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Abstract. The numerical approximation of combustion processes may lead to numerical diffi-
culties, which are caused by different time scales of the transport part and the reactive part of the
model equations. Here we consider a modified fractional step method that overcomes this difficulty
on standard test problems and allows the use of a mesh width and time step determined by the
nonreactive part, without precisely resolving the very small reaction zone. High-resolution Godunov
methods are employed and the structure of the Riemann solution is used to determine where burning
should occur in each time step. The modification is implemented in the software package clawpack.
Numerical results for 1D and 2D detonation waves are shown, including a detonation wave diffracting
around a corner.
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1. Introduction. We consider hyperbolic systems of conservation laws with
source term which arise in the modeling of combustion processes. Here the source
term describes a chemical reaction, i.e., a burning process which leads to a production
or reduction of physical quantities inside the domain considered. Under appropriate
smoothness assumptions the differential form of a system of conservation laws with
source term is given as

qt +

d∑
i=1

fi(q)xi
= ψ(q),(1.1)

where the physical states q(x, t), the fluxes fi, and the source ψ are vector-valued
functions and d is the space dimension.

If the time scale of the ordinary differential equation (ODE) qt = ψ(q) for the
source term is orders of magnitude smaller than the time scale of the homogeneous
conservation law qt +

∑d
i=1 fi(q)xi

= 0, then the problem is said to be stiff. Here we
consider a combustion problem, where the chemical reaction, i.e., the burning process,
may be much faster than the gas flow.

We restrict our considerations to numerical solutions which are computed by us-
ing a fractional step method, in which we alternate between solving the homogeneous
conservation law and the ODEs for the reactions. Furthermore, we solve the homo-
geneous conservation law by using a high-resolution version of the Godunov scheme,
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1490 C. HELZEL, R.J. LEVEQUE, AND G. WARNECKE

which is implemented in clawpack [18]. It is known that the numerical solutions
of conservation laws with stiff source terms may be erroneous, for instance, with dis-
continuities that propagate at the wrong speed and with nonphysical states. These
purely numerical problems are caused by the smearing effect of the conservation law
solver. A conservative scheme for solving the homogeneous conservation law leads
to smeared-out shock profiles while discontinuities are still moving with the correct
speed. In a fractional step scheme this smearing effect may lead to an activation of the
very fast process described by the source term. This can produce totally nonphysical
solutions. Colella, Majda, and Roytburd [11] have observed nonphysical speeds for
a simplified combustion problem. LeVeque and Yee [23] have studied incorrect prop-
agation speeds of a contact discontinuity in the numerical solution of an advection
equation with a stiff nonlinear source term.

In order to avoid these problems one could use adaptive mesh refinement or front
tracking schemes, see, e.g., Bourlioux [9], LeVeque and Shyue [22], Jeltsch and Klin-
genstein [16]. Using a sufficiently fine mesh it is always possible to avoid nonphysical
solutions since the fractional step method is convergent to the relevant solution. Note
that a sufficient spatial resolution is as important as a temporal resolution; see [23].

However, resolution of the fine scale is what one really would like to avoid, if one
is not interested in the detailed structure of the detonation wave. Therefore some
authors, e.g., Pember [25] or Berkenbosch [7] considered the question of whether it
is possible to obtain an accurate numerical solution of a stiff hyperbolic system of
conservation laws with source term using time and space steps controlled only by the
nonstiff part, i.e., without fully resolving the effect of the stiff source term. With such
an underresolved scheme one would hope to approximate the global solution structure,
e.g., the correct propagation speed of a detonation wave.

Note that this approach is not appropriate if one is interested in processes arising
on the scale of the reaction zone, i.e., inside the reaction zone, which we do not want
to resolve in the stiff case. A correct approximation of pulsating detonation waves or
cellular structures can therefore not be obtained by our modified solver. In order to
get such results, one has to resolve the reaction zone.

For the combustion problem, the nonphysical numerical solution that is obtained,
if the chemical reaction is not resolved on the grid, is a weak detonation wave usually
moving with a speed of one mesh cell per time step. Pember [25] postulated that a
necessary condition for such a spurious solution to occur in the numerical calculation
could be that the temperature of the post detonation state of the approximated spu-
rious weak detonation wave is higher than the ignition temperature. Therefore, this
nonphysical numerical solution can be suppressed if the ignition temperature is high
enough. In Berkenbosch [7] the dependency of the numerical solution on the ignition
temperature is analyzed in much more detail; see also Berkenbosch, Kaasschieter,
and Klein [8]. They also show that the critical ignition temperature needed to get an
appropriate approximation of the correct strong detonation wave is lower if a high-
resolution scheme for the homogeneous conservation law is used in the fractional step
scheme. Based on this observation Berkenbosch [7] and Berkenbosch, Kaasschieter,
and Klein [8] suggest using a suitable ignition temperature. A similar change of the
ignition temperature was also described by Ton; see [28].

Another possibility to approximate shocks as sharp discontinuities (at least in 1D
approaches) is supplied by using the Glimm scheme, which was introduced in [14].
This scheme uses the exact values of the Riemann problem at a randomly chosen
point inside every mesh cell. The good performance of the Glimm scheme used in
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A MODIFIED FRACTIONAL STEP SCHEME 1491

a fractional step approach to solve the reactive Euler equations is demonstrated in
Colella, Majda, and Roytburd [11]. A projection step that eliminates intermediate
states which are not in equilibrium was introduced by Sjögreen and Engquist [26]
and was tested for 1D and 2D problems. The idea of calculating values at randomly
chosen points was recently also used by Bao and Jin [2], [3] in a different way. They
replaced the ignition temperature by a uniformly distributed random variable inside
the interval of the temperature of the completely unburnt state and the completely
burnt state.

In Ben-Artzi [4] and Falcovitz and Ben-Artzi [13] the authors considered the
approximation of a Chapman–Jouguet (CJ) detonation wave by using an unsplit sec-
ond order scheme which is based on the solution of generalized Riemann problems.
Their scheme was not intended to resolve the stiffness of the problem. Instead it
was constructed in a way that should better approximate the coupling between the
fluid dynamical and the chemical equations. For the example used in those papers
the ignition temperature is above the critical temperature which is needed for a sec-
ond order fractional step scheme to approximate the correct detonation front. Their
numerical results show that the detonation wave is reasonably approximated if an
explicit scheme is used to calculate the reduction of unburnt gas, whereas the use of
an implicit scheme leads to the unphysical weak detonation wave.

Here we discuss a modification of the fractional step scheme for the approximation
of underresolved detonation waves which gives promising numerical resolution for all
appropriate ignition temperatures. It turns out that one can get all the information
required for this modification from the structure of the Riemann problems occurring
in the discretization. We believe that this approach could also give more insight into
the numerical problems occurring when solving conservation laws with stiff source
terms.

2. The 1D combustion problem.

2.1. The reactive Euler equations. For modeling the combustion process we
use the reactive Euler equations as described, for instance, in [12], [15], [20]. We make
use of the following basic assumptions. There are only the two chemical states: burnt
gas and unburnt gas. The unburnt gas is converted to burnt gas via an irreversible,
exothermic chemical reaction described by the functionK(T ). The reaction rateK(T )
depends on the temperature T via an Arrhenius law modeled by

K(T ) = K0 exp
(−E+/T

)
,(2.1)

where K0 is the rate constant and E+ is the activation energy; see, for instance, Oran
and Boris [24]. The reaction rate is negligible for low temperature values and grows
exponentially fast if the temperature is high enough. Sometimes this reaction rate is
replaced by a discrete ignition temperature kinetics model of the form

K(T ) =

{
1/τ0 : T ≥ Tign,
0 : T < Tign,

(2.2)

where Tign is the ignition temperature and τ0 is the time scale of the chemical reaction.
Note that 1/τ0 roughly corresponds to K0 in (2.1). In a stiff calculation, where we
do not want to resolve the reaction zone, the discrete ignition temperature kinetics
model is a reasonable approximation of the Arrhenius law. Therefore, we will first
restrict our considerations to this simplified reaction rate. Later we will show that
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1492 C. HELZEL, R.J. LEVEQUE, AND G. WARNECKE

our modified scheme can also be applied to the more general form of the Arrhenius
law (2.1).

The value τ0 in (2.1) must be seen in relation to the time scale of the convective
part of our problem. Further we assume that the burnt and unburnt gases are ideal
gases with the same ratio of specific heats γ and temperature T = p/ρR, where R is
the specific gas constant. Finally we ignore the effects of diffusion. Using all of these
assumptions we get the model equations

ρt + (ρu)x = 0 conservation of mass,(2.3)

(ρu)t + (ρu
2 + p)x = 0 conservation of momentum,(2.4)

Et + (u(E + p))x = 0 conservation of energy,(2.5)

(ρZ)t + (ρuZ)x = −K(T )ρZ continuity equation for the unburnt gas,(2.6)

as a combination of the Euler equations with the kinetics model. The variable Z is
the mass fraction of unburnt gas, where Z = 1 describes the unburnt state and Z = 0
the completely burnt state. The other variables are as usual the total density of burnt
and unburnt gas ρ, the velocity u, the pressure p, and the total energy E. The total
energy is calculated via the equation of state

E =
p

γ − 1 +
1

2
ρu2 + q0ρZ,(2.7)

where q0 is the heat release and the term q0ρZ is the chemical energy. Note that by
using (2.3), (2.6) is equivalent to

Zt + uZx = −K(T )Z.(2.8)

There are two combustion processes which are associated with the reactive Euler
equations, namely, detonations and deflagrations. Here we restrict our considerations
to the approximation of detonation processes; see, for instance, Courant and Friedrichs
[12], Godlewski and Raviart [15], or Berkenbosch [7] for a characterization of these
processes. We will consider the special case of a CJ detonation wave, which is the
detonation wave that occurs most frequently in practice.

The solution structure that can be derived from the reactive Euler equations was
originally considered by Zel’dovich, von Neumann, and Döring and is therefore called
a ZND structure. The detonation process is initiated by a shock. Through this shock,
pressure, density, and temperature are raised instantaneously. If the temperature of
the unburnt gas becomes greater than the ignition temperature, then the combustion
is initiated. Through the combustion process, pressure and density are decreased; see
Figure 1. For numerical experiments it is useful to start with such an exact ZND
structure as initial data. In this case the exact traveling wave solution and especially
the exact propagation speed of the detonation wave can be calculated.

We say that the reactive Euler equations for approximating a detonation wave are
stiff if the reaction zone is small relative to the mesh size �x, in which case the ZND
structure cannot be resolved on the grid. This is consistent with the characterization
of stiffness given in the introduction because the time scale of the chemical reaction
τ0 is proportional to the length of the reaction zone. In this case the time step
appropriate for the fluid dynamics is also insufficient to resolve the kinetics.

2.2. Numerical solutions by using the fractional step method. We use a
fractional step method to calculate the numerical solution, e.g., we split the calculation
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Fig. 1. ZND structure of a CJ detonation wave.

of (1.1) into the subproblems

qt + f(q)x = 0,(2.9)

qt = ψ(q)(2.10)

and alternate between evolving these numerically. Let L�t
CL denote an approximate

solution operator of the conservation law (2.9) and L�t
ODE be an approximate solution

operator of the ODE (2.10), each over a time step of length �t. Then the numerical
solution at time step tn+1 is calculated from the numerical solution at time tn via the
relation

Qn+1 = L�t
ODEL�t

CLQ
n.

Here, we will restrict our considerations to this “Godunov splitting” scheme, but the
results can also be extended to other fractional step methods, e.g., the Strang splitting
scheme. See, for instance, LeVeque [20] for more details on fractional step methods.
We use a high-resolution version of the Godunov scheme with an exact Riemann solver
for solving the system of conservation laws. The solution of the Riemann problem for
the nonreactive two-component Euler equations, i.e., the solution of (2.3)–(2.6) with
K(T ) = 0 and piecewise constant initial values, is very similar to the solution of the
Riemann problem for the Euler equations. The solution theory of this frequently-used
Riemann problem is well known; see, e.g., Smoller [27] or Kröner [17]. This solution
consists of constant states separated by three waves, where the 2-wave is always a
contact discontinuity. The quantities u and p are Riemann invariants of the 2-wave,
thus they are constant across the contact discontinuity. The 1- and the 3-wave are
shock or rarefaction waves. Further it is known that the characteristic speed of the
contact discontinuity is equal to u. The mass fraction of unburnt gas in the homoge-
neous part of (2.8) is advected with the speed u, i.e., with the speed of the contact
discontinuity. Therefore the mass fraction of unburnt gas in a Riemann problem is
equal to Zl everywhere to the left of the contact discontinuity and equal to Zr every-
where to the right-hand side of this 2-wave. Different iterative schemes for solving the
Riemann problem for the Euler equations were developed, for instance, the Chorin
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1494 C. HELZEL, R.J. LEVEQUE, AND G. WARNECKE

algorithm [10]. The latter can easily be extended to solving the Riemann problem of
the nonreactive two-component Euler equations. It was used in our calculations.

The second step in the fractional step scheme consists in solving the ODE for the
source term. The assumption that K(T ) is constant is permissible for the ignition
temperature kinetics model (2.2). Therefore, the ODE Zt = −K(T )Z can be solved
exactly. We get the solution

Zn+1
j = exp

(
−K(T

n

j )�t
)
Z

n

j ,

where Z
n

j and T
n

j are the values after one time step �t of the conservation law solver.
We consider the following test problem of a CJ detonation wave moving with speed
one.

Example 1. The initial values consist of totally burnt gas on the left-hand side
and totally unburnt gas on the right-hand side. The density, velocity, and pressure of
the burnt gas are given by ρb = 1.4, ub = 0, pb = 1, and Zb = 0. It is then possible
to calculate the values for the unburnt state so that the states are connected by a CJ
detonation wave moving with speed 1. We find that ρu = 0.887565, uu = −0.577350,
and pu = 0.191709. The mass fraction of unburnt gas is Zu = 1, which means that
there is only unburnt gas. Further we can calculate the states within the reaction
zone. The other parameters are set to γ = 1.4, R = 1, and q0 = 1.

For our first set of tests we use the discrete ignition temperature kinetics reaction
rate model (2.2). The time scale of the chemical reaction τ0 as well as the ignition
temperature Tign vary in the numerical calculations considered. We consider two
values of τ0 for our experiments: τ0 = 10−6, in which case the problem is stiff on
all grids we consider, and the nonstiff case τ0 = 0.1. In Figure 1 the ZND structure
is shown for the nonstiff case, and these values are also used as initial data. The
temperature is increased by the shock. The wave propagates to the right into unburnt
gas and the temperature directly behind the fluid dynamical shock is called the von
Neumann temperature, TvN . The ignition temperature has to be higher than Tu,
i.e., higher than the temperature of the unburnt gas, and lower or equal to TvN . In
our example the von Neumann temperature is TvN = 0.545918 and the temperature
of the unburnt gas is Tu = 0.21598. Note that the same initial value problem was
considered in LeVeque [20] where some preliminary results with this approach were
presented.

Now we set τ0 = 10
−6 and Tign = 0.22, i.e., the problem is stiff and the tempera-

ture is only slightly higher than the temperature of the unburnt gas. In this case the
fractional step scheme produces a nonphysical solution, a discontinuity which is prop-
agating with a speed of one mesh cell per time step as mentioned in the introduction;
see Figure 2.

This phenomenon has been studied by several authors, see, for instance, [8], [9],
[11], [13], and it is well understood that it is caused by the numerical diffusion of the
conservation law solver feeding into the fractional step method. For understanding
this purely numerical problem we consider one time step using the fractional step
method to approximate a detonation wave in a very stiff case, i.e., the reaction zone
is much smaller than the width of one mesh cell. For this stiff case the Riemann
problem, consisting of totally unburnt gas at the right-hand side and totally burnt
gas at the left-hand side, would be a reasonable approximation of the ZND structure.
Now we apply one time step of the Godunov scheme to this Riemann problem. The
solution structure of the Riemann problem considered is indicated in Figure 3.
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Fig. 2. Exact (−−−) and numerical (ooo) solution using the classical fractional step method,
with high-resolution Godunov scheme. Parameter values: τ0 = 10−6, Tign = 0.22, �x = 0.01, and
�t = 0.005, giving a Courant number between 0.5 and 1.

Ub Uu

Fig. 3. Structure of the Riemann solution for the reactive Euler equations. From left to right:
1-rarefaction wave, 2-contact discontinuity, 3-shock; left state: completely burnt gas, right state:
unburnt gas.

The rightmost wave (3-wave) is a shock moving into the unburnt gas. The 2-wave
denoted by a dashed line is the contact discontinuity separating burnt gas to the left
from initially unburnt gas to the right. However, the shock increases the temperature
of the unburnt gas in the region between the 3-wave and 2-wave (the shaded region
in Figure 3). The temperature is now greater than Tign and this gas will burn. In the
stiff case it burns completely during this time step.

The incorrect propagation speed in the fractional step method arises from the
fact that the structure shown in Figure 3 is first averaged over the grid cells to create
new piecewise constant states before the reaction terms are applied. As a result the
entire grid cell to the right in Figure 3 obtains a single averaged temperature. If this
is greater then Tign then all the unburnt gas in this cell burns during the reaction
step, including the gas to the right of the 3-wave. This causes the interface between
burnt and unburnt gas to advance by one full grid cell. See [23] for more details. The
closer Tign is to Tu the more likely this is to happen. If Tign is considerably larger
than Tu, then in some steps the full cell will burn and in other steps nothing will
burn, and the average speed could still come out close to correct. Furthermore, if
the ignition temperature is high enough then an unphysical intermediate state (for
instance in pressure) lower than the value of the completely burnt state can not be
obtained. This has been investigated by Berkenbosch [7]; see also [8].

2.3. Modification of the fractional step method. We have seen that the
nonphysical solutions are a consequence of smearing the reaction zone before burning.
Using this observation we construct a modification of the fractional step scheme which
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1496 C. HELZEL, R.J. LEVEQUE, AND G. WARNECKE

t = 0
i − 1 i

Z = 0

Z = 1

t = �t

t = �t
i − 1 i

Z = 0

Z = 1

t = 2�t

Fig. 4. Modification of the scheme along the smeared-out reaction front in the stiff case. Left:
first time step; right: second time step.

eliminates those combustion processes which are purely a consequence of the smearing
effects. First we consider the stiff case, in which the exact reaction zone is smaller
than one mesh cell and the reactions take place very fast.

Again considering the situation which is shown in Figure 3, we should allow a
reaction only between the shock and the contact discontinuity in the first time step,
because only there do sufficiently high temperature and unburnt gas coexist. The
essential idea of our approach is to apply the ODE solver only in the region where
burning should occur. In the first time step this is easy, but after one time step
we do expect some smearing of the correct shock location and hence a nonphysical
“average” temperature in at least one grid cell. Now we want to interpret the cell
average in a different way. As shown in Figure 4 the piecewise constant initial values
for the second time step contain one mesh cell i, where the mass fraction of unburnt
gas Z has a value with 0 < Z < 1. The average of the temperature in cell i might be
higher than the ignition temperature, but more correctly the burnt gas in cell i has
a temperature higher than Tign and the unburnt gas has a temperature lower than
Tign.

In the stiff case the reaction takes place very fast and during one time step the
whole portion of the gas which was heated up by the shock has already burnt. There-
fore we interpret the gas flow described by the homogeneous conservation law in the
second time step as a transport of the unburnt gas. A reaction can only take place
if this unburnt gas is ignited by a shock. This modification is described in Figure
4. The shaded areas indicate the mass fraction of unburnt gas after the transport
by the homogeneous conservation law. Only in the dark shaded area a reaction is
initiated. We make use of the fact that a rarefaction wave, such as the one generated
between cells i and i + 1, cannot increase the temperature of the unburnt gas. In
consequence there is no reaction to the right of the 3-shock in cell i even though the
average value of the temperature might be higher than Tign. The solution structure
could also consist of a 1-shock and a 3-shock. In this case we allow a reaction between
these two waves.

The temperature as well as the pressure can only be increased by a shock. We
observe that along the smeared-out reaction front the Riemann problems occurring
in each time step for solving the homogeneous conservation law have a 3-shock if the
combustion front moves from left to right.
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(a)
Z = 0

Z = 1

i− 1 i i+ 1 (b) i− 1 i i+ 1 (c) i− 1 i i+ 1

Fig. 5. Description of the modification using the high-resolution wave propagation algorithm.

On the other hand, a mesh cell may also lie within the reaction zone. If the
temperature in a mesh cell is higher than the ignition temperature and there is still
unburnt gas but no shock wave is coming into this mesh cell that will further increase
the temperature there, then this cell belongs to the (smeared-out) reaction zone. In
this case we allow the burning process in the whole mesh cell; i.e., we use the classical
fractional step method.

For our example of a CJ detonation wave moving from the left- to the right-hand
side, we can easily determine whether a mesh cell belongs to the smeared-out shock or
to the reaction zone and, hence, whether the burning process in the stiff case should
take place between shock and contact discontinuity, or in the whole mesh cell by only
considering the 3-wave. If the 3-wave is a shock, then we allow the burning process
only between the shock and contact discontinuity, and if the 3-wave is a rarefaction
wave, then we allow the burning process in the whole mesh cell.

By using a second order finite volume scheme, sharper results can be obtained
in which discontinuities are smeared-out over fewer mesh cells than when using first
order schemes. Nevertheless, in combination with a fractional step scheme, the same
numerical problems occur for both first and second order approximations of the con-
servation laws if the source term is not treated carefully. Note that the numerical
results which are shown in Figure 2 were calculated with a high-resolution Godunov
scheme to approximate the convective part. The same nonphysical solution would be
obtained using the first order Godunov scheme. For our improved numerical calcula-
tions we have combined the high-resolution wave propagation algorithm from claw-
pack, which is described in LeVeque [21], with the modification of the fractional step
scheme described above.

The high-resolution method is based on using piecewise linear reconstruction in
place of piecewise constant functions. Slopes are chosen based on nearby solution
values, and limiters are applied to avoid spurious oscillations. For all calculations
shown in this paper we used the monotonized-centered limiter, proposed by van Leer
[29] and given explicitly in [21] in the context of clawpack. Other standard limiters,
e.g., minmod or superbee, which are also available in clawpack were also tested
and gave comparable results. Figure 5(a) shows the piecewise linear reconstruction
of Z in three grid cells. From the structure of the Riemann problem we know that
discontinuities in Z are propagated at the speed of the contact discontinuity. In the
high-resolution method each piecewise linear structure is propagated at the local fluid
speed and then averaged onto the grid; see [21]. With combustion, we again wish to
apply burning only to the unburnt gas lying between a shock and contact where the
temperature has been raised above the ignition temperature. This is illustrated in
Figure 5(b) and (c) for the case where such a shock arises from the Riemann problem
between cells i and i+1 and moves into cell i+1 at a speed greater than the contact
speed. Hence, it is the unburnt gas initially in cell i+1 which now burns, as indicated
by the dark shaded region in each figure. In Figure 5(b) we simply use the cell average
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Mass fraction at time t = 0.4

Fig. 6. Exact and numerical solution using the modification, with high-resolution Godunov
scheme. Parameter values: τ0 = 10−6 and Tign = 0.22, �x = 0.01, �t = 0.005 giving a Courant
number between 0.5 and 1.
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Mass fraction at time t = 0.4

Fig. 7. Exact and numerical solution using the modification, with high-resolution Godunov
scheme. Parameter values: τ0 = 10−6 and Tign = 0.54, �x = 0.01, �t = 0.005 giving a Courant
number between 0.5 and 1.

Zi+1 to determine how much gas burns. This is easier to implement than the more
accurate procedure indicated in Figure 5(c), where the piecewise linear structure in
cell i + 1 is used to determine the amount that burns. Both have been tested in
one dimension but we have found very little difference in the observed accuracy.
Consequently, we have used the simpler approach of Figure 5(b) in the 2D extension
presented below.

Figure 6 shows the numerical solution of the stiff problem with low ignition tem-
perature using the modification which was described above. One should compare
with Figure 2 where the same problem was solved by using the classical fractional
step method. In Figure 7 the stiff problem was solved with our modification for a
case with a higher ignition temperature, near the von Neumann temperature, in or-
der to show that we get a good approximation of the detonation wave for all possible
ignition temperatures.

In the nonstiff case the fractional step method gives a good approximation of
the detonation wave, since for this case the two time scales fit together; see LeV-
eque [20] for a numerical calculation. This is consistent with our modification of
the stiff case in the following sense. In the nonstiff case most of the mesh cells
with 0 < Z < 1 belong to the reaction zone and therefore a reaction should take
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A MODIFIED FRACTIONAL STEP SCHEME 1499

Table 1
Numerical propagation speed, calculated taking (2.11), using the classical fractional step method

(Sfs,1 or Sfs,2) and the modified method (Smod,1 or Smod,2) with first-order and high-resolution
versions of the Godunov scheme for different ignition temperatures (Tign) and different time scales
τ0. The numerical propagation speed is given for the time t = 0.4. For all calculations we used the
mesh width �x = 0.01 and a time step �t = 0.005 giving a Courant number between 0.5 and 1.

τ0 Tign S0.4
fs,1 S0.4

mod,1 S0.4
fs,2 S0.4

mod,2

0.1 0.22 1.052262 1.045323 1.052892 1.044059

Nonstiff 0.1 0.30 1.038623 1.032534 1.047261 1.042274

0.1 0.40 1.029742 1.029659 1.039676 1.039266

0.1 0.54 0.985936 0.985932 1.009614 1.009614

10−6 0.22 2.025000 1.069491 2.000000 1.086376

Stiff 10−6 0.30 1.150000 1.059374 1.125029 1.083180

10−6 0.40 1.078079 1.043682 1.102789 1.052685

10−6 0.54 1.025647 1.004062 1.056581 1.007961

place in the whole mesh cell. Now, in contrast to the stiff case, the gas that was
heated by the shock did not entirely burn in one time step. Note that this was
our main motivation for the modification along the smeared-out reaction front in
the stiff case. Therefore, in the nonstiff case we do not restrict a reaction to the
region between the shock and contact discontinuity only. Only in the mesh cell
where the totally unburnt gas is first heated up by a shock do we need to make
an exception. There the reaction should be restricted to the area behind the shock
because only there we have a sufficiently high temperature. The numerical results
which where obtained with this modification are very similar to those obtained by
the classical fractional step method, which is already adequate for the nonstiff case,
as seen in Table 1. Note that the approximation of the nonstiff case is also consis-
tent with the transition between the stiff and the nonstiff method which is described
below.

Table 1 contains different values for the numerical propagation speed Sn�t of the
mass fraction of unburnt gas calculated by the formula

Sn�t =
�x

n�t
·

∞∑
i=−∞

(Z0
i − Zn

i ).(2.11)

Sn�t is the averaged numerical propagation speed of the detonation wave at time n�t,
which was calculated via an approximation of the equal area rule; see Berkenbosch
[7]. Both a nonstiff and a stiff case are considered with different values of Tign. The
correct value of the propagation speed is equal to one in all cases. The index of S
in Table 1 further specifies the numerical scheme which was used for the calculation
as well as the order. All values of the numerical propagation speed are given for the
time n�t = 0.4, which corresponds to the time step of the numerical approximations
shown in Figure 2 as well as Figures 6 and 7.

Table 1 shows that the classical fractional step scheme gives a good approximation
of the stiff problem if the ignition temperature Tign is high enough. This was studied
by Berkenbosch in [7] and Berkenbosch, Kaasschieter, and Klein in [8]. With the
modified fractional step scheme we always get a more accurate approximation of the
shock speed and maintain reasonable accuracy even in the stiff case.
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Fig. 8. Resolved (−−−) and underresolved (ooo) approximation of the pressure for Example
2. For the resolved calculation we used the mesh width �x = 0.0025, and for the underresolved
calculation we used �x = 0.1. The classical fractional step scheme gives an unphysical solution
(left); the modified fractional step scheme gives an accurate approximation (right).

In our next example we apply our modified fractional step scheme to the approx-
imation of a stiff detonation wave for which the reaction is modeled by the Arrhenius
law (2.1).

Example 2. We consider the reactive Euler equations with the reaction rate law
(2.1). The unburnt state is given by ρu = 1, uu = 0, pu = 1. For the heat release, we
used the value q0 = 25 and the activation energy is set to E+ = 25. Furthermore, the
ratio of specific heats is set to γ = 1.4. The unburnt state is connected to the burnt
state by a CJ detonation wave. The physical quantities of the completely burnt state
are ρb = 1.6812, ub = 2.8867, pb = 21.5672. The CJ detonation wave has the speed
sCJ = 7.1247. Initially the discontinuity is located at the point x = 10. We use the
rate constant K0 = 164180.

Figure 8 shows numerical results of the pressure for underresolved calculations of
the detonation wave described in Example 2. The solid line is the reference solution
which was calculated on a very fine mesh. Our modified fractional step scheme, which
can be applied in the same way as described for the ignition temperature kinetics
model, approximates the correct propagation speed of the detonation wave, whereas
the usual fractional step scheme again leads to an unphysical weak detonation wave
followed by a nonreactive shock.

In order to approximate the transition between the stiff and the nonstiff case
on those mesh cells which approximate the smeared-out leading shock of a deto-
nation wave in an appropriate way, we limit the amount of the mass fraction of
unburnt gas, which is converted to burnt gas during one time step, from above by
(�Zi)max = area Zi, where Zi is the cell average of the mass fraction of unburnt gas
and area specifies the part of the mesh cell, where the source term should be applied in

a stiff calculation. In the 1D case this part of the mesh cell is given by area = (s−c)�t
�x ,

where s is the speed of the shock and c is the propagation speed of the contact discon-
tinuity. This implies that along the smeared-out leading shock of a detonation wave,
at most the whole mass fraction of unburnt gas between shock and contact disconti-
nuity would completely burn. In the nonstiff case the reduction of the mass fraction
of unburnt gas due to the ODE for the source term equation applied to the whole cell
average will in general be less than (�Zi)max, and our modified fractional step scheme
automatically switches to the classical fractional step scheme along the smeared-out
leading shock of a detonation wave. The same criteria can be applied to calcula-
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A MODIFIED FRACTIONAL STEP SCHEME 1501

tions which use the Arrhenius law (2.1). However, for this reaction rate equation the
reaction rate and also the length of the reaction zone depends on the temperature.
Therefore, especially in multidimensional examples, the problem can include stiff and
nonstiff regions depending on the temperature. We will consider such a problem in
section 3.

3. The 2D combustion problem. Now we consider the modification of the
scheme for 2D reactive Euler equations, i.e., for the system of equations

ρt + (ρu)x + (ρv)y = 0,(3.1)

(ρu)t +
(
ρu2 + p

)
x
+ (ρuv)y = 0,(3.2)

(ρv)t + (ρuv)x +
(
ρv2 + p

)
y
= 0,(3.3)

Et + (u(E + p))x + (v(E + p))y = 0,(3.4)

(ρZ)t + (ρuZ)x + (ρvZ)y = −ρK(T )Z.(3.5)

Here u is the velocity of the gas in x-direction and v is the y-component of the velocity.
The equation of state is in the 2D case

E =
p

γ − 1 +
1

2
ρ(u2 + v2) + q0ρZ.

Again we want to use a fractional step scheme for approximating the solution. As
in the 1D case we have to apply a modification in order to avoid both nonphysical
propagation speeds of the combustion front and wrong intermediate states. For the
solution of the homogeneous conservation law we used the high-resolution version of
the Godunov scheme implemented in clawpack [18]. The method is based on solving
1D Riemann problems at each cell boundary as well as taking transverse directions
into consideration. The part of the flux across a cell boundary which is propagated in
the transverse direction is calculated via the tangential Riemann problem based on a
Roe linearization; see LeVeque [21]. This improves the stability and accuracy of the
scheme.

3.1. Modification of the 2D fractional step method. As we have already
mentioned, the 2D version of the Godunov scheme is based on solving 1D Riemann
problems in the x- as well as in the y-direction. Therefore, we can use the same
modification as in the 1D case; i.e., in the stiff case along the reaction front a reaction
will only be possible between the shock and contact discontinuity. This modification
is indicated in Figure 9, where we assume the case of a 3-shock.

Now we also want to consider the influence of the transverse propagation. This
means that parts of the shaded areas in Figure 9 are propagated into other mesh cells.
Here we only want to consider the propagation in the y-direction of the reaction area
calculated by a Riemann problem in x-direction. From the transverse Riemann solver
we can get a decomposition of each wave into a linear combination of eigenvectors of
the Jacobian matrix of the flux functions in the tangential direction. These subwaves
are moving upwards or downwards with the speeds µi corresponding to the eigenvalues
of the Jacobian matrix of the form µ1 = v − c, µ2 = v, µ3 = v + c; see [21].

The most accurate possibility for calculating the transverse propagation of the
area where a reaction is supposed to take place would require calculating the tem-
perature for all the subwaves corresponding to the area behind a shock along the
reaction zone. If the temperature is higher than the ignition temperature, then the
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xi

yj

Fig. 9. Structure of the modification of the normal Riemann problem in x direction between
the states q(xi, yj) and q(xi+1, yj) as well as for the Riemann problem in y direction between the
states q(xi, yj) and q(xi, yj+1) used in the stiff case.

(a)

µ1�t

λ2�t

λ3�t

µ3�t

(b)

µ1�t

λ3�tλ2�t

µ3�t

Fig. 10. Two different possibilities for the transverse modification. The dark shaded regions
are the cell portions where a reaction takes place for a Riemann problem in the x-direction with
transverse modification.

area between the shock and contact discontinuity should be propagated in the trans-
verse direction. Such a modification would be quite expensive. For the transverse
propagation, it is also not necessary to decouple every wave separately. Instead of
decoupling each wave, only the left- and right-going flux differences have to be con-
sidered. Therefore, we have used the simplified transverse propagation of cell areas
where a reaction takes place as indicated in Figure 10 which only uses the transverse
speeds µ1 and µ3. If both of these eigenvalues have the same sign, then the area which
is propagated in the y direction is equal to the trapezoid with a height equal to the
distance between shock and contact discontinuity and the sides |µ1�t| and |µ3�t|.
This is shown in Figure 10(a) for the case where all eigenvalues are positive. In the
case where µ1 < 0 and µ3 > 0, we would have a triangular portion corresponding to
µ1, which is moving into the cell below, and another triangular portion moving into
the cell above, which corresponds to the eigenvalue µ3. Figure 10(b) shows yet another
possibility: the transverse propagation of the reaction area consisting of a left-going
contact discontinuity and a right-going 3-shock assuming also that the eigenvalues µ1

and µ3 have different signs.
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A MODIFIED FRACTIONAL STEP SCHEME 1503

3.2. Approximation of a radialsymmetric CJ detonation wave. We re-
strict our considerations to the stiff case where the fractional step scheme may have
numerical problems. First we want to note that also in the 2D case the usual frac-
tional step scheme without modification leads to a good approximation if the ignition
temperature is high enough. This was observed by Berkenbosch, Kaasschieter, and
Klein [8] for 1D and 2D combustion waves.

Example 3. For our numerical computations we consider a radially symmetric CJ
detonation wave. The initial values consist of totally burnt gas inside of a circle with
radius 0.3 and totally unburnt gas everywhere outside of this circle. Furthermore, the
unburnt and burnt states are chosen in a way analogous to the 1D case, i.e., ρb = 1.4,
ρu = 0.887565, pb = 1, pu = 0.191709, Zb = 0, Zu = 1, ub = 0, uu = −0.577350 cosα,
vb = 0, vu = −0.577350 sinα, where α is the angle in polar coordinates. The ignition
temperature is set to Tign = 0.26.

For this radially symmetric problem it is possible to get more insight into the
structure of the solution by comparing the solution calculated with a 2D algorithm
and the numerical solution of the 1D system of reactive Euler equations with an
additional source term for the radial symmetry. The 1D reactive Euler equations for
a radially symmetric problem are

ρt + (ρû)r = −1
r
ρû,

(ρû)t + (ρû
2 + p)r = −1

r
ρû2,

Et + (û(E + p))r = −1
r
û(E + p),

Zt + ûZr = −K(T )Z,

where û = u cos(α) + v sin(α) is the speed in radial direction and r =
√

x2 + y2 is
the distance from the center. Now we can use the 1D fractional step scheme with the
modification for the stiff source term to get an approximation along any radial slice of
the 2D combustion wave. The 1D system is solved on a very fine grid (�x = 0.00025)
so that the numerical solution is assumed to be an accurate approximation of the
exact solution. The numerical solutions of the 1D reference problem are plotted as
solid lines in Figures 14–16. The scatter plots of the 2D solutions are obtained by
plotting the value on each mesh cell as a function of r, i.e. the distance to the center
of symmetry.

In the 2D case we have the additional effect that also the gas flow ahead of
the combustion front increases the temperature slightly. For simplicity, we are not
interested in this effect for the moment. Therefore, we have to choose the ignition
temperature higher than the temperature occurring just ahead of the combustion
front during the time interval considered.

Figures 11 and 12 as well as the scatter plots Figures 14 and 15 show the numerical
calculations at different time steps obtained using the modified fractional step scheme.
Here the combustion front moves with the correct speed and, furthermore, the circular
geometry is resolved well on the grid.

For contrast, in Figure 13 contour plots of the pressure and mass fraction of
unburnt gas are shown, calculated by using the classical fractional step scheme at the
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Fig. 11. Contour plot of pressure and mass fraction of unburnt gas at time t = 0.2 using
the modification with high-resolution Godunov scheme, Tign = 0.26, τ0 = 10−6, �x = �y = 0.01,
CFL ≤ 0.75.
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Mass fraction at time t=0.4

Fig. 12. Contour plot of pressure and mass fraction of unburnt gas at time t = 0.4 using
the modification with high-resolution Godunov scheme, Tign = 0.26, τ0 = 10−6, �x = �y = 0.01,
CFL ≤ 0.75.

Fig. 13. Contour plot of pressure and mass fraction of unburnt gas at time t = 0.4 using
the classical fractional step method with high-resolution Godunov scheme, Tign = 0.26, τ0 = 10−6,
�x = �y = 0.01, CFL ≤ 0.75.
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A MODIFIED FRACTIONAL STEP SCHEME 1505

Fig. 14. Scatter plot of pressure and mass fraction of unburnt gas vs. radius r at time t = 0.2
using the 2D modification with high-resolution Godunov scheme; �x = �y = 0.01, �t = 0.005,
τ0 = 10−6, Tign = 0.26.

Fig. 15. Scatter plot of pressure and mass fraction of unburnt gas vs. radius r at time t = 0.4
using the 2D modification with high-resolution Godunov scheme; �x = �y = 0.01, �t = 0.005,
τ0 = 10−6, Tign = 0.26.

Fig. 16. Scatter plot of pressure and mass fraction of unburnt gas vs. radius r using the
classical fractional step method with high-resolution Godunov scheme; �x = �y = 0.01, �t = 0.005,
τ0 = 10−6, Tign = 0.26.

later time. The scatter plots in Figure 16 show that the combustion front moves too
fast and there is an unphysical intermediate state for the pressure. Moreover, the
front does not remain circular.
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(a) (b)

Fig. 17. CJ detonation wave defracting around a corner. Resolved adaptive mesh refinement
calculation of temperature and mass fraction of unburnt gas.

Table 2
Error, i.e. difference between radial symmetric 1D reference solution and the solution calculated

with the 2D modified fractional step scheme in normal and tangential direction, in L1-norm and
experimental order of convergence (EOC) for the 2D modification using the high-resolution Godunov
scheme; τ0 = 10−6, Tign = 0.26, t = 0.4.

�x = �y �t ‖ ∆ρ ‖ ‖ ∆(ρu) ‖ ‖ ∆E ‖ ‖ ∆Z ‖
0.04 0.02 0.09481 0.05941 0.20250 0.10190

0.02 0.01 0.06477 0.03847 0.14550 0.04795

EOC 0.55 0.63 0.48 1.09

0.01 0.005 0.04258 0.02927 0.09877 0.02150

EOC 0.61 0.39 0.56 1.16

0.005 0.0025 0.02773 0.01945 0.06395 0.01221

EOC 0.62 0.59 0.63 0.82

Finally, Table 2 shows some numerical order of convergence results. For the
numerical approximation of this discontinuous solution the expected order of conver-
gence is between 0.5 and 1; see [19]. With our modified fractional step scheme we
could achieve such a convergence order without resolving the reaction zone. Although
our numerical solution shows the typical von Neumann peak behind the shock front,
we get a relatively large error in the region which approximates the very small reac-
tion zone. This might be a reason why the experimental order of convergence for the
variables which contain a peak is lower than the order of convergence for the mass
fraction of unburnt gas, which in the stiff case only contains a discontinuity.

The transition between the stiff and the nonstiff case is done in a manner anal-
ogous to what was described for the 1D case in section 2.3. Now the maximal rate
of reduction (area) of the mass fraction of unburnt gas in those mesh cells which
approximate the leading shock wave of the detonation is calculated using all normal
and transverse Riemann problems which have an influence on the mesh cell.

3.3. Approximation of a diffracting detonation wave. As a final example,
we consider a more interesting and challenging 2D problem, a CJ detonation wave
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A MODIFIED FRACTIONAL STEP SCHEME 1507

which is diffracting around a 90 degree corner. We use the reactive Euler equations
with the Arrhenius reaction rate law (2.1). For this example the temperature behind
the leading shock wave will vary, which causes a change of the reaction rate. We can
therefore test our stiff solver as well as the transition between the stiff and the nonstiff
approach. Resolved calculations for a similar problem were considered by Xu, Aslam,
and Stewart [30] and Aslam and Stewart [1]. The solution of this problem depends
strongly on the activation energy and the reaction rate constant. In order to decrease
the reaction zone length and make the problem more stiff, we used a larger reaction
rate constant than in [30]. We also increased the activation energy in order to obtain
the solution structure for our more stiff problem.

The computational domain is [0, 120]× [0, 120]. There is a solid wall in the upper-
left corner of the domain for x ≤ 15 and y ≥ 60. Initially unburnt gas is in the region
x > 14. This unburnt state is given by ρu = 1, uu = 0, vu = 0, and pu = 1. The
ratio of specific heat is γ = 1.4, the heat release is q0 = 25, the activation energy is
E+ = 35, and the reaction rate constant is given as K0 = 120. The unburnt state is
again connected by a CJ detonation wave to the burnt state, the half-reaction zone
length of this CJ detonation wave is about 0.5.

First we consider a resolved approximation using the adaptive mesh refinement
algorithm of amrclaw [5], [6]. On the finest discretization level, which is used along
the leading shock of the detonation wave, the half-reaction zone length is resolved by
16 mesh points. A 3840× 3840 grid would be required to achieve this same resolution
on a uniform grid. Contour plots of the temperature as well as of the mass fraction
of unburnt gas are given in Figure 17.

As the detonation wave moves around the corner, the leading shock weakens,
which decreases the temperature behind the shock. When the shock becomes weak
enough, it will no longer raise the temperature above the ignition point. Then we get
a nonreactive shock traveling vertically followed by a region in which the temperature
is high relative to the initial unburnt state but the reaction rate is still negligible.
Some distance behind this shock the gas burns via a deflagration wave. This region
can be seen in the plot of the temperature; see Figure 17(a).

The shock which is traveling in the horizontal direction is still strong enough to
ignite a reaction and remains a CJ detonation wave with the constant speed sCJ =
7.1247. At some point along the curved shock front there is a transition between the
detonation wave traveling horizontally and the shock-deflagration structure traveling
vertically. Our goal in this set of experiments is to demonstrate that on underresolved
grids the modified method approximates the correct structure better than the classical
fractional step method.

Figures 18–20 show underresolved calculations of this problem. When the shock
becomes weaker and the temperature behind the shock becomes lower, the reaction
rate behind the shock decreases. In the mesh cells which approximate the leading
shock front we will therefore also switch from the stiff to the nonstiff solver. Our
modified fractional step scheme, used for the plots on the left-hand side, gives a
more accurate approximation of the transition of the solution structure from a det-
onation wave to a nonreactive shock followed by a deflagration wave. The modified
approach on the 120× 120 grid (Figure 18(a)) gives a representation of this structure
that is at least as good as what is seen with the classical method on the 240 × 240
grid (Figure 19(b)). The modified scheme on the 240 × 240 grid gives compara-
ble results as the fractional step scheme on the 480× 480 grid (compare Figure 19(a)
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1508 C. HELZEL, R.J. LEVEQUE, AND G. WARNECKE

(a) (b)

Fig. 18. CJ detonation wave diffracting around a corner. Underresolved calculation of the
temperature (120 × 120 grid points). (a) Using the modified fractional step scheme; (b) using the
classical fractional step scheme.

(a) (b)

Fig. 19. Underresolved calculation of the temperature (240 × 240 grid points). (a) Modified
fractional step scheme; (b) classical fractional step scheme.

(a) (b)

Fig. 20. Approximation of the temperature using two grid cells inside the half-reaction zone
length (480 × 480 grid points). (a) Modified fractional step scheme; (b) classical fractional step
scheme.D

ow
nl

oa
de

d 
02

/0
6/

17
 to

 1
28

.9
5.

10
4.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



A MODIFIED FRACTIONAL STEP SCHEME 1509

and Figure 20(b)). Finally the modified scheme on the 480×480 grid produces a very
accurate approximation as can be seen by comparing Figure 20(a) with the resolved
calculation in Figure 17(a).

For lower or higher values of the activation energy, the point at which the shock
structure changes from a reactive to a nonreactive shock moves. If the activation
energy is low enough then the shock which is diffracting around the corner may
remain strong enough to ignite a reaction and remain a detonation wave everywhere.
The reaction rate constant also has an influence on the solution structure. For a
larger rate constant the reaction behind the curved shock becomes stronger and the
length of the reaction zone becomes smaller. Additional experiments with our method
(not shown here) have confirmed that it is robust and yields the correct structure on
underresolved grids also in other cases.

4. Conclusions. If stiff source terms are not treated carefully, then the numer-
ical method can produce unphysical solutions even if the scheme is stable. We have
considered these numerical difficulties for a combustion problem. If one is not inter-
ested in a calculation of the physical processes inside the very small reaction zone
but instead wants to determine more global features, e.g., the propagation speed of
a detonation wave, then it would be preferable to use a scheme which does not have
to resolve the very stiff source term. Here we have shown how the classical fractional
step scheme can be modified to give an accurate approximation for the model com-
bustion problem. In section 2 we gave a heuristic motivation of a modification of
the fractional step method which was described in that section and extended to 2D
problems in section 3.

Our modified fractional step scheme needs information about the structure of the
Riemann solution in order to determine the mesh cells over which the leading shock
of a detonation wave is smeared. Furthermore, the distance between the shock and
contact discontinuity in these mesh cells is required. This information will automat-
ically be provided by an exact Riemann solver as we have described. The distance
between the shock and contact discontinuity determines the part of a mesh cell where
the source term will be applied in a stiff calculation. For 2D calculations this area
depends on all Riemann problems which have an influence to the mesh cell, including
the Riemann problems which are solved in order to obtain the fluxes in the transverse
direction. However, this further information can be obtained with less effort than the
calculation of the change of the cell average due to the solution of the homogeneous
problem. Moreover, the modified treatment of the source term is only necessary in
those mesh cells which approximate the smeared-out leading shock, e.g., in about
three mesh cells for the calculation of the 1D example. Therefore, our modification
requires only slightly more effort than the classical fractional step scheme and permits
the use of much coarser underresolved grids.
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