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Abstract. A fractional step numerical method is developed for the nonlinear partial differ-
ential equations arising in chemotaxis models, which include density-dependent diffusion
terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel
approach of viewing the chemotaxis term as an advection term which is possible in the
context of fractional steps. This method is applied to pattern formation problems in bacterial
growth and shown to give good results. High-resolution methods capable of capturing steep
gradients (from clawpack) are used for the advection step, while the A-stable and L-stable
TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with
other diffusion methods is analyzed and eliminated.

1. Introduction

Many organisms exhibit a biased random walk in the presence of a chemical. This
motion is termed chemotaxis, and often results in very interesting spatial patterns.
Mathematical models of the biological system are an important tool used in the in-
vestigation of these patterns. Chemotaxis systems are highly nonlinear, due to the
negative density-dependent diffusion term which characterises chemotactic behav-
iour, and so any realistic model is too difficult to solve analytically. Thus numerical
simulation is a crucial part of the analysis.

These models are time-dependent systems of partial differential equations, typ-
ically in two or three space dimensions, which contain three distinct sets of terms
modeling three distinct processes:

• Reaction terms, modeling the interaction of different components, e.g., con-
sumption of nutrients, growth of cells, release of chemoattractant, etc.,
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• Diffusion terms, modeling the random motion of each component,
• Chemotaxis terms, which we will view as advection terms, modeling the direct-

ed motion of one or more component in response to concentration gradients of
another component (the chemoattractant).

Reaction-diffusion equations including only the first two processes above have
been widely studied, both theoretically and numerically, as models of many biolog-
ical systems. Chemotaxis adds the new ingredient of negative density-dependent
diffusion, and the development of numerical methods for this problem has not been
studied as intensively to date.

In this paper we discuss the appropriate ingredients of a fractional step meth-
od for such problems, in which the three processes are decoupled and numerical
methods best suited for each step are applied sequentially. This has several advan-
tages over an “unsplit” method in which all terms are modeled simultaneously, as
outlined in subsequent sections. It also allows us to view the chemotaxis term as an
advection term, which can be treated very accurately when separated from diffusive
processes. Here we study one particular model for pattern formation in bacteria,
but similar methods should be useful for many other problems in chemotaxis.

In particular, we focus on the following issues:

1. The use of high-resolution slope-limiter methods for the advection step, as im-
plemented in the CLAWPACK software package, which is freely available[9].
This class of methods was originally developed for accurately computing shock
waves and other discontinuous solutions in compressible gas dynamics, and
gives sharp resolution of rapidly varying solutions without nonphysical oscil-
lations. These methods are ideal for pattern formation problems where sharp
peaks in concentration arise in localized areas. To our knowledge these methods
have not been previously applied in chemotaxis problems.

2. The second-order accurate, L-stable TR-BDF2 method for the reaction and dif-
fusion steps. This method is not nearly as well known as standard second-order
methods such as Crank-Nicolson, but its use is critical for this problem.

3. Using the Crank-Nicolson method for the diffusion step can lead to a subtle
numerical instability due to a nonlinear interaction between the advection and
reaction steps. We explain this instability and demonstrate that use of the TR-
BDF2 method restores stability and results in an efficient and accurate solution
procedure for the full chemotaxis model.

While each component of our solution procedure is a standard numerical ap-
proach in other fields, this particular combination of methods coupled through
fractional steps gives a new and powerful method for chemotaxis problems which
should be applicable more generally. Each component will be discussed in detail
starting in Section 4. First we introduce the particular chemotaxis model used as
an example in this paper.

2. Bacterial patterns and a mathematical model

Recently, Budrene and Berg (1991, 1995) have shown that a colony of E. coli
or S. typhimurium will form geometrically complex patterns when exposed to, or
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feeding on, intermediates of the tricarboxylic acid (TCA) cycle, particularly suc-
cinate. In response to succinate, the bacteria secrete aspartate which is a potent
chemoattractant. The bacteria, aspartate and succinate are the critical players in the
experiments.

The patterns formed by S. typhimurium are concentric rings which are either
continuous or spotted [26]. Initially succinate is uniformly distributed throughout a
thin layer of medium, and an inoculum of cells is added to the centre. The patterns
begin with the formation of a very low density bacterial lawn spreading out disc-
wise from the initial inoculum. Stationary, high density rings of bacteria appear
within this lawn.

E. coli forms complex patterns including sunflower spirals, radial spots, radial
stripes and chevrons [5]. The initial conditions are the same as for the S. typhimurium
experiments, but the pattern mechanism is quite different. Initially, instead of a thin
bacterial lawn, a swarm ring (high density ring of vigorously motile bacteria) forms
and expands outwards from the initial inoculum. The bacterial density in the swarm
ring increases until some point at which the ring becomes unstable, and some per-
centage of the bacteria are left behind as aggregates. These aggregates remain bright
(full of vigorously motile bacteria) for a short period of time, but then dissolve as
the bacteria rejoin the swarm ring. Left behind in the aggregate’s original location
is a clump of bacteria which, for some as yet unknown reason (biologically), are
non motile. These non-motile bacteria remain as markers of the pattern.

For all of these patterns the essential building blocks of bacteria, aspartate
(chemoattractant) and succinate (pattern stimulant) remain the same. The impor-
tant biological processes in these experiments are diffusion of bacteria, aspartate
and succinate, proliferation of bacteria, secretion and uptake of aspartate by the
bacteria, consumption of succinate, and chemotaxis of the cells up gradients of
aspartate. The cells both secrete and consume the aspartate. Also, proliferation in-
cludes reproduction and death of the cells. Though the cells do not actually die,
they are known to become non-motile and cease participating in the formation of
pattern. Thus, for the purposes of the model these cells are considered dead.

Combining the key biological processes into a mathematical model, we arrive
at a system of three partial differential equations of the form

rate of
change of

cell density
n

= diffusion
of cells

+
chemotaxis
of cells to
aspartate

+
growth and

death of
cells

rate of
change of
aspartate

concentration
c

=
diffusion

of
aspartate

+
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by cells
−

uptake
of aspartate

by cells
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rate of
change of
succinate

concentration
s

=
diffusion

of
succinate

−
uptake

of succinate
by cells

(1)

where n denotes bacterial cell density, c aspartate concentration and s succinate
concentration. All quantities are nondimensional. The presence of diffusion terms
and chemotaxis terms is basic to chemotaxis models. It is fundamentally the inter-
action of Fickian diffusion, which tends to erase pattern, and chemotaxis, which
tends to enhance it, which creates the stable spatial patterns observed. The two
processes are equally important, and the nonlinear nature of the chemotaxis term is
crucial. The general form of this term is ∇(uχ(v)) where u represents cell density
and v represents chemoattractant density. The generally nonlinear function χ(v)

is the cellular diffusion rate up the chemoattractant density gradient, which varies
with the local chemoattractant concentration.

For many of the boxed terms, functional forms substantiated by experimen-
tal results are available in the literature. Using these and expressions motivated
by the particulars of the E. coli and S. typhimurium experiments, we obtain the
mathematical model in dimensionless form

∂n

∂t
= Dn∇2n− α∇

[
n

(1 + c)2
∇c

]
+ ρn

(
δ

s2

1 + s2
− n

)

∂c

∂t
= Dc∇2c + β s

n2

γ + n2
− nc

∂s

∂t
= Ds∇2s − κn

s2

1 + s2
. (2)

The quantity ∇2 represents the Laplacian in two space dimensions, and α, β, γ , δ,
ρ, κ are parameters. The reader is referred to [25,23,24] for more detail concerning
solutions admitted by the model and mathematical analysis of the equations.

3. Numerical methods

Chemotaxis models have been studied for some time, both numerically and ana-
lytically. Many of the early models of E. coli patterns had analytic solutions avail-
able, since diffusion of the chemoattractant/food was assumed so small as to be
negligible [6,8]. For more complex models, a straightforward method such as
Crank-Nicholson applied to the whole model (as described below) with Successive
Over-Relaxation (SOR) iterations has been used successfully [28]. Other research-
ers did simulations in one dimension [17,20], which is a much easier problem.
Those researchers interested in two dimensional patterns were looking at steady
state patterns on relatively small domains [15,28]. Recently, a number of other
numerical methods have been used to obtain interesting pattern formation results
[3,4], but unfortunately the numerical methods are not explored in the literature.
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The E. coli and S. typhimurium model (2) is a challenging one numerically for
a number of reasons. Of these, the highly nonlinear chemotaxis and reaction terms
are immediately apparent. In addition, the model contains diffusion terms which
have infinite propagation speeds in the context of solutions. As mentioned above,
the interaction between the chemotaxis and diffusion terms is a fundamental part of
the pattern-forming process, and so neither can be ignored. For the model system
(2), the parameter values are such that diffusion and chemotaxis are equally impor-
tant. In addition, this modelling project is particularly difficult because ultimately,
patterns are sought on large domains across which a disturbance must propagate for
some time without hitting the far boundary. We are thus motivated to find a com-
putationally efficient method which allows us to maximise the spatial and temporal
grid spacing. The method presented here has the potential to substantially reduce
the computational effort required to solve chemotaxis equations.

As chemotaxis models become more nonlinear and increasingly difficult to an-
alyse, particularly close attention needs to be paid to the numerical methods used in
their study. Research on chemotaxis equations tends to focus on parameter domains
where the equations are locally linearly unstable, which makes appropriate choice
and use of numerical methods especially important.

One approach to solving the system of equations (2) is to model all terms si-
multaneously, replacing each of the derivatives by finite differences and marching
forward in time. Such a method will typically need to be implicit because of the
diffusion terms, which otherwise would cause a severe time step restriction. See,
for example, [16,22] for general discussion of standard numerical methods and
issues. The reaction terms may also contribute to the necessity of using an implicit
method if some fast reactions reach equilibrium on a much faster time scale than
the processes being modeled (i.e., if the reaction terms are “stiff”). A second-order
accurate implicit method is easily obtained by using a trapezoidal rule discretisa-
tion in time and centered differences in space (as in the standard Crank-Nicolson
method for the pure diffusion or heat equation). This leads to a method in which
all terms, including the advective terms, are implicit and centered in space, and in
which there is nonlinear coupling between all components at all grid points.

The chemotaxis term taken alone however, can be viewed as advective and
thus hyperbolic in character. Such terms can typically be handled best by explicit
methods. Making these highly nonlinear terms implicit can lead to difficulties in
solving the implicit system in each time step. Moreover, using centered approxi-
mations can lead to well-known difficulties with nonphysical oscillations arising
near discontinuities or steep gradients in the solution [11]. For pattern formation
problems we expect spots or stripes with steep gradients to form, and it is critical
that we resolve these well.

Excellent explicit methods have been developed for hyperbolic systems of con-
servation laws with discontinuous solutions, largely in the context of gas dynamics
in aerodynamics and astrophysics, where shock waves are a prominent feature.
These “high-resolution” methods are second order accurate in regions where the
solution is smooth and also give sharp resolution of discontinuities or steep gradi-
ents. A general introduction can be found in [11]. These methods can be adapted
for solving advection equations of the type that arise in chemotaxis, and in this
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work the software package clawpack (Conservation LAWs PACKage) is used, as
described in the next section.

In order to take advantage of these methods for advective terms, it is easiest to
use a fractional step method. We refer specifically to one in which the solution pro-
cedure is split up into independent steps corresponding to the advection, diffusion,
and reaction processes, and each step is handled independently. This allows us to
isolate the chemotaxis term from the Fickian diffusion and reaction terms, and thus
to treat it as an advection term. We can write the full system of equations in the
form

qt = D(q)+ A(q)+ R(q) (3)

where q = (u, v,w) is the vector of unknowns,D(q) represents the diffusive terms
in the equation, A(q) the advection terms, and R(q) the reaction terms. If qn is
the solution at time tn, then in the simplest fractional step method we would update
qn to obtain qn+1 at time tn+1 = tn +�t in a sequence of three steps:

1. Solve qt = A(q) over time �t with data qn to obtain q∗,
2. Solve qt = D(q) over time �t with data q∗ to obtain q∗∗,
3. Solve qt = R(q) over time �t with data q∗∗ to obtain qn+1.

We can abbreviate this procedure as qn+1 = R(�t)D(�t)A(�t)qn. It can be
shown that this results in a first order accurate approximation for the full equations.
Moreover, if we use the “Strang splitting” we can obtain second order accuracy,
provided each subproblem is solved with a second order accurate method [21]. The
Strang splitting is a symmetric version of the above procedure of the form

qn+1 = A(�t/2)D(�t/2)R(�t)D(�t/2)A(�t/2)qn.

For general discussions of fractional step methods, see for example [22,27].
The advantage of a fractional step method is that we can use the most suitable

method for each problem independently, such as the high-resolution methods for
advection mentioned above. In Sections 5 and 6 we discuss the methods of choice
for the reaction and diffusion steps, and in Section 7 we present some numeri-
cal results for the chemotaxis equations of Section 2. In Section 8 we give some
discussion of a stability problem that was found in using the standard Crank-Nicol-
son method for the diffusion step, which would seem to be a natural choice. This
motivates the need for the TR-BDF2 method advocated in Section 6.

4. The advection step

For the advection step, we use the CLAWPACK algorithms described in [13].
The algorithms are too complicated to present in detail here, and the original pa-
per [13] should be consulted for complete information. The special case of advection
in a divergence-free velocity field is described in detail in [12]. This arises when
advecting a quantity in an incompressible fluid flow, for example, in which case
the fluid density is constant and consequently the velocities u and v (in two di-
mensions) satisfy ux + vy = 0. The velocity fields we must consider here are not
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divergence-free, and indeed the pattern formation we hope to model is dependent
on cells clustering together in some regions. The advection equation has the form

nt + (un)x + (vn)y = 0, (4)

where the velocity field is defined by

u = α

(1 + c)2

∂c

∂x
(5)

v = α

(1 + c)2

∂c

∂y
(6)

We use a finite-volume method in which nij represents the average of n over the
(i, j) grid cell of size �x�y. (Note: grid cells should not be confused with biolog-
ical cells!) To update the cell average of n, the algorithm of [13] requires that we
solve the “Riemann problem” at each interface between grid cells. This is simply
the one-dimensional equation normal to the interface with piecewise constant data
defined by the values in each adjacent cell. For example, consider the interface
between cells (i − 1, j) and (i, j). We must solve nt + (un)x = 0 with data ni−1,j
and nij . For the scalar advection equation this results in a wave of strength

W = nij − ni−1,j

propagating at some speed ui−1/2,j . Based on (5), we define this speed by

ui−1/2,j = α

(1 + ci−1/2,j )2

(
cij − ci−1,j

�x

)
, (7)

where ci−1/2,j is an average value of c,

ci−1/2,j = ci + ci−1

2

The algorithm also requires that we compute a flux-difference splitting of the
jump in un between the two cells into left-going and right-going flux-differences,
denoted by A−�q and A+�q. Following CLAWPACK Note #8 [10], we define
these by

A−�q = Fi−1/2,j − ui−1,j ni−1,j

A+�q = uijnij − Fi−1/2,j

where

Fi−1/2,j =
{
ui−1/2,j ni−1,j if ui−1/2,j ≥ 0
ui−1/2,j ni,j if ui−1/2,j < 0

uij = max(ui−1/2,j , 0)+ min(ui+1/2,j , 0).

We must also define the manner in which these flux-differences move in the trans-
verse direction, i.e. a splitting of A+�q into B−A+�qij and B+A+�qij , and



462 R. Tyson et al.

Fig. 1. Computed results for the test problem of Section 4.

similarly for A−�q (in the notation of [13]). This is accomplished by

B+A±�q1 = max(vi,j+1/2, 0)A±�q1

B−A±�q1 = min(vi,j−1/2, 0)A±�q1

where, for example, vi,j−1/2 is the velocity normal to the interface between cells
(i, j − 1) and (i, j) and is defined following (6) by

vi,j−1/2 = α

(1 + ci−1/2,j )2

(
cij − ci,j−1

�y

)
. (8)

These formulas are encoded in the Riemann-solvers rpn2 and rpt2 required by
CLAWPACK, which then implements the algorithm of [13] to give a “high-res-
olution” solution that is second-order accurate where n is smooth and that uses
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Fig. 1. (continued)

“flux-limiters” to maintain sharp resolution of discontinuities or steep gradients
with minimal smearing or nonphysical oscillation.

As an example to show that this advection algorithm is effective for the type of
problems arising in chemotaxis, we present one test case where we simply advect
a scalar quantity up the gradient of a chemoattractant with a fixed density profile.
On the unit square we set

c(x, y) = 1 − cos(4πr(x, y)) (9)

for all t , where

r(x, y) =
√
(x − 0.5)2 + (y − 0.5)2

is the distance from the center. This gives a ring of chemoattractant with maxi-
mum at r = 0.25. The velocity profile is given by ∇c and computationally we use
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velocities analogous to (7) and (8) based on differencing this function c between
grid cells.

We initialize n to be 1 inside a circle of radius 0.4 about the center and 0 out-
side (so that boundary conditions do not affect the solution). This corresponds to
a uniform lawn of cells inside this disk, which then move up the chemoattractant’s
gradient and tend to cluster into a ridge about r = 0.25. This problem was solved on
a 100 × 100 grid with time step �t ≈ 0.0072 corresponding to a Courant number
of 0.9.

Figure 1 shows contour plots of the computed n at several times. At each time
we also show a scatter plot of all the 10,000 solution values qij plotted against
r(xi, yj ), the distance of the grid point from the center. Since the solution should
be radially symmetric, all of these points should lie on a curve q̃1(r, t). The solid
line in these figures is this true solution q̃1(r, t), as obtained by solving the reduced
one-dimensional equation

q̃1
t + U(r)q̃1

r = −(U(r)/r + U ′(r))q̃1

by the method of characteristics with an accurate ODE solver. Here U(r) is the
velocity in the r direction, found by differentiating c from (9) with respect to r .

We see that the solution remains highly symmetric in spite of the fact that a
Cartesian grid is used. There is very little scatter of points near any fixed value of r ,
indicating that the method is quite isotropic and shows little grid-orientation effects.
This is very important for the pattern formation studied here, since the break-up of
rings into spots seen in Section 7 could easily be affected by numerical artifacts.

We also see that there is little loss of resolution in the numerical solution until
times at which the ridge of n is too narrow to be resolved on this particular grid. By
contrast, a first-order method (e.g., upwind) would produce a more smeared solu-
tion, while a standard second-order methods such as Lax-Wendroff would produce
oscillations and undershoots near the edge of the ridge, giving rise to nonphysical
negative cell densities. In these computations, where the van Leer limiter has been
used, there are some very slight undershoots, on the order of 10−4 at most.

It is also important to note that this method is completely conservative. Even
at the last time shown, when the ridge is not very well resolved, the total mass of
cells present (measured by �x�y

∑
nij ) is conserved to machine precision.

5. The reaction step

The reaction step consists of solving a coupled system of ordinary differential equa-
tions in each grid cell. Selecting the reaction terms in (2) we obtain the system of
equations

∂n

∂t
= ρn

(
δ

s2

1 + s2
− n

)

∂c

∂t
= β s

(
n2

γ + n2

)
− nc

∂s

∂t
= −κn

(
s2

1 + s2

)
. (10)
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There are no spatial derivatives and hence no spatial coupling of different grid cells
in this step. This is another advantage of the fractional step approach: if we use an
implicit method, which may be necessary for stability reasons on some problems,
then we obtain decoupled small systems of equations at each grid point, rather than
a large system coupling together all grid points. Since the reaction terms may be
highly nonlinear, this decoupling of the reaction terms from spatial derivatives is
advantageous.

For the problems studied here, we have found that the method chosen for the
reaction terms has little impact on the solution obtained. The fourth-order explic-
it Runge-Kutta method and the first-order implicit backward Euler method, two
radically different methods, have both been tried with essentially the same results.

Note that a 1-step method must be used, rather than a linear multi-step method,
since data from previous time steps is not available when the reaction equations
are solved. As a general recommendation, a second-order implicit method is most
reliable for the reaction step. The trapezoidal rule (TR) may be a reasonable choice
for many problems, since it is A-stable [7], meaning that it behaves properly on the
test equation q ′ = λq when Re(λ) < 0 and the true solution decays exponentially.
An A-stable method gives a decaying numerical solution for any size time step �t .
This is particularly important if the problem is stiff, meaning that we wish to use
a time step �t that is large compared to some time scales λ−1 in the problem, i.e.,
λ�t is large in magnitude. This could occur if the fast time scales are essentially
in equilibrium and we are not attempting to track transient behaviour on this time
scale.

In the fractional step method, however, it is possible that these terms will be
thrown out of equilibrium in other steps of the process. In this case we would like
the method used in the reaction step to restore equilibrium. For the test equation,
this means we would like qn+1 → 0 as λ�t → −∞ regardless of the value of qn.
A method with this property is called L-stable [7].

The TR method is not L-stable, and instead qn+1 → −qn as λ�t → −∞. The
method remains stable in this limit, but produces oscillatory solutions. Exactly this
problem is seen in the diffusion step if the Crank-Nicolson method (which is based
on TR) is used, as discussed in Section 6 and Section 8.

One possible alternative method is the TR-BDF2 method [2], an implicit Run-
ge-Kutta method based on taking a time step of length γ�t where γ < 1 with TR
to obtain an intermediate value qn+γ , and then using the 2-step BDF method on
qn and qn+γ to obtain qn+1. The value γ = 2 − √

(2) ≈ 0.59 gives the minimum
error and makes it possible to use an efficient approximate-Newton iteration, but
very little accuracy is lost by using γ = 1/2. Since the latter value is simpler to
use in our formulation, we assume that value for the remainder of the paper. On the
ordinary differential equation qt = R(q) the method thus has the form

qn+1/2 = qn + �t

4

(
R(qn)+ R(qn+1/2)

)
, (11)

qn+1 = 1

3

(
− qn + 4qn+1/2 +�tR(qn+1)

)
. (12)

This method is both A-stable and L-stable, and second-order accurate.



466 R. Tyson et al.

In the problems considered here, the reaction terms are not stiff and, as noted
above, we have not needed such a method in the reaction step. (This method is
crucial however, for the diffusion step discussed in the next section.) We have not
experimented with chemotaxis problems having stiff reaction terms, but it is worth
noting that for problems where there are fast transients occurring only within some
“reaction front”, it may be necessary to use sufficiently small time steps that will
resolve these fast transients rather than relying on an implicit method such as TR-
BDF2. The coupling between the reaction step and the other processes is known to
cause numerical difficulties such as reaction fronts that travel at incorrect speeds.
This has been observed in combustion problems, for example, and is analyzed for
a simple model problem in [14].

6. The diffusion step

The diffusion equations take the form

nt = D1∇2n, ct = D2∇2c, st = D3∇2s .

Each of these is simply the linear diffusion equation on each component. For numer-
ical solutions, the standard second-order accurate Crank-Nicolson method would
be a natural choice. This is just the trapezoidal rule from the previous section ap-
plied to the system of ordinary differential equations obtained by replacing the
Laplacian operator �2 by the discrete operator

∇2
hqij = 1

h2
(qi−1,j + qi+1,j + qi,j−1 + qi,j+1 − 4qij )

where q = (n, c, s). This approach has proved satisfactory in studying the
propagation of swarm rings. The performance of the method on the E. coli and
S. typhimurium model (2) however, is entirely different when we seek station-
ary patterns, like those obtained by S. typhimurium. If we try to obtain numerical
solutions for Courant numbers close to 1, the simulations rapidly develop grid scale
oscillations that are not adequately damped by the Crank-Nicolson method. The
numerical method does not become stable until the timestep is drastically reduced,
requiring Courant numbers less than 0.01. At such small values the method is
very slow and, more importantly, the advective step becomes maximally diffusive.
This instability results from the fact that TR is not L-stable. Grid-scale oscillations
arising from the nonlinear interaction of the advection and reaction steps should
be damped by the diffusion step, but with Crank-Nicolson these oscillations are
instead negated as discussed in Section 5 and grow worse in subsequent steps. This
is analyzed in more detail in Section 8.

Instead we have used the TR-BDF2 method (11) for the diffusion steps and
obtained good results. Note that each stage of this 2-stage method now requires
solving a large linear system of equations coupling together all grid points. How-
ever, unlike the reaction terms, these equations are linear. Also, the equations for
n, c, and s are decoupled from one another.

We implemented TR-BDF2 by splitting the method dimensionally and then
correcting for cross terms by using a few sweeps of Gauss-Seidel (or under-relaxed
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Jacobi) iteration. The first stage of the method, TR, is implemented by taking one
step of a locally one-dimensional (LOD) method, which is just a fractional step
method in which the x- and y-derivative terms are split apart, resulting in simple
tridiagonal systems of equations to solve along each grid line [22]. The second stage,
BDF2, is implemented first by taking another step of an LOD method, with differ-
ent coefficients this time. This gives a very good initial guess for the Gauss-Seidel
procedure. In principle advancing by LOD alone should be enough to maintain
second order accuracy, but we have found that this can reintroduce grid-scale os-
cillations that cause stability problems of the sort described in Section 8, and so the
Gauss-Seidel sweeps are used to damp these high-frequency oscillations.

7. Numerical results

Numerical simulation results compare well with the patterns obtained experi-
mentally. The continuous and spotted concentric ring patterns of Figures 2 and
3 compare well with the S. typhimurium experiments, and the radial spots pattern
of Figure 4 is very similar to the radial spots pattern observed in some of the E. coli
experiments. In addition, the temporal sequence of events leading to the formation
of the numerical patterns is the same as that reported experimentally in the two
cases (E. coli and S. typhimurium). That is, for S. typhimurium we see a low den-
sity bacterial lawn spread out discwise from the initial inoculum, followed by the
formation of continuous or spotted concentric rings within the lawn. For E. coli we
see the formation of a high cell density swarm ring which sheds a regular pattern
of spots in its wake.

Fig. 2. Simulation results for the semi-solid medium model showing a S. typhimurium pat-
tern of concentric rings. White indicates high cell density, black the opposite. Parameter
values: dn = 0.25, ds = 1.0, α = 2.25, β = 0.2, δ = 20, ρ = 0.01, κ = 0, µ = 1 and
s = 1. Simulation Parameters: � x = 0.08, � t = 0.03.
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Fig. 3. Simulation results for the semi-solid medium model showing a S. typhimurium
pattern of concentric spotted rings. White indicates high cell density, black the opposite.
Parameter values: dn = 0.25, ds = 1.0, α = 5, β = 0.2, δ = 20, ρ = 0.01, κ = 0, µ = 1
and s = 1. Simulation Parameters: � x = 0.3, � t = 0.01.

The pattern elements are very distinct from the surrounding regions as is shown
in a surface plot (Figure 5). Grid refinement studies were carried out for simulations
in one dimension to verify that the solutions obtained are real. The effect of the
boundary was also checked by running the two dimensional simulations on a large
domain with the initial inoculum of cells placed at the centre. The simulation shows
that boundary effects are not triggering the formation of the observed pattern (Fig-
ure 6). Finally, a nonlinear analysis was carried out on the model equations [23],
and the numerical results compared with the analytic solutions. The grid spacing
and timestep interval used for each figure is indicated in the figure caption.

8. A numerical instability

We mentioned earlier that it is necessary to use a method which is both A-stable
and L-stable for the diffusion step in order to prevent grid-scale oscillations from
developing. Difficulties with methods which have very slow decay of high frequen-
cy solution modes has been observed previously in the context of reaction-diffusion
equations [19] and reaction-convection-diffusion equations [1]. In our reaction-
chemotaxis-diffusion model the problem is even more severe due to the nonlinear
nature of the chemotaxis term.

To investigate the nature of this instability, we consider a very simplified version
of the model (2) with a minimum number of terms and nonlinearities

∂n

∂t
= Dn∇2n− α∇ (n∇c)
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Fig. 4. Simulation result showing a radial spots pattern left behind an expanding swarm
ring. Parameter values: dn = 0.25, ds = 1.0, α = 35, β = 6, δ = 3.5, ρ = 1, κ = 0,
µ = 100 and s = 1. Simulation Parameters: � x = 0.14, � t = 0.01.

∂c

∂t
= Dc∇2c − nc . (13)

In this model the cells and chemoattractant both diffuse, the cells are advected up the
chemoattractant gradient (chemotaxis), and the cells consume the chemoattractant.

It is difficult to do a theoretical stability analysis of this model, due to the fact
that it is the nonlinear interaction of the chemotaxis and diffusion terms, coupled
with the reaction terms (also highly nonlinear) which is fundamental to the pat-
tern-forming process. Any analysis of the model and method must embrace that
nonlinearity; therefore we investigate the solution stability numerically.

When tested individually on the appropriate portions of the model (13), each
step in the Strang splitting procedure is stable for reasonable timestep intervals.
When tested in pairs however, the advection-diffusion and reaction-diffusion pair-
ings are stable while the advection-reaction pairing is highly unstable. The reaction
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Fig. 5. Surface plot of the cell density distribution in a S. typhimurium pattern. Parameter
values: dn = 0.25, ds = 1.0, α = 5, β = 0.2, δ = 20, ρ = 0.01, κ = 0, µ = 1 and s = 1.
Simulation Parameters: � x = 0.3, � t = 0.01.

Fig. 6. Swarm ring pattern centred in the domain. Parameter Values: dn = 0.25, ds = 1.0,
α = 90, β = 10, δ = 6.6, ρ = 1, κ = 0.5 and s = 1.0. Simulation Parameters:� x = 0.14,
� t ≤ 0.01.

terms (here just the consumption of chemoattractant by the cells) change the chemo-
attractant concentration and therefore the surface over which the cells advect. This
coupling is numerically observed to be unstable (Fig. 7).

Physically, the presence of diffusion in the system should damp high frequen-
cy oscillations. When the full model is solved numerically however, the timestep
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Fig. 7. Simulation result showing instability developing in the solution of model (13) when
the advection and reaction portions are run alone. Cell density (n) and chemoattractant con-
centration (c) are plotted against x at various timesteps. The grid scale noise appears to arise
in connection with the chemoattractant profile flattening and changing concavity. The results
are plotted at several different times to show the instability developing. In the cell density
plot, the curves increase in concavity as time increases. In the chemoattractant concentration
plot, the curves decrease in concavity as time increases. Simulation Parameters: � x = 0.1,
� t = 0.5.

required to prevent high frequency oscillations from overwhelming the results is
very small when the diffusion term is discretised according to the Crank-Nicolson
formula. A much larger timestep is possible when the diffusion term is discretised
according to the TR-BDF2 formula, which is far more effective at damping high
frequency oscillations. The two methods in one dimension are compared in Figure
8. The same conclusions apply to the full model (2) and are illustrated in Figure 9.

For models in which the two diffusion coefficients are very different in mag-
nitude the Crank-Nicolson method can be particularly troublesome. Consider for
example the situation Dn � Dc. Then the diffusion of the chemoattractant can be
ignored in the short term. To see how a grid-scale oscillation can grow, suppose we
start with constant c and n and introduce a small amplitude grid-scale oscillation,
alternating positive and negative at adjacent grid points. The cells are attracted up
the resulting gradient so that after the advection step the density n will have the
same oscillatory pattern. The diffusion step should now damp these oscillations,
but if we use Crank-Nicolson with a timestep for which �tDn/�x is large then
the oscillations in n will be essentially negated rather than damped, as discussed in
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Fig. 8. Simulation result showing the effect of adding diffusion to the model. Compare with
the advection-reaction pairing shown in Figure 7. Cell density (n) and chemoattractant con-
centration (c) are plotted against x at various timesteps. Crank-Nicolson diffusion (a) doesn’t
sufficiently dissipate the high frequencies to prevent grid scale noise from appearing in the
solution. TR-BDF2 diffusion (b) does provide sufficient diffusivity. The results are plotted at
several different times to show the instability developing. In the cell density plot, the curves
increase in concavity as time increases. In the chemoattractant concentration plot, the curves
decrease in concavity as time increases. Simulation Parameters: � x = 0.1, � t = 0.5.

Section 5. As a result, n is now larger at the grid points where c is smaller; the cells
have clustered where there is less chemoattractant. In the reaction step the cells
thus eat more chemoattractant at these points than where c is larger, leading to an
amplification of the oscillation. This can grow in an unstable manner in subsequent
time steps.

Our findings confirm the trend observed in other numerical methods for par-
abolic partial differential equations, namely that it is important to use a method
which is both A-stable and L-stable. We investigated changing the methods used
for the reaction and advection steps, but these did not eliminate the problem. Closer
examination of the coupling between the various steps in the Strang splitting pro-
cedure should reveal exactly how the grid scale noise arises.

9. Conclusions

We present in this paper a numerical method for solving nonlinear reaction-dif-
fusion-chemotaxis equations which arise in models for biological systems. The
numerical method is straightforward to implement and produces good results. With
the splitting approach we can take advantage of the most sophisticated methods
available for each component of the model. We thus obtain a combined method
which is potentially much faster than a method which involves solution of the
entire system of equations and nonlinear iteration at each timestep.

Consistent with results reported by other research in numerical analysis, we find
that it is necessary to use methods which are effective at damping high frequency
oscillations in order to have a stable numerical method at a reasonable timestep size.
This adds further evidence that the widely used Crank-Nicolson method should
be applied with care. The tendency of the model (2) to amplify high frequency
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Fig. 9. Comparison of the method with TR-BDF2 diffusion (left column) and with Crank
Nicholson diffusion (right column) on the model equations (2). All solutions shown were
run to t = 300 or steady state, whichever came first. From top to bottom, �t is decreased
(0.05, 0.01), �x = 0.08 is held constant. Parameter values: D = 0.25, α = 2.25, β = 0.2,
β2 = −0.01, µ = 1.0, δ = 20.0, ρ = 0.01, w = 1.0, u0 = u∗ = 20.0, v0 = v∗ = 4.0,
k2
c = 4.0 and lx = ly = l = 3.1416 (domain which can sustain one 2π oscillation). Solu-

tions at several different times are presented to show the evolution of the solution from the
randomly perturbed uniform initial condition to the sinusoidal solution or grid scale noise.
The initial condition in each case is the same, but the ordinate scale is different between the
top and bottom plots.

oscillations is here further exacerbated by the splitting of the model into separate
consecutive components. We use the two stage method TR-BDF2 for the diffusion
step, and propose that this, or a similarly L-stable method, could be used for the
reaction step in cases where those terms are very stiff.

The manner in which we split the model into components allowed for the great-
est simplification of each portion of the numerical method. Other splitting choices
could be made however, and these will be investigated in future work. To our knowl-
edge, this work represents the first time the high resolution advection scheme,
clawpack, has been used to numerically solve a reaction-diffusion-chemotaxis
equation. Previously, useful numerical results have been obtained with a first order
Riemann solver advection scheme [18]. We have here used clawpack, which is a
second order method, and the good quality of the results indicates that this software
should be generally useful for models involving chemotaxis.
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