genceral expression
Uy = g(ta+ (k=701 +€), §=0,1,...,p~1. (4.20)

Computations con’irm that the use of Lhis boundary value for U:) in the split method
(1.8) gives excellent results thal are virtually identical to Lhose scen in Figure 4.2.

In general when using this approach to specify boundary conditions for the inter-
mediate solutions it will not be possible Lo gencrate exact boundary data as we did here.
It often will be possible, however, to develop a series solution, as in the first line of
(4.19), which can be used to generate arbitrarily accurate boundary data. In the next
few sections we demonstrate how this can be done for syslems of increasing complexity,
culminating in Section 4.5 with the development of boundary conditions for the shallow
waler equalions, a quasilinear syslem of equations with inflow-oulflow boundaries.

4.2, Constant coeflicient systems-—inflow boundaries.
As the next step in this direction, consider a constant. cocllicient system of equations
ue = Augz = (Ay + A )uy, z>0, t>0,

u(z,()) = f(:):), (4.2[)
“’(0! t) = g(t), t>0,
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on the quarter plane z,¢ > 0. We assume that the boundary z = 0 is a purc inflow
boundary, i.e., that A has strictly negative cigenvalues. We also assume that Ay has
nonpositive eigenvalues. In general Ay and A, do not commute, so we will have to use a
Strang-type splitting. There will be at lcast two intermediate solutions, say

U’ = exp(§kA;0:)U™

% (4'22)
U™ = exp(kA.9;) exp(1kA 0, )U™.

Of course there may be many more if exp(§kA;3,) is itsell approximated by several
steps of Lax-Wendroll, but they can be handled similarly. The general principle should
be clear from considering (4.22).

Again introduce the function u*(z, t) which satisfies the first subproblem of interest,

u, = Asu,, 220, t2>t,, (4.23a)
u'(z,tn) = u(z,ta), = > 0. (1.23b)

We then want
U(.) = 11.‘(0, tﬂ+|./2)
= u"(0,t,) + Sku, (0, 80) + FE2up(0,8,) +

=u'(0,tn) + LkAsu (0,tn) + 'k2A,uu(0 c,,)+
= u(0,tn) + $kAsuz(0,tn) + $K2A3u (0, 80) + -

(4.24)

where we have used {4.23a) to replace t-derivatives of u* by z-derivatives. These were
then replaced with z-derivatives of v using the initial conditions {4.23b). We next use the
original cqualion (4.21) Lo replace z-derivalives of u by £-derivatives, which are equivalent
to derivatives of the boundary dala,

Ug = u(0,t,) + lkA,A"u,(o, tn) + SK2AZAT 20 (0,8,) +

2 4t 1.25
= glta) + $hALAT g (8) + JREATAT P (E) + - (4.25)

We have assumed that A has strictly negative cigenvalues and thus is invertible. In
general /g must now be approximaled by the first fow terms of (1.25). Keeping the first
three lerms gives O{k?) accurate boundary data. As usual, this is sulliciently accurate if
k is small. Tlowever, it is worth pointing oul that we can frequently achieve the Ofck?)
accuracy we desire more casily. Suppose ||[A7!|} = O(1). Then since A = A; + O(¢),

AAT=140() forj=1,2,...
We can then retain O(ck?) accuracy simply by taking
Ug = gllayrye) + §EAs AT = D' (tn). (1.26)

We may still wish to use additional terms of the expansion in order Lo ensure Lhat the
ervor from the boundiry condilions does nol dominate the interior erior. The boundary
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conditions (4.26) arc the correct order of accuracy but the error constant may be larger
than that of the inlerior scheme. We obtain O(ck3) accurale boundary data by using

Up = g(tnrisa) + §H(A;47" = 1)g'(ta) + 43 (AFAT2 = )" (t). (4.27)

The additional work incurred by using three terms of the expansion rather than two at
the boundary is negligible compared to the work being done in the interior.,
Now to find boundary vatues for U™". The easiest way to proceed is to note that

*

U™ = exp(— LkA;3-)U™!

which prompts us to define u**(z,t) as the continuous solution to

u, (2,8) = Agu, (z,8)  2>0, t< tay

. (4.28)
u (z,tn41) = (T, tas) z 2 0.

We now solve this backwards in time for

U(;‘ = u"[O, tn+l/2)'

Proceeding as in {4.24) and (4.25) we obtain

Up = gltns1) — SkAfAT g (b)) + EEPAZA 2" (b i) + - -
~ Gtayry2) — 3k(Af A" = D' (tn ).

Example 4.1 Consider

where 4 = (u, »)T. For the splilling we take

- 0 0 ¢
ol PR T
0 -2 €9 0
Using (2.22) the splitting error is computed to be

_ 1
) 13] 70102 20y (a3
Fain(k) = — 363|711 A ad,
i o

If we use Lhe time-split method (2.18a,b) then, according to (2.24), the oplimal stepsize
ralio is
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where € = max |¢;. For k = 2h and h = 1/N, (2.18a,b) becomes

U, =U%, m=12..,N
Vo=V 3 m=23,..,N

O = LW(AL KD, m=1,2,..,N-1

~nil
Up  =g(tn+1)
vt =vu,._,, m=12,..,N

vitl=v, ., m=23..,N.

Notice that no boundary conditions necd to b= specified at the outflow boundary z = 1.
On the inflow side we still need to specifly U 0 V;, U o » and V',"H. For this problem,

1 44 cqeg 3¢,
AﬁA—B _
E ! (2—ce)?| 12¢4 4+ 461(2]
= I + Ofe).
and we can retain O(ek?) accuracy aking

Do = gltns1ya) + $h(A;A" = Dg(t)

k €162 €
2¢a €1€9

]g'(tn)-

= g(tns172) + W —eiea)

Similarly we use .
Oo = g(ta+173) = $H(AsA™" = D)g'(tn 1)
We still nced to determine V' and V7*!. Wewant Vi = v’ (h,tay1/2) = v"(0, 0 41/4)
and so the appropriate value comes from the second equation of

. ﬁ.(o, ‘n-H/l) =~ g(tn+1/4) + %k(A,A—l - N)g'(t,), ‘ 4

ie., .
Vi =ga(tasr1/4) + T,_’:—l;j(hﬂl’l(tn) + €1€293(tn)),

where g = (g1, 92). Similarly,
VIt = galtarasa) — spif2eadi(tns) + creagitat)).

Computations confirm that these boundary conditions give an O(ck?) globally ac-
curate split scheme. Actually, for this parlicular example with k = 2h, cven greater
accuracy can be achieved. Compuling F,(k) from (1.13), the truncation error for Lax-
Wendrofl, shows that the O(ck3) terms exaclly cancel the O(ck3) terms in Eupiic(K), and
that the total truncation error ET*(k)u is actually O(e2k3), giving O(c?k?) global ac-
curacy. BBy rctaining more terms in Lthe above boundary expansions we can malch the

s r R ek AR s a1 e gt R e
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on a logarithmic scale for various values of k and €. In all cases t = 0.2.
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error in the interior solution. Taking one more term, as in (4.27), gives O(ck3) boundary
data. Figures 4.4 and 4.5 show the some sample results using O(¢k?) and O(ek3) accurate
boundary data respectively. Errors in the first component U are shown at time ¢ = 0.2.
Errors resulting from the boundary conditions have propagated in to approximately z =
0.4.

The oscillations in the error near the boundary are due to the fact that some of

the boundary conditions used (e.g., for (7:“) have gzero error while others (e.g., for

170) have large errors. Since the split scheme is only mildly dissipative due to the O(e)
coefficients in the Lax-Wendroff step, these oscillations introduced at the boundary die
out very slowly as the wave propagates into the interior. This is in no way an indication
of instability. Stability for this example follows from the gencral results of Section 4.8.

4.3. Variable coefficient systems—inflow boundaries.

Defining the proper boundary data for variable coefficient problems is not significantly
more difficult than for constant coefficient problems. The only complication comes in
switching betwecn z- and t-derivatives. Consider the system of equations

Uy = A(z, t)u, ' (4.29)

and for simplicity suppose that A; is constant, while A, = A,(z,t). Procceding as in
(4.24),

u'(0, tn + £/2) = (0, tn) + §kAsuz(0,20) + §A7AJ12a(0, t0) + -+
Now we must be more carelul in switching back to ¢-derivatives. We have
u,(o; ta) = ATH0, t,)u.(0, ts) (4.30)
and by differentiating (4.29) we find that

U = Agus + Aty
Uss = Astiz + Atiy,

so that
Upy = A"l[A"‘(u“ — A A )~ A ANy

Iligher order dcrivatives can be computed similarly. Continuing as in (4.25), we obtain

‘u.(ﬂ, tn) = g(l,,) + %kA,A—l(o, ta)g'(tn) + %kaA;A—l(o; tn"A—' (0,2,)g"(2n)

— (A0, ) AL(0, £n) + A5(0, £ )) A~ (0, £,)g(En)] + O(K?). (4.31)

This can be truncated in the usual manner to obtain an appropriate expression for U:,.

Example 1.3. Consider Lhe standard quarter plane problem for the scalar equation

ue = ~(1 4 en(z))u,
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with Ay = =1, A, = —ca(z) and € € 1, |a(z)| < 1. Then (4.31) gives

1

(0, ta) = glta) + *"(TI?Z(F))"' (ta) + *"’(ﬁ:T(oi)’

X g"(tn) + €a’(0)g'(tn)] + O(K?).
We thus find that the boundary condition

Ug = g(tn + k/2(1 + €a(0)))

is O(ck?) accurate. By retaining the next term of the expansion as well we obtain the
O(ek®) accurate boundary data -

U = ot + £/201 + al0) + 3 imesahs Yo ().

The other necessary boundary data can be gencrated in a similar manner.

4. Inflow-outflow boundaries.

Next we consider a constant coeflicient problem v, = Au, lor z, ¢ > 0 with an
inflow-outflow boundary at z = 0. This means that A has both positive and negative
eigenvalues. For simplicity we suppose that A is in block diagonal form,

I 9 .
A= ,:) A"], (4.32)
with the cigenvalues of A’ negative and those of A’T positive. Partition & = (u,v)T

conformally with A. Then at z = 0 the clements of u are inflow variables whilc those of
v are outflow variables. The boundary conditions are assumed to be of the form

u(0, t) = Sv(0, t) + g(¢) - (4.33)

where S is a constant matrix and g is a given function. We now split A as A = Ay + A,
with Ay and A, again block diagonal. Moreover we suppose that the eigenvalues of A;
are negative and thosc of A positive.

We consider only the problem of computing 0, o and will suppose that exp(kA,b,) is
known exactly. Then Vo is determined from the interior and we nced only specify Uo
As usual, we introduce @' (z,t) which solves the subproblem #; = A;d, and find as in
(4.24) and (4.25), that

B°(0, b + k/2) = B(0, ) + §EA7AT1B(0, 1) + JR2AIAT28,(0, t0) + -+

For simplicity, suppose that A3A~2 = I + 0(() Then for O(ek®) accurate boundary
conditions we can take

U = 0, tuyrja) + $EAA™ - DUO,L).  (434)
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Introducing the matrix

— a.a-1 _ 71— |AMAN) =1 0 J_[Bun 0
B = A,A I= ! 0 A;I(AII)—I -1 0 Bn ’

we can rewrite (4.34) as

Ug = u(0,4n41/2) + $EB11u¢(0, tn) (4.35a)
Vo = (0, tn41/2) + §kB22v:(0, t0). (4.35b)

By differentiating the boundary conditions (4.33).we obtain
| (0, t) = S0, 82) + o (ta)
Using this and (4.33), (4.35a) becomes
Ug = [Sv(0, tas1/3) + 9(tns1/2] + $kB11[S0e(0, tn) + ¢'(tn)]- (4.38)

Recall that V is already known. We can thus solve (4.35b) for v(0, £y /2). Using
this in (4.36) yields

Ug=S[Vq - %szzvhgl + gltns1/2) + $kB11[Sve(0, tn)."' d(tn))

. (4.37)
= SVo + g(t,.+1/g) + %k[Bug’(tﬂ) + (Bus - SBQQ)‘W(O, t..)].
The v, term must in general be approximated by a finite difference, c.g.,
U:) = SV; +-g(t,.+1/2) + -Hkﬂug'(t,.) (4.38)

+ (B S~ SBy)(VE -Ve ).

Alternatively we can replace v, by. A”7v, and approximate this by a finite difference of V
at time £,. This approach is parlicularly useful when morc terms ol the scries are kept
and higher order derivatlives must be approximated.

The use of such boundary conditions is illustrated in the next section, where the
onc-dimensional shallow waler equations are considered.

Boundary data at points near the boundary can be found in a similar manner. For
- example, il data U;-"H is nceded for some 0 < 7 < p we can expand u in z-derivatives,
switch to {-derivatives along the boundary, convert these to ¢-derivatives of v using ue =
Sv, + ¢/, and linally switch back to z-derivatives of v, obtaining

“(j) tn+l) = u(o) tn-H) + jh(At)—l [SAlrvz(os tn-f-l) + g'(tﬂ+l)]

+ HI AT 2 S(ATY0un(0, b s1) + 9" (Empt)] + -+ (4.39)

These -boundary conditions are suggestcd by Goldberg & Tadmor[21){22] for general
inflow-outflow ptobiems.
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The shallow water equations In order to illustrate the derivation of intermediate
boundary conditions for a more realistic example, we will consider the one-dimensional
shallow water equations on a strip,

[:]‘ = _[ ¢';2 9"{3][:] 0<z<1,t>0, (4.40)
with initial conditions
i(z,0)=f(z)), 0<z<]|, o (4.41)
and, for example, the boundary conditions
#(0, ) = o(t), (4.42a)
u(1,¢) = ¢(1,¢) — do. (4.42b)

Here ¢g is the mecan value of ¢ as in Section 2.9 and the boundary condition (4.42b)
represents nonreflection at the boundary z = 1. At the boundary z = 0 we have chosen
to prescribe ¢. Other boundary conditions can be handled similarly.

As in Seclion 2.9, the equations (4.40) can be written in the characteristic form
(2.46). As usual we suppose that |u| < |¢|. Then the Riemann invariant u + ¢ always
flows to the right with velocity ¢/2 + u while the Riemann invariant u — ¢ always flows
to the left with velocity ¢/2 — u.

The problem of specifying intcrmediate boundary conditions is simplified if we
change variables and compute directly in terms of the characteristic variables, which

we denote by p and o: .
oz, t) = u(z, t)_+ &z, ¢),
o(z,t) = u(z, t) — ¢(z,1).

We can always transform back to find u = (p + 0)/2 and ¢ = (p — 0)/2. Rewriting the
diffcrential equation (4.40) in terms of p and o gives

i RO ) o
which we split as .in (2.48) by taking
= %[—:o :o], A, =-— }[31’ + 00— 2¢0 ot 3ao+ 2¢g].
The bouAndary conditions (4.42) become
pl0,t) = (0, ¢) + 2g(¢) (1.43a)
o(1,t) = —do. (4.43b)

At the left boundary p is the inflow variable and the boundary condition (1.43a) is of
the general form (4.33). At the right boundary o is the inflow variable. The boundary
condition (4.43b) indicates that o is constanl, and hence Lhe outgoing wave is not
reflecled.

»
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For k = 4h/¢g, the aplit acheme on 0 < z < 1 with A = 1/N is simply
R.=R._,, m=12...,N
S,,=8%,1, m=-10,...,,N-1
[R] =LW(A.,k)[R], m=01,...,N—1
Sim
R =R._,, m=1.12,...,N
snit=g,, m=01,.,N-1

At the left boundary it appecars that we nced to specily Ry, R, R3*! and So . In fact
So is not used in computmg S$™+1 and so we only nced to specily the R values Note
that by specifying R_, we avoid having to specify any boundary values for R*

The given boundary conditions (4.43a) provide R3*!,

Ry*' = S5 4 2g(tns1). (4.43)

We next apply the procedure of section 4.4 to compute R(',. The expression (4.34) provides
O(ek?) accurate boundary data for the quasilinear problem provided A~! is evaluated at
(p(0, t4), 0(0, £n)). The matrix B = A;A~! — I is given by

2
B= s%% -u.._ ]"O(E)

and the expression (4.37) becomes

Ry = Sg+ 29(tny1/2) + %k[(m—:‘%z—?ﬂ)“t(ov tn) + 2(3p¢° )9’( n)]

= S:, + 2g(tn + 2¢0/(3p + o)) + %k(ﬁ%)m(o, tn)

where p and o are evaluated at (0,t,). This can be approximated by

. __ . 4(1(1‘” + So) n .—l
Ro.—- Sg + 2g(t,.. + ak) +( 5 + 353 )(S -S37) (4..44)
where
a= $o

3Ry + 83

In order to find R’ | we approximate p’(—h, ta + k/2). This is cqual to p°(0, s + k)
and proceeding as in Section 4.4 we find the approximation

. * 8a R + h n n—
R, = S} + 2{tn + 2ak) +,( 1§» o 39,?’)(3,, - 837 (4.45)

with a as above.
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T .

At the right boundary we still nced to specify Sg, Sg” and S2*!. Since the boundary
condition (4.43b) is time-independent, applying the general procedure at this boundary
yiclds simply .
So = 85" = Spt! = —¢y. (4.48)

Figure 4.6 shows the result of some computations using the boundary conditions
(4.43), (4.44), (4.45) and (4.46). The boundary conditions at the right boundary have not
affected the interior solution. Errors do arise at the left boundary, but these are seen to
be the same order of accuracy as the interior solution.

As in Example 4.1, the oscillations ncar the boundary are due to the dlﬂ'erent
boundary conditions being of different accuracy.

4.6. Stability of the initial-boundary value problem.

In general stability theory for initial-boundary value problems is considerably more
complicated than for pure initial value problems. Only recently has a general theory
been developed. The fundamental paper on this subject is by Gustalsson, Kreiss &
Sundstrom(30).

We will first consider an inflow boundary with boundary conditions as derived in
Section 4.2. In this situation slability can be proved directly from the Cauchy stability of
the interior scheme without resorting to the theory of Gustafsson, Kreiss and Sundstrom.
This is because the boundary conditions we are considering are independent of the interior
solution. Consider, for example, the expression (4.25). Our approximation U(', can be
bounded a priori in terms of an appropriate discrete Sobolev norm of the given boundary
data g(¢). The same is true of the other required boundary data.

Stability of the time-split method can then be proved using the following general
theoremn, which states that any Cauchy stable scheme is also stable for the initial-
boundary value problem provided that the specified boundary data {UR}} _, is inde-
pendent of the interior solution.

TUROREM 4.1. Suppose Q(k) is Cauchy stable. For the initial-boundary value
problem define U™*! by

UnH! — QKU m > p,
m Grit! m=0,1,...,p.

Then the approximation is stable in the sensc that
W2 < KollUO)F + KrlIGIE for nk < T, k < ko, (4.47)

where K1 and i(r are constants depending only on T'.

lHere the following norms are used:

s <]
I™IE=h Y UL,

m=0

T/k p

Neit =& > 1692,

g==135==0
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Proof. By the Cauchy stability of Q (Stability Definition 3.1’), there exlst.s a constant
a and a norm || - ||, cquivalent to the £3 norm, such that

NN <1+ak  for k< ko (4.48)
Extend the given initial data {U%}2_, to all m by setting
U =0, m=-1,-2,...

Then solving the quarter plane problem is equivalent to solving the Cauchy problem and
then redefining {U}}7.q at each step. Specifically, we set

M =QUn, m=0,%1,%2,...

and then take on+t 01
i m = ceesP
Ustt =47 e (4.49)
U olherwise.

The resulting {U3,}2°_o conslitute the solution of the quarter-plane problem.

By (4.48) we have

™2 < (1 + ak)U™R, (4.50)

By (4.49) we obtain the following bound for U™*!:

~n-f1

IIU"“II"'<IIU I? + G+ _ (451)

where

1 d
"Gn-H“2 =k E IG;}+1|2.
=0

Combining (1.50) and (4.51) gives
IU™IE < (14 ak)UTE + (G

so thatl by induction we obtain

n—1 :
UM < (1L + ok U2 + D7 (1 + ak)¥flC™ 9|2
, P
’ n—1
< e“(nu°u’ > ||c"-'n’)
9=0

for nk < T. Since |[U™|2 < (|72, U2 = [JU°)|? and

n—1 n-1 p
h
N 2_ 2
Yo =43 D IGHT < AidH

q=0 q==0 ;=0

for nk < T, we obtain the desired bound (4.47) with K¢ = €T and Kz = ¢*T /). §
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To see how this theorem applics to a time-split method, consider the method

Ut = Quk)Un,

. 4.52
U:‘+l = Qz(k)U,,,:H-‘. ( )

We have added the index n + 1 to U™ for reasons which will soon be apparent. Suppose
that the boundary data are of the form

Uittt =g, i=0,1,...,p,

" , 4.53
urt' =6t F=0,1,...,p (453)

For convenience we have assumed that the same number of boundary conditions are

needed for both U ™*! and U™}, but this is not essential. The quanities G;"H and

Gt are determined as in Section 4.2 in terms of the given boundary function g(¢} and

some of its derivatives (say d derivatives). Suppose that the corresponding Sobolev norm
of g(t) is uniformly bounded by some constant 7:

d
Mol = > Ng®lE < .
i

Then we have
NG™)IiF < Kiy (4.54a)

and
NG < Koy (4.54b)

for some constants K| and K.
In order to apply Theorem 4.1 we rewrite (4.52) as

[—Q:(k) ?Mlﬂm = [8 Q'(,(k)”({;}: (4.55)

m

to obtain a Cauchy stable seheme for the “super-vector” (U‘, U)T. Note that the method
is formally implieit even if the original method was explicit, as il must be since Lhe
boundary conditions specified for U ™! affect the computation of Um+!. The Cauchy
stability of (4.55) follows from the Cauchy stability of Qa(,)}Q1(k), which gives

o™i < cliv®li,

together with
ol < o)

where Cy; = C}|Q(k)]]. Using Theorem 4.1 and the bounds (4.54) we find that (4.55) is
stable for the initial-boundary value problem and that, in particular,

N2 < KellUO? + K+(Ky + K3)7.
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Inflow-outflow problems. Stability can also be demonstrated for inflow-outflow
problems with boundary conditions of the form discussed in Section 4.4. As above the
time-split nature of the scheme can be handled by introducing super-vectors. Ilence we
will only discuss the stability of a general one-step scheme in which the inflow variables U
and the outflow variables V are coupled only through the boundary conditions. As usual
we assume Cauchy stabili’y. Our discussion will be rather brief but similar arguments ;
can be found in Goldberg & Tadmor{21][22]. ]
The scheme for V is indcependent of U and we will assume, as we did in Section i
4.4, that the time-split method yields a one-sided scheme for V so that no boundary
conditions need be specified. Then from Cauchy stability we clearly have

V™12 < IIvOI3

since the introduction of the boundary does not affect the computation of {V}}92,.
Morcover such a scheme for V is also stable in the sense of Definition 3.3 of Gustafsson,
Kreiss & Sundstrom(30] (we refer to this as GKS-stability). This stability condition also
requires bounds on a norm of V along the boundary. The GKS-stability lollows easily
from the theory of [30] for a onc-sided scheme.

GKS-stability of the outflow problemn is just what we need to prove stability of the
inflow problem. Recall from Scction 4.4 that the boundary conditions for U depend only
on g(t) and on values of V along the boundary, and can be bounded in terms of {{|glf|4
and ||V ]|¢. The former of these is assurned to be uniformly bounded while the latter is
bounded by the GKS-stability of V. Theorem 4.1 thus applics to the infllow problem and
hence the entirc approximation is stable on the initial-boundary value problem.

These stability results are supported by large-time numerical calculations for all of
the examples which have been given in Lhis chapter, including the boundary conditions
of Section 4.5 for the shallow water equalions.
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5. Other applications of the theory

5.1. Introduction.

In this chapter some of the theory developed in previous chapters is applied to a
few different problems. In Section 5.2 hyperbolic problems in two space dimensions are
considered. Again we split between fast and slow subproblems although now spatial
splittingr may also be used. Intermediate boundary conditions are derived for a scalar
example.

We then turn to the use of time-splil methods for problems which are not hyperbolic,
since many of the techniques that have been introduced are applicable to other problems
as well.

In Section 5.3 the convection-diffusion equation uy = —cu, + cu,, is studied as a
model for general equations containing both hyperbolic and parabolic terms. An analysis
very similar to that of Section 2.5 is performea with analogous results. For the Cauchy
problem the time-split method is more accurate provided the mesh ratio is chosen ap-
propriately. For boundary value problems the correct intermediate boundary conditiona
at the inflow boundary can be computed using the general procedure of Chapter 4. At the
outflow boundary no special boundary data necd be specified, but the solution generally
has a boundary layer at this boundary which causcs special difliculties. The interior
solution (away from the boundary layer) can still be calculated more efficiently than with
the unsplit method, hut less efficiently than in the Cauchy problem due to mesh ratio
restrictions imposed by Lhe boundary layer.

In Section 5.4 a very different kind of time-split method is considered. The Peaceman-
Rachford ADI method [or the two-dimensional heat cquation 4y = uz, + uy, is viewed
as a time-split method with the splitting (1.43). By means of the procedure of Chapter 4,
intermediale boundary conditions are derived for a rectangular region which agree with
the classical boundary conditions for this mcthod.

5.2. Hyperbolic problems in two space dimensions.

The time-split method can be used in two (or more) space dimensions in much the
same way as in one dimension. Locally one-dimnensional methods, where a tinie-split
inclthod is used Lo reduce a multidimensional probicm Lo a sequence of one-dimensional
problems, have already been discussed in. Chapter 1. The techniques which have been
devcloped in the intervening zhapters are applicable Lo such spliltings and can he used Lo
analyze their efficieney ana, in some cases, to generale boundary data for the interraediate
solutions. This will be done fer the Peaceman-itachlord ADU method in Scetion 5.4.

In this scction, however, we continue to concentrale on hyperbolic problems which
ean be split inlo “last” and “slow” subproblems. Each of these subproblems will, in
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general, still be a two-dimensional problem. In some cases it will prove useful to also use
spatial splittings in order to solve one or the other of these subproblems.
A general hyperbolic problem in two space dimensions has the form

te = Au; + Buy . (5.1)

where the matrices A and B have the property that £A + 9B is diagonalizable with
real eigenvalues for all real values of £ and #. In the notation of Chapter 1, we have
A(u) = Au; + Bu, and we consider splittings of the form

1(u) A,u, + Bfu,

Az(u) = A,u; + Byu,,. (5:2)

For the constant coefficient case the splitting error is easily computed by expanding the
exponential solution operators. Define the differential operators C; and C, by

-Cf = A,B, +B[8v
. Ce = A0 + B,9d,

The splitting error is found to be

Eypiin(k) = — %ka(%C§C. —1C;C,Cr + %C,C} v (5.3)
- %CECf + CyCsCs — %C;Cf) + O(k*). ’

which is analogous to the one-dimensional result (2.22). In particular the splitting error
is zero if all of the matrices Ay, A,, By and 3, commute.

As in the one-dimensional case, a splitting of the form (5.2) will be useful if Ay and
By are sparse relative to A and B and if A, and B, have relatively small cigenvalues.
Suppose that [|Af]| = ||B|| = a while ||A,|| = ||B,]| =~ ea with ¢ < 1 and that the
spectral radius of each matrix is comparable to its norm.

Let LW(A, B, k) denote the two-dimcensional Lax-Wendroff operator, which is analo-
gous to (1.11) and can be found, for example, in Mitchell and Grifliths[41]. The stability
limit for LW(A, I3, k) is given by

k 1
7 max(p(4), A(B)) < 7

The split scheme corresponding to (2.18a,¢) is given by
Q.(k) = LW(A,, B,, k)

and
Qy(k/2) = (LW(Ay, By, kfm))™/2.

An efficiency analysis very similar to Lhat performed on the one-dimensional problem in
Scclion 2.5 shows thal the optimal mesh ratio on the fast scale is

*
mh

I~
~

1
a
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This, however, violates the stability limit for LW(Ay, By, k/m), which is
‘ ko1

. mh — V3a
We must usc this smaller value of k/(mh) instead. Alternatively we can replace the
two-dimensional operator LW(Ay, By, k/m) by the split scheme

LW, (Ay, k/2m)LW,(By, k[m)LW,(Ay, k/2m)

where LW, and LW, represent one-dimensional L.ax-Wendroff in the z- and y-directions
respectively. This does not increase the truncation error significantly but increases the
stability limit to L
mh

so that the optimal mesh ratio (5.4) can be used. (Recall that this increase in the stability
limit was Strang’s original goal in introducing the Strang splitting[49}.)

On the slow scale the optimal value of A = k/h depends on the size of the splitting
error. If Eypic(k) is negligible then

<!
a

1
A=~ —,

€a

Again this violates the stability limit A < 1/(v/8ea) and we may wish to mtroduce a
spatial splitting in Q,(k).
In the more usual situation, however, when the splitting error is O(ea®k3), the

optimal mesh ratio is
1

Ay —
f €a
This is well within the stability limit and there is no nced to introduce spatial splittings.

Perturbed problems. The splitling (5.2) is also useful when the exact solution
operator corresponding to Ay(w) is known. This is perhaps not so common in two
dimensions as in one. In one space ditnension we considered several examples in which
the coellicients had large mean values and small variations, We could then pull out
a constant coeflicient subproblem u;, = Aju, which could be solved by the method
of characteristics. Unfortunately, in two dimensious the method of characteristics is
applicable only if Ay and By arc simultaneously diagonalizable.

Here, however, we supposc that the solution operator for the fast part is known
exactly and consider the time-split method {2.18a,b) with

Q.(k) = LW(A,, B,, k)

and
Qs(k/2) = exp(3k(A;95 + B;0,)).

An eflicienc analysis similar to that of Section 2.5 shows that the optimal mesh ratio is
given by

1
A= a if the splitting crror is negligible, or
1
A= a il the splitting crror is O(ck3a®).
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e TEFUER ¢ AP < EF i, 43 SPRES £ Almisio SoukiSNIR it Aol

it N s aiiitiomi e i e e




In the former case we can only acheive the indicated mesh ratio by using a spatial splitting
for Q,(k) but in the more usual situation, when splitting errors are present, this is not
necessary.

Boundary conditions for a perturbed scalar problem. We now consider a
perturbed scalar problem which can be split in this manner and show how to derive
appropriate boundary conditions for the inlermediate solutions in two space dimensions.

Consider the problem

U = (l + a(z: Y, t))u’ + (1 + ﬂ(zl Y, t))"v (55)
on the unit square [0, 1] X [0, 1] with boundary conditions

“(11 Y t) = gl(y, t))

u(z,1,t) = ga(z,¢), (5-6)

and supposc that |a(z,y,t)| < ¢, |B(z,y,t)] < efor all z, y, and ¢t with e € 1. It is
natural to split this by taking

A =1, A, = a(z,y,1),
By =1, B, = B(z,y,1t).

The subproblem u; = u + u; can be solved exactly:
u'(z,y,t + k) =n"(z + k,y + K, t).

Taking k¥ = 2h and using Lax-Wendroff on thé slow problem, the split method becomes

»

Uum,i = Unti,541 m,j=0,1,...,N -1,
Up ;= LW(,B8,KU, ; mji=12..,N-1,
U:"‘le = U:,:+1,,'+1 m,j=0,1,..,N-1.

The values U ’,:,ijl and U ’,::,1, are given by the boundary conditions (5.6) wigile the values

U:,:j and U:,:’o are not required in computing U™+! and therefore do not need to be
specified. We do need to specify the following intermediate boundary data:

UniUn;  §=01,..,N,

- LE

Um,NIUm,N m=071,'-'le
First consider U;v'j. We begin as usual by introducing the function u’(z,y,t)

satisfying . . .
Uy = U, + U, (5.7

with initial conditions at time ¢,
u.(zi yv tn) = ’ll.(ZL', y! tﬂ)'
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Then we want U;v‘j =~ 'u‘(l,y_,-,t,, + k/2). Expanding in a Taylor series and using (5.7)
together with the fact that u; = u, and u; = u, at time t,,, we obtain
u' (L, gt + £/2) = 6" (1,9, ta) + $hu (1,9, t0) + §63u t(L, 5, bn) + -

= u(l,y,tn) + $K(us(1, 7, ta) + u,(1,9,t5)) (5.8) -‘
+ §EP (a1, 4y tn) + 2uny(L, 4y ta) + By (L, 4y tn)) + - %

We now use the original equation (5.5) to replace z-derivatives by y- and ¢-derivatives,
8o that the given boundary data g(y,t) and its derivatives can be used to specify Uy ;.
We find that

X k 2 :
w (Lyta+k/2)=u+ m(“t + (a— Blu,) + 52[—1-7);(“:: = 2(1 + B)uey
- 1
+(1+ ﬂ)zuw + (Q%i;ﬂ_)‘fg + a,)u; + (1 I 5‘(01, —ay)

+ (1 +ﬂ)(ﬂy - az) - ﬂt - (l + a)ﬂ:)uy) + e

where the functions u, o, and 8 (and their derivatives) on the right hand side are all
evaluated at (1,y,t,). If @, 8 and their first derivatives are all O(e), then this can be
simplified in the usual manner: ' ’
k(o —~ B)

2(1 + ;Tuv(]syrtn) + O(Cka.).

u (1,y,tn + k/2) = u(l,9,tn + k/2(1 + a)) +

We can maintain the accuracy of the interior scheme by using the boundary values

U, = 0105kt + §k/(1 + al1, b, ta))

kla(L, 5, ta) = B(L, 5h ta))) .
+( 21+ (T, b, £n)) )anmh,tn).

The boundary values U:n,N along the boundary y = 1 are found in cxactly the same
manner. We obtain '

U = 02(5h,tn + §6/(1 + B(ih, 1, 84))

K(B(Gh, 1 ta) = alih Lta) (.0, y
+( 2(1 + B(5h, 1,¢,)) )g2z(Jh, tn).

’ . . R '
To compute boundary values for the sccond inlermediate solulion 777, we proceed
. . . . v e L4 .
as we did in the onc dimensional case by defining v (z,y,t) as the solution of
L1}

LA e
u =u, tu,

with u** (2,9, ta41) = u(z,9, tns1) and then solving backwards in time to find U',J.,- =
u*(1, 7k, tnyy — k/2). The expression we obtain for u”*(1, 5k, t,, .1 — k/2) is exactly the
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same as the right hand side of (5.8) but with k replaced by —k ang all functions evaluated
at (1,y,tn+1). We can thus take

Un; = 1(h,tnsr = §k/(1 + a(1, 5h, tay))

k(a(1, 5B, tasr) = B(L, iRyt )\ [y -
—.( 2(l+;21,jh,t,.+l)) L )glv(ldh,tuﬂ)

with a similar expression for U:,:'N.

Irregular regions. Attempting to compute on irregular (nonrectangular) regions
gencrally complicates the problem of specifying boundary conditions for any numeri-
cal method. Gridpoints frequently do not lie exactly on the boundary and so special
procedures tnust be used for points near the boundary ecven when the correct data are
known along the boundary itsell. Here we will only consider the problem of transforming
boundary conditions for the given problem into boundary data for the intermediate solu-
tions. The problen of then using these data, dcfined along the boundary, to specify the
necessary solution values at nearby points can then be handled by standard techniques.

Consider the problem (5.5) in a region with boundary parametrized by (z(s), ¥(s)),
0 < s < 1. The region is assumed lo lic to the lefl of this curve. The boundary
conditions are

u(z(s), y(s), t) = g(s, 1)
at inflow points. For convenience we will assume that a and § are independent of ¢ and
will write a(s) for a(z(s),y(s)) and similarly for 8. Then (z(a), y(s)) is an inflow point if

Z(s)(1 + A(s)) < ¥'(s)(1 + als)).

This is illustrated in Figure 5.1.

For the rectangular region, we replaced z-derivatives by y- and t-derivatives at
the right boundary while at the top boundary we replaced y-derivatives by z- and ¢-
derivatives. These are bolh special cases of the general situalion. At the inflow boundary
of a nonrectangular region we mnust replace both the z- and the y-derivatives by tangential
and t-derivatives in order to obtain expressions in terms of the given boundary data,

In determining " at inflow points we first oblain an expression analogous to (5.8),

u"(2(8), y(3), tn + £/2) = u(x(8), ¥(8), tn)
+ gk(uz(2(s), y(s), tn) + uy(2(s), y(s), ta)) + -+~
Now we solve for u, and u, in terims of the given boundary conditions from the equations
gg(s, t'n) = ut(”(“); y(s)) tn)
= (1 + a(s))uz(z(s), y(s), ta) + (1 + B(3))uy(z(s), y(3), t,)
9s(8, ta) = z'(8)us(2(s), y(2), ta) + v'(#)uy(e(s), y(s), tn).
Solving this syslem gives {dropping arguments for clarity)

o e—(1+A),
* (1+ )z = (1 + o)y
v = z'ge ~ (1 + a)gs
V(04 B = (1 + )y
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a%

iy = : - m

(z(a), ()

FIG. 5.1. Irregular region with boundary parametrized by (z(s), y(s)), mov-
ing counterclockwise as s increases. The characleristics in the z-y plane are
also shown. The_exact solution propagates along these lines, which have
slope (1 + B(z,¥))/(1 + a{z,y)) = 1 + Ol¢) at cach point (z,y). The inflow
portion of the boundary, wherc the boundary conditions are specified, is
shown as a bold line.

so that ,
_ (@ —9)g +(B-a)g,
(1+8)z—~(1+a)y
Note that the denominator is nonzero at inflow points. Similarly, we can obtain expres-
sions Tor higher derivatives, When a, 8 and their derivatives are O(e) we have

Uy + Uy

(L + B(s))z'(s) — (1 + afs))y'(s)

: ‘il 1 k(z'(8) — y'(8))
t(s)=ta+ ‘2((1 + Bls))'(s) ~ (1 + a(ﬂ))y’(-")).

This formula reduces to those derived before on the unit square, in which case cither
z'(8) = 0 or y(s) = 0.

u"(2(8), 4(s), tn + £/2) = g(,£°(s)) + %( KAL) — afs) )g.(s, ta) + O(ek?)

where

5.3. Convection-diffusion equations.

As mentioned in Scction 1.6, vime-split methads are Trequently used to solve equa-
tions of mixed Lype by splitling between Lhe hyperbolic and parabolic parts and using
diffcrent methods on the two picces. This is done for example with the Navier-Stokes
equations for viscous fluid flow or convection-dillusion cquations for miscible flow.

In this scction we consider a simple model equation for such problems, the constant-
coefficient scalar convection-diffusion equation

Uy = —CUz + CUgy (5’9)
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where ¢ and € are nonnegative constants. Consider the splitting 4;(u) = —cu,, A2(u) =
€Uyz. For Lhis scalar conustant coefficient problem there is no splitting error so we do not
need to use the Strang splitting. Il k/h = —p/ec for some positive integer p then the

subproblem u; = —cu, can be solved exactly. Using Crank-Nicolson for the remaining
subproblem gives the split method
Up=UD\_
- mr (5.10)

UMl = CN(e, kUL,
where CN is the Crank-Nicolson operator, which has the form
CN(A k)= (I — YkADD_)""(I + }kAD,D_)

for a general constant coeflicient system uy = Au,..
If we climinate the intermediate solution U*, we can rewrite the split method (5.10)
as a one-step method:

(11— 3keD D)UY = (I + ykeD D_)Up, _,. (5.11)

Figure 5.2 shows the stencil for this method when ¢ = p = 1.

FI1G. 5.2. Stencil for (5.11).

The method can thus be viewed as a “skewed Crank-Nicolson” method similar to
the skewed Lax-WendrolT method of Example 1.2, The stencil of the method follows the
characteristic ol the hyperbolic part of the problem. ,

Time-split methods similar Lo (5.10) can be used for more gencral systems of the
form

Uy = A'uz + B‘u,,

where A and B may be funclions of z, £, and u. One way to procced is to use the
splitting Ay(v) = Au, and Az(u) = Bu,,. In general neither subproblem can be solved
exactly, but it may bc advantageous to usc different numerical procedures for the two
subproblems. This is the approach gencrally taken with the Navier-Stokes equations[1).

Anolher alternative is Lo use the splitting A (u) = Ajuz and Az2(u) = Azuz + DBugy
where ug = Aju, can be solved exactly. and the remaining subproblem u, = Aa(u)
corresponds Lo small perturbations, i.c., p(A,) and p(#3) are small compared to p(Ag).

Here we consider only the scalar problem (5.9}, which is sullicicnt to illustrate some
of the new issues that arise when time-split methods are applied to such problems. In
particular, when ¢ is small there may be a boundary layer at the outllow boundary, which
poscs special problems for Lhe Lime-splil mcethod.
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Efficiency analysis for the Cauchy problem. Belore considering boundary
value problems, however, we first perform an cfficicncy analysis for the Cauchy problem
similar to that of Scction 2.5. The split method (5.10) will be compared to the unsplit

method
(l + -}cho - *keD.p.D )U"'H

5.12
=(1- cho + ‘keD+D Wa.. ( )

This method is second order accurate with a truncation error
E(k)u = k{k*[— ¢ + Lc?ed, — }ce?d? + 4287 ' (5.13)

+ b= e+ 5 ed  ums + O(KY).

We ass :me that ¢ = 1, € € 1 and that u is smooth so that all derivatives of u are
order unity. (This latter assumption will not be valid in the boundary value problems
considered later.) Then E(k) can be approximated as

E(k) =~ — {5k[k%c® + 2h%)03.

We sce that the error is dominated by terms arising from the hyperbolic part of the
equation. The global error at time ¢ = 1 is roughly bounded by

HIER] = A(k2%¢* + 26%) fuac- (5.14)

As in Section 2.5 the optimal mesh ratio is found by requiring k%c® = 2h2¢, for otherwise
we could increase onc of the slcpsizes without significantly increasing the error. This
gives the optimal value of Lhe mesh ratio:

A =~ V2/e. (5.15)

For comparison purposes we wish to normalize the crror at ¢ = 1 by the amount of work
performed. A tridiagonal system of equations must be solved at each step but this only
requires work proportional to 1/h.- The work required to compule the solution at ¢ = 1 is
thus proportional Lo 1/kh. The same is truc in the split method, with a similar constant
of propo:iionality, and so we can normalize the error simply by dividing by kh. Using
(5.14) an {5.15), we find that

normalized error = -‘-/6_3c2||u,,,||. (5.16)

Now consider the split m.ethod (5.10). Since there is no splitting crror and no error
is committed in solving the first subproblem, the overall truncation crror is simply the
truncalion error of CN(c, k), which is found by sclling ¢ = 0 in (5.13):

E™™(k)u = Lk[(k* €203 + h2cduces + O(KY). (5.17)
The optimal mesh ratio is thus
llozull
A= (9%ull .(5.18)
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This indicates that large timesteps arc optimal, A = O(1/e).
Using (5.18) in (5.17) gives the following normalized error at £ = 1:

normalized error = 1e¥\/||03u]| ||88y]|. (5.19)

This is smaller than (5.16) by roughly a factor of (c/c)?.

These results are virtually identical to those of Section 2.5 for the pure hyperbolic
problem in the same situation, namely for a perturbed problem with no splitting error.
Other situations, e.g. splittings with error or the use of several steps of a difference
method on the fast problem, can be investigated in the same manner with analogous
results. Numcrical experiments have confirmed thesc thcoretical predictions.

Nonsmooth solutions. The advantages of the time-split method are most clearly
seen when computing nearly-discontinuous solutions, for example shocks in the Navier-
Stokes equations or steep concentration gradients in miscible flow problems.

Example 5.1. Consider the model problem

U = —Ug + €Ugy (5.20)

with initial conditions
1 z < 0.1
u=,0) = {0: z> 0.0

This initial discontinuity smears out as it propagates to the right with speed 1. At time
t = 0.7 the true solution is scen as the dashed line in Figure 5.3 (with e = 1073).

The unsplit method (5.12) performs poorly on such problems because of the convec-
tive term. The resulting solution is oscillatory as seen in Figure 5.3, which shows the
solution obtained with k = h = 1072,

With the split method (5.10) the convection is handled exactly by shifting. Only the
diffusion is handled numerically and discontinuous initial data cause no problems. By the
efficiency analysis it is optimal to take X = O(1/¢). We choosc to again take h = 10~2
and take £ = 0.7 which corresponds to A = 70. Figurc 5.4 shows the resulting solution
obtained witii a single step of the time-split method (5.10).

Boundary value problems. We now turn to Lhe most intcresting case: the
boundary value problem (5.9) on 0 < z < 1. For definiteness we will take ¢ = 1. When
e = 0 the equation is Lhe familiar hyperbolic cquation u, = —u_ for which boundary
data necd only be specified at the inflow boundary z = 0. The exact solution is a wave
moving to Lhe right, unaltcred, with speed 1. When ¢ is small the solution is again a wave
which moves to the right, bul now it dissipates slowly as il moves along. For ¢ very small
we might expeet the solution Lo be very similar to thal obtained with ¢ = 0. llowever,
whenever ¢ > 0 the cquation (5.9) is parabolic and boundary conditions must be specified
bolh at £ = 0 and at z = 1. Equation (5.9) is a singular perturbation equation since the
limiting equation with ¢ = 0 has a singular naturc quite different from that with ¢ > 0.

For sinall ¢ the solution to {5.9) has a boundary layer near z = 1, a small region in
which the solution changes rapidly in order to match the boundary conditions at z = 1.
For (5.9) the boundary layer has width O(¢). For z < | — ¢ the solution is simply a
rightward moving wave, slowly dissipating, and looks very much like the soulion Lo the
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FIG. 5.3. Solution of the convection-diffusion equation of Example 5.1 with ¢ = 103
at time t = 0.7. The dashed line is the true solution. The solid line is the solution
computed with the unsplit method (5.12) with k = h = 1073,

C LI A B L A e r L T T 1T I T T 7 ] F
1.00 E -
0.75 -
0.50 -
0.25 -
O.OO F_l | - | j ) . . 1 L i L1l i I 1 1 1 1 I | | 1 1 :
0 0.2 0.4 06 0.8 1

FIG. 5.4. Solution of the convection-diffusion equation of Example 5.1 with ¢ = 10-3
at time t = 0.7. The dashed line is the true solution. The solid line is the solution
computed with the split method (5.10) with h = 10~3, k = 0.7.
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FIG. 5.5. True solution (dashed line) and computed solutions to the steady-
state convection-diffusion solution using the time-split method (5.10) with
h = 10~2? and several different values of k. Again e =5 X 1072.

pure hyperbolic problem. The solutlion is smooth and the conveclive term —u, dominates
the dissipative term €ugz. In the region 1 — € < z < 1, however, the solution is rapidly -
changing and u,, = {u,. Here both terms arc cqually important and the solution in
this region is quite unlike that scen for € = Q. ’

The presence of the boundary layer in this problem causes difficulties in the applica-
tion of any numerical procedure. The time-split method performs quite well, particularly
in the interior, provided that modcrate values of the timestep & are used. Using A\ =~ 1
gives results which arc everywhere better than the unsplit mcthod, by a lactor of € in
the interior (see Example 5.2). This is to be expected based on the previous analysis of
the Cauchy problem. However, it is no longer possible to obtain even greater cfficiency
by using larger timesteps. This is because of crrors arising in the boundary layer. It is
illuminating to analyzc the difficullies which rise when larger Limesteps arc used.

In order to concentrate on the boundary layer itsell, we first consider the steady-state
problem (5.20) with time-independent boundary conditions

u(0,t) =1—¢"/¢
u(l,t) =0

and initial conditions ,
u(z,0) = | — =1/,

The solution to Lhis problem is simply
u(z, t) = 1 - elz=1/e (5.21)

for all £, as shown by the dashed tine in Figure 5.5 for e = 5 X 1072,
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The numerical solution to this problem will also reach a steady state, though in
general the numerical steady state will be different from the true solution. Ior the unsplit
method (5.12) setting UD, = Un}! shows that the steady-state solution satisfies

(=¢Do +¢D4D_)UT = 0.

This solution depends on h but is independent of the timestep k used to compute it (and
hence is independent of A\). The numerical solution is quite accurate if h is sufficiently
small. Il A > € then oscillations begin to appear in the boundary layer. This will be seen
in Example 5.2.

Now consider the time-split method (5.10). In order to implement this method we

must specily some additional boundary values U;,, Uj... U;,ﬁl at the boundary z = 0.
This can be done using the general procedure of Chapter 4, as will be seen later in
this section. For the present example with time-independent boundary condilions, these
simply reduce to
U;=1—e_l/’ for 7=0,1,...,p—1.
At the boundary z = 1, where the boundary layer is, we do not need to specify any
additional boundary data. Figure 5.5 shows the numecrical steady-state solution for the
time-split method with ¢ = 5 X 1072, h = 10~2 and several different values of k. Note
that this steady-state is no longer independent of & and is far {rom the true solution even
for moderate values of X,

In order to understand this phenomenon we must consider the individual steps of
the time-split method in more detail. In the first step of (5.10) the solution shilts to the
right and much of the boundary layer is lost. If k& > € the boundary layer shifts almost
completely out of the interval. We then have

U, ~1 (5.22)

for all m. The solution U" is nearly independe .1 k for k > ¢. In the second slep of
(5.10) we are using Crank-Nicolson to solve the heat equation with initial values (5.22)
and boundary values Ug*! = 1, URt' = 0. For large valucs of k the solution U™+1
tends to U",,{H = 1 — x,m, which is Lhe steady-state solulion of u; = cuy, with boundary
conditions

u(0,¢) =1, u(1,£) = 0.

This explains the “over-diffused” na*:re of the solutions seen in Figure 5.5 flor larger

_ values of k.

Where docs the time-split method break down? Recall that there is no splitting error
for this problem so that il both subproblems are solved exactly we should obtain the
exacl solution to the original problem, for any valuc of k. Lel us now do this. The first
subproblem u; = —u_ is already being solved exactly (modulo the boundary conditions
at z = 0, but these have a negligible effect on the results seen here). We now wish to
also use the exacl solution operator for the second subproblem

u, (z,8) = eujo(z,t), 0<z<1, ty <t <ty

with inilial conditions
u(2,8) = u' (2, btay 1)
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FIG. 5.6. The correct boundary conditions u™” (1,t, +7) for 0 < 7 < k with
e=5X%X 1072 and k = 1.

In order to apply the exact solution operator we must also specily boundary conditions
u""(1,ta 4+ 7) for all 7 with 0 < 7 < k. This can be done in the standard way. We will
use Lhe lact that we know the true solution u(w,t, 1) = u"(z, tn+1) and expand about
tﬂ+|:

u"(l, ta + T) = u"(l, tn+l) + (T - k)u:‘(l»tﬂ*’l) + %‘(T - /c)2u:;(l,t.,.+1) +e

= u“(l, bagr) + (17— k)eu;:(l, tat1) + %(T - k)“’czu”n(l,tnﬂ) 4o

This can be evalualed direclly using the steady-state solution (5.21). We find that the
proper boundary conditions are

(Lt + 1) = 1 —T7R) e,

This is shown for k = 1 in Figure 5.6. Notlc that viie boundary value remains nearly
constant through most of the time interval. Only at the end docs it suddenly drop Lo
the final value v**(1,t,4) = 0. This explains why the resulting solution is not “over-
diffused” when the true solution operator is used. No diffusion occurs until near the ond
of the time interval, for £ — ¢ < 7 < &, and the length of this interval is independent of
k, as il mus!l be since Lhe resulling true steady-stale solution is independent of k.

This shows where the time-split method breaks down for large k. When Crank-
Nicolson is applied in the second step Lhe correetl boundary values are used at the ends of
the time interval, but no account has been taken of the nonsmooth behavior of u.‘(l,tﬂ+
7) for 0 < 7 < k. Since Crank-Nicolson is only accurate for smooth boundary data, we
get poor results. ILis as if we had used the exact solution operator with sinooth boundary
data obtained by lincarly interpolating between u”"(1,8,) = 1 and u”"(1,£,41) = 0.

It appears that this diflicully with the time-split method can be aveided only by
taking & sulliciently stoall, If & < ¢ then the boundary layer is not entirely shifted out
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of the interval and the resulting truc boundary conditions for u** are much smoother.
Morcover, reexamining (5.18) shows that we also want k/h smaller than was optimal for
the Cauchy problem. From the steady-state solution (5.21) we see that

loiull = 1/,
Using this in (5.18) gives an optimal mesh ratio for the split method of
A1

rather than O(l/e) as was optimal for the Cauchy problem.

To summarise, we find that for boundary layer calculations we should take & ~h<
¢, for the split method, just as we would for the unsplit method. The resulting solution
is more accurate than that obtained with the unsplit method, by a factor of ¢ in the -
interior.

Intermediate boundary data at the inflow boundary. Now consider the
unsteady boundary value problem (5.20) with boundary conditions

4(0,¢) = g(¢)

u(1,8) = 0. (5.23)

We must specify additional boundary values Up, U}, .. .,U;_,. Consider the step from .
iy to ¢y and let u’ satisly

u, = —u,, t >t
(2, ) = u(z, ta), 0<z<L. (5:24)

Then we want . .
Uj = 6" (4B, tn + k)
=u"(0,2n + k- jh).
Let 1 = k — jh. Expanding about u*(0, t,) and using (5.24),

Ui = u'(0,tn) + 15, (0, tn) + §7%u,(0, £,) + O(k%)
= u'(0,ta) — Tu (0, tn) + §77u (0, 2,) + O(K®) (5.25)
= u(0, t,) - Tuz(0, tn) + T2 022(0, £a) + o(ka)- .

In order to use the given boundary data (5.23) we wish to replace z-derivatives of u by
t-derivalives using (5.20). After some manipulations we find that

— 2
Ugg = Ugs — 2€Uggpy + € Ugzey

and so
Uy = —Ugt + €Uz .
= —u; + cuy + 252“::: - ‘a“czzs

= —~Ug + ClUgg — 2&214;;‘ + O(Ea).
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Continuing to replace z-derivatives by t-derivatives, we obtain a power series in ¢ which
involves only time derivatives. Similarly we find that

Upe = Uy — ety + O(e?).
Using these expressions in (5.255 gives the desired expansion: .

U; = u(0,tn) — (—ue + ettge — 2% usee + -+ ) + §72(uee — 2etteee + - )

=g(0,t, + ) — Teg”(t”) + (21‘(’ - T’G)ﬂm(t,,) + 0(€3k + k’e’). - (5.26)

Note that this approach works only when ¢ < 1.

Example 5.2. Consider (5.20) with ¢ = 10~3, initial conditions
.%(z,0)=1-—2,
and boundary conditions

u(o,.t) = g(t) = 1 + 0.1 sin(2nt)
u(1,8) =0.

Figure 5.7 shows the solution at time ¢ = 2 using the unsplit method with k = h = 10~2.
Figure 5.8 shows the results with the time:split method (5.10) again with k = h = 102
(p = 1) using (5.28) for U;. Note that the oscillations in the boundary layer have
disappeared. Moreover the interior solution is more accurate by a factor of ¢, as can be
seen in the accompanying error plots.

5.4 The Peaceman-Rachford ADI method for parabolic problems.

As a final example we will derive intermediate boundary conditions for the Peaceman-
Rachford method (1.42) by viewing this as a time-split method for the problem ue =
Uzz + Uy, With the splitting (1.43). We consider the problem on the unit square 0 < z <
1, 0 < y < 1 and assume that Dirichlet boundary data is supplied at all points on the
boundary. Since U" is diffcrenced only in the z-direction in (1.42), we neced to generate
intermediate boundary data only on the boundaries 2 = 0 and 2 = 1. We will consider
only the boundary at z = 0. The other boundary is completely analogous.

The given boundary data is

u(ol v, t) = ﬂ(v, t)’ (5'27)

We seck to determine Ug,, == u"(0,mh,t, + k) where u° is the solution to the first
subproblem from (1.43),

DR ORETET L OFEL ¥ ) (5.28)
with inital conditions ‘ .
v (2,9, tn) = u(z,9,tn), Yz, 9 (5.29)
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F1G. 5.7. (a) Numerical solution for Example 5.2 with ¢ = 103 obtained
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Differentiating (5.28) shows that
“:t = i(“;zss + 2u;sw + ";yyy) + O(k)
and so, proceeding as in Chapter 4,
u’ (0, mh, 2y + k) = u’(0, mh, t,) + ku, (0, mh, t,) + K us (0, mh, t,) + Q(k’)

= ‘u. + k[i(u;, + “;g) + &k(“;zsl - u;WU)l

+ 3 [Y(Urans + 2ungyy + Upyy,) + O(K) + O(F).

In view of the initial conditions (5.29), we can replace u* by u everywhere on the
righthand side of the last.equation. By expanding 4(0, mh, t, + k/2) about u(0,mh,¢,)
and comparing this with what results above, we find that

u (0, mh, tn + k) = u(0,mh, tn + k/2) + }k3(uszs:(0, mh,t,)
- uﬂllﬂl(o’ mh: tn)) + O(ka).

We rctain O(k?) global accuracy provided the boundary conditions have O(k?) local
accuracy. We can thus neglect the O(k?) terms in (5.30) and take

(5.30

U;,,,, = u(0, mh, t, + k/2) = g0t1/2

where gt1/2 = g(mh, ¢, + k/2). Higher order accuracy at the boundary can be obtained
by including the next term as well. The gz, term cannot be calculated directly from
the given boundary conditions (5.27). However, from the original differential equation
we find that

Ut = Ugzzz + QUreyy + Uyyyy,
Uty = Yzzyy + Uyyyy,
and so )
U — 2"tyu = Ugzzx — Uyyyy- ‘
Since u¢e and 1.y, can both be computed along the boundary, we can use this expression
in place of U,yys — Uyyy, in (5.30), giving the O(k*) boundary conditions

Ug,m = 9(mbh, tn + k/2) + §k*(gee(mbh, ta) — 204y (mh, t)). (5.31)

It is intcresting to note that if we approximate the derivatives of g appearing in (5.31)
by O(k3) accurate finite differences of g%, and g%+! at the meshpoints, we obtain

U-:),m = Yo}, + gntt) - *"D+vD—v(9:H —Om)
= {1 = §kD4y D_p )0t + Y1 + $kD4,D_)a..

These are precisely the standard boundary conditions for the Peaceman-Rachford method
as derived by Fairweather and Mitchell[19)] using diffcrent techniques.

For irregular regions it is not in general possible to replace the z- and y-derivatives
in (5.30) by tangential and time derivatives which can be evaluated directly from the
given boundary data. However, the expansion (5.30) is still valid and one-sided finite
differences could be used to approximate the fourth derivatives.
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