rpn2.f.html | clawcode2html |
Source file: rpn2.f | |
Directory: /home/rjl/www/pubs/cise08/cise08levequeV2/lib | |
Converted: Wed Jul 2 2008 at 13:39:55 | |
This documentation file will not reflect any later changes in the source file. |
c c c ===================================================== subroutine rpn2(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr, & wave,s,amdq,apdq) c ===================================================== c c # Solve Riemann problems for the 2D hyperbolic problem. c # This is a dummy routine and is only intended c # to illustrate the format of this routine. c # See various example directories for better examples. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c c # This data is along a slice in the x-direction if ixy=1 c # or the y-direction if ixy=2. c # On output, wave contains the waves, c # s the speeds, c # c # amdq = A^- Delta q, c # apdq = A^+ Delta q, c # the decomposition of the flux difference c # f(qr(i-1)) - f(ql(i)) c # into leftgoing and rightgoing parts respectively. c # c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routines, this routine is called with ql = qr c # maux=0 and aux arrays are unused in this example. c c implicit double precision (a-h,o-z) c dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension apdq(1-mbc:maxm+mbc, meqn) dimension amdq(1-mbc:maxm+mbc, meqn) c write(6,*) 'You must provide a valid Riemann solver' stop return end