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Abstract. An adaptive mesh refinement algorithm developed for the Euler equations of gas
dynamics has been extended to employ high-resolution wave-propagation algorithms in a more gen-
eral framework. This allows its use on a variety of new problems, including hyperbolic equations
not in conservation form, problems with source terms or capacity functions, and logically rectangu-
lar curvilinear grids. This framework requires a modified approach to maintaining consistency and
conservation at grid interfaces, which is described in detail. The algorithm is implemented in the
amrclaw package, which is freely available.
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1. Introduction. The multidimensional wave-propagation algorithm described
in [14] is a “high-resolution” method that is second-order accurate on smooth solutions
while maintaining sharp discontinuities through the use of slope-limiters. While based
on ideas developed for hyperbolic systems of conservation laws

qt + f(q)x + g(q)y = 0

in the context of shock capturing, these methods apply in a more general framework
that allows their application to other hyperbolic systems which are not in conservation
form. Variable-coefficient hyperbolic systems of the form

qt +A(x, y)qx +B(x, y)qy = 0

arise, for example, in studying acoustics or elasticity in heterogeneous materials with
varying material properties (see section 6).

For most practical problems, it is desirable to use mesh refinement to cluster
grid points in regions where they are most needed, for example, around shocks or
other regions where the solution has steep gradients or complicated structure. This
should be done in an adaptive manner, based on the behavior of the solution, and
for time-dependent problems, the region of refinement must move adaptively with
the interesting structure. An effective adaptive mesh refinement (AMR) strategy has
been developed [1], [2], [3], [4], [5], [6] that uses Cartesian grids, with refinement in
both space and time, over rectangular patches. The refinement is by an arbitrary
even integer ratio (typically 4), and further recursive refinement can be done within
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these patches to an arbitrary depth. This algorithm was originally developed for the
Euler equations of gas dynamics using flux-differencing methods, but can be easily
extended to other systems of conservation laws. A crucial ingredient is the manner in
which fluxes at grid-refinement interfaces are coordinated to ensure that the method
is globally conservative. This is described in detail in [5] and reviewed in section 2.1.

In this paper we show how the wave-propagation algorithm can be used in con-
junction with this AMR strategy. This algorithm is written in a more general form
that does not use flux differencing per se, though in the special case of a conservation
law the method can be reexpressed in flux-differencing form and is fully conservative.
In section 4 we show that at grid-refinement interfaces it is possible to apply a cor-
rection procedure that maintains global conservation when applied on a conservation
law (and reduces to the flux-based approach) while retaining the more general wave-
propagation framework that allows application on more general hyperbolic systems.

We also discuss how further extensions presented in [14] can be incorporated into
AMR. This includes source terms, capacity-form differencing, and applications on
mapped curvilinear grids. These topics are discussed in sections 5 and 6.

The domain is assumed to be rectangular, at least in computational space. Metric
terms can be included so that we are actually solving a problem on a nonrectangular
physical domain with a curvilinear grid, obtained by a smooth mapping of the Carte-
sian computational grid. The grid Jacobian function can be properly incorporated
using the “capacity function” described in section 5.2.

The wave-propagation algorithm has been implemented in a general software
package (in fortran) called clawpack (Conservation LAWs PACKage, a holdover
from earlier versions that applied only to conservation laws). This package is available
from netlib [11]. This software has recently been combined with Berger’s implemen-
tation of AMR, incorporating the extensions described in this paper. This is now freely
available as the amrclaw package [6]. All of the numerical results presented in this
paper were obtained with amrclaw, and several such examples are included with the
package. Details on the use of this package can be found in the online documentation.

2. The AMR algorithm. The adaptive mesh refinement algorithm for conser-
vation laws is fully described in [5], and only a brief summary will be given here. The
AMR approach to adaptive mesh refinement uses a collection of logically rectangular
meshes that make up the coarse grid; refinements cover a subset of the domain and
use smaller rectangular grid patches. These fine patches can be recursively nested
until a given level of accuracy is attained. Typically, if a patch at level L is refined in
x and y by an even integer RL, then the time step is also refined by the same factor,
so that RL time steps must be taken on the refined grid at level L + 1 for each step
on the grids at level L. The mesh ratios ∆t/∆x and ∆t/∆y are then the same on all
grids, ensuring stability with explicit difference schemes.

Every K time steps on a particular grid level, all finer level grids are regenerated
in order to follow moving features of the flow. An error estimation procedure based
on Richardson extrapolation determines the regions where resolution of the solution
is insufficient. This procedure compares the solution obtained by taking 2 steps on
the existing grid with one computed by taking 1 time step on a grid that is twice
as coarse in each direction. Cells where the error is greater than some tolerance are
flagged for refinement. Other criteria might be used in addition to, or instead of,
this error estimate, e.g., identifying steep gradients in some variable. A buffer zone
around the flagged cells is also flagged to ensure that features of interest do not escape
from the refinement region over the next K time steps. The buffer width and K are
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adjustable parameters which must be coordinated.

Flagged cells are then organized into rectangular grid patches, typically containing
several hundred to several thousand grid points per patch. Note that some cells not
tagged for refinement are also included in new fine-grid patches. Typically, our grid
generation algorithm produces grids with 70% of the cells within new grid patches
tagged as needing refinement; the remaining 30% are untagged but still lie within
the new patch boundaries. By taking very small patches one could avoid refining too
many cells, but this must be balanced with the competing desire to create relatively
few separate patches and to minimize computational overhead on the boundaries of
fine grids. See [1] for more details on the refinement and clustering algorithms. See
Figure 6.4 for an example of refinement on logically rectangular patches.

An alternative would be to use a quadtree data structure (see, e.g., [7], [15])
in which only the flagged cells are refined, but the storage overhead of these data
structures, typically 30 to 50 words per cell, usually exceeds the storage overhead
associated with the block structured approach, even with the 30% additionally refined
grid.

A finite volume method is used to advance the solution on the resulting grid
hierarchy. Cell averages of each variable are stored in each grid cell. When solving
a conservation law, these cell averages are updated by a flux-differencing algorithm
based on fluxes through the cell edges. (In section 3 we review wave-propagation
methods and their extension to nonconservative hyperbolic systems.) The integration
proceeds by grid level. All grids on level 1 are first integrated over a time step. Then
grids at level 2 are integrated over R1 time steps to catch up. This approach is applied
recursively on each level.

Boundary conditions on all grids are imposed using “ghost cells.” The computa-
tional domain is extended by G ghost cells in each direction, and values are assigned
to the ghost cells at the start of each time step (G=2 for the methods described
here.) At a physical boundary, the user must set the ghost-cell values at each time
step based on the problem specification (e.g., extrapolation at an outflow boundary
or reflection at a solid wall). However, the boundary of a fine grid may be interior to
the domain. In this case, if there is no neighboring fine grid to supply values for the
ghost cells, they are interpolated from a coarser parent grid. Space-time interpolation
must, in general, be used since more time steps are taken on the fine grid than on
the coarse grid, and at intermediate times there are no coarse-grid values available.
However, since coarse grids are always advanced first, we have data available from
both an earlier and later time on the coarse grid from which to interpolate.

The techniques developed in this paper for adaptive refinement are most easily
described in one space dimension, where the refined grid patches become intervals.
We concentrate on this case in the development below, but all of these techniques
carry over directly to multiple space dimensions and have been implemented in two
dimensions in the amrclaw software. Two-dimensional results are presented in sec-
tion 6.

2.1. Conservation at grid interfaces. At an interface between coarse and fine
grids, we must also ensure that the formulas used to update the solution on each grid
are consistent with one another. In particular, when a conservation law is being solved
we must preserve global conservation.

To illustrate the conservative flux correction required at grid interfaces and the
manner in which this must be modified for the wave-propagation algorithms, we will
consider the one-dimensional case with only two levels of grid and a factor of two
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Fig. 2.1. (a) coarse grid for the one-dimensional example, shown in space-time. Values of q

and fluxes F are indicated. (b) This figure also shows the fine grid that is overlaid and the grid

interface. Values of q̂ on the fine grid are indicated. (c) The flux values F̂ needed on the fine grid.

The ghost cells q̂m+1 and q̂m+2 are also indicated. These values are needed to compute the fine-grid

fluxes at the grid interface.

refinement. Denote the coarse-grid spacing by h and the time step by k. The grid
spacing on the fine grid is ĥ = h/2 and k̂ = k/2. Figure 2.1a shows the coarse grid
over a single time step in x-t space. Figure 2.1b also shows the finer grid that is
overlaid. We will denote the values on this fine grid by q̂i and assume that there are
m cells on this grid, which ends just before cell j on the coarse grid.

On the coarse grid we compute fluxes F 0
i as indicated in Figure 2.1a, and update

the coarse-grid values by the flux-differencing algorithm

q1i = q0i −
k

h
(F 0

i+1 − F 0
i ).(2.1)

Note that Fi represents the flux at the left edge of cell i, which is the interface between
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grid cells i−1 and i, instead of the commonly used but more cluttered notation Fi−1/2.
On the fine grid we use the fluxes indicated in Figure 2.1c. In each of the two

time steps on this grid, we will use flux-differencing of the form

q̂n+1
i = q̂ni −

k̂

ĥ
(F̂n

i+1 − F̂n
i )(2.2)

for i ≤ m and n = 1, 2. To compute fluxes near the right edge of this grid, we will
need to use values in ghost cells which are also indicated in Figure 2.1c. These values
are determined using space-time interpolation from the coarse-grid values q0j and q1j ,
as described above.

We now need to coordinate the values obtained on the two different grids at the
final time. First, in the coarse-grid cells overlapped by fine-grid cells (i ≤ j − 1), we
replace the value q1i by the average of the fine-grid values:

q1j−1 :=
1

2
(q̂2m−1 + q̂2m).(2.3)

This is sensible since the fine-grid values are presumably more accurate than the
coarse-grid value and is also crucial in maintaining global conservation when regrid-
ding, if the fine grid is eliminated, and important in maintaining stability since infor-
mation must be allowed to pass from the fine to coarse grid as well as in the other
direction.

To be fully conservative, however, we also must modify the coarse-grid value q1j .

In initially computing q1j we used the coarse-grid flux F 0
j at the left edge of this cell.

To be conservative, we must instead use a left-edge flux that agrees with the flux
used in determining the fine-grid values to the left of this cell. Instead of using F 0

j ,

we should use 1

2
(F̂ 0

m+1 + F̂ 1
m+1), and hence q1j is corrected by the difference between

the two:

q1j := q1j +
k

h

[

1

2
(F̂ 0

m+1 + F̂ 1
m+1) − F 0

j

]

.(2.4)

We then have global conservation of the total mass at multiples of the coarse-grid
time step in the sense that the total mass

ĥ
∑

i≤m

q̂i + h
∑

i≥j

qj

is conserved up to boundary effects at the farfield.

3. The wave-propagation algorithms. In one space dimension, the wave-
propagation algorithm described in [14] is based on solving a Riemann problem at
each interface between grid cells and using the resulting wave structure to update the
solution in the grid cell to each side. This is, of course, the basis for a host of methods
for conservation laws, dating back to Godunov’s method [8]. The Riemann problem
consists of the original conservation law together with piecewise constant initial data
defined by the two neighboring cell values. For a wide class of conservation laws, the
Riemann problem can be solved (either exactly or approximately), and the solution
is a similarity solution consisting of a set of waves propagating at constant speeds.
For a system of conservation laws, this solution can be used to define a flux at the
cell interface, yielding Godunov’s method. Second-order accuracy can be achieved in
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various ways (e.g., by introducing slope information), and “slope-limiters” or “flux-
limiters” are then used to give good resolution of discontinuities without spurious
oscillations; see, e.g., [12] for a general discussion of such methods.

The wave-propagation algorithms are based on using the waves directly to update
cell values, including second-order corrections with “wave limiters.” For conservation
laws these methods can be rewritten in conservation form by defining flux functions
in terms of the waves, but they are implemented in a way that allows their application
to hyperbolic problems, not in conservation form, for which there is still a well-defined
wave structure but no flux function. To illustrate this, consider the advection equation
with variable velocity,

qt + u(x)qx = 0.(3.1)

This equation, sometimes called the “color equation,” is not in conservation form.
The value of q is constant along characteristics but the integral of q is not conserved.
Assume u(x) > 0 everywhere.

At the interface xi−1/2 between cells i − 1 and i we can define the Riemann
problem as

q̄t + ū(x)q̄x = 0,

where the function ū(x) and initial data q̄ are given by

q̄(x, 0) =

{

qi−1 if x < xi−1/2,
qi if x > xi−1/2,

ū(x) =

{

ui−1 if x < xi−1/2,
ui if x > xi−1/2,

(3.2)

where ui−1 and ui are cell-centered values of u(x) in cells i−1 and i. In the solution to
this Riemann problem, the wave Wi ≡ ∆q = qi − qi−1 simply propagates with speed
ui (to the right since u > 0). Over time step k this wave moves distance kui into cell
i and modifies the cell average qi by k

hui(qi − qi−1). The first-order upwind method,
in wave-propagation form, is thus

qn+1
i = qi −

k

h
ui(qi − qi−1).

More generally, if u(x) has an arbitrary sign, the first-order wave-propagation algo-
rithm is

qn+1
i = qi −

k

h
(u+

i (qi − qi−1) + u−i (qi+1 − qi)),(3.3)

where u+ = max(u, 0) and u− = min(u, 0).
Alternatively, the Riemann problem might be defined by using an edge value

ui−1/2 at the interface between cells i−1 and i. The update formula (3.3) would then
become

qn+1
i = qi −

k

h
(u+

i−1/2(qi − qi−1) + u−i+1/2(qi+1 − qi)).(3.4)

This has advantages in two-dimensional incompressible flow (see [13]), but for illus-
tration here we will use the formulation (3.3), which is based on the cell-centered
velocities (3.2) rather than edge values.

High-resolution second-order corrections are easily introduced, and, in fact, this
can be done in a “flux-differencing” form even for nonconservative equations such
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as the color equation. This simplifies the procedure for ensuring conservation when
applied to a conservation law. At the cell interface xi−1/2, we define

F̃i =
1

2
|ui|

(

1 −
k

h
|ui|

)

W̃i,

where W̃i is a limited version of the wave Wi = qi − qi−1:

W̃i =

{

limiter(Wi,Wi−1) if ui > 0,
limiter(Wi,Wi+1) if ui < 0,

where limiter(a, b) represents some standard limiter such as minmod or superbee.
After including these corrections, the method (3.3) becomes

qn+1
i = qi −

k

h
(u+

i (qi − qi−1) + u−i (qi+1 − qi)) −
k

h
(F̃i+1 − F̃i).(3.5)

Note that if u is constant, then the advection equation (3.1) is a conservation law,
and in this case (3.5) reduces to (assuming u > 0, for example)

qn+1
i = qi −

k

h
u(qi − qi−1) −

k

h
(F̃i+1 − F̃i)

= qi −
k

h
(Fi+1 − Fi),

where

Fi = uqi−1 + F̃i.

This is the numerical flux for a standard flux-limiter method on the advection equation
(see [19], for example). In particular, if no limiter is used and W̃i ≡ Wi, this reduces
to the Lax–Wendroff method.

The more general form (3.5) is not in flux-differencing form, but works just as
effectively on the color equation as standard flux-differencing does on the constant-
coefficient advection equation. The form (3.5) is easily extended to general hyperbolic
systems. Consider the variable-coefficient linear system

qt +A(x)qx = 0,

where now q ∈ R
m and A(x) ∈ R

m×m is diagonalizable with real eigenvalues. Then
for the Riemann problem at xi−1/2 we decompose qi − qi−1 into waves Wp

i (for p =
1, 2, . . . ,m) in such a way that left-going waves are eigenvectors of the matrix Ai−1

defined on cell i− 1, traveling with speeds λpi−1 < 0 (eigenvalues of Ai−1), while the
right-going waves are eigenvectors of Ai traveling with speeds λpi > 0. The update
formula is then

qn+1
i = qni −

k

h

m
∑

p=1

[

(λpi )
+
Wp

i +
(

λpi+1

)−
Wp

i+1

]

−
k

h
(F̃i+1 − F̃i).

The summation term gives the first-order upwind method, while the F̃i fluxes are
again the second-order corrections defined now by

F̃i =
1

2

m
∑

p=1

|λpi |

(

1 −
k

h
|λpi |

)

W̃i+1,(3.6)
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where W̃i+1 is a limited version of the wave Wp
i ∈ R

m obtained by comparing it with
Wp

i+1 (if λpi < 0) or with Wp
i−1 (if λpi > 0). More details, including a worked example

for acoustics in a heterogeneous medium, can be found in [14] and the documentation
with [11].

The wave-propagation algorithm is extended to nonlinear systems of conservation
laws using a Roe approximate Riemann solver [16], which linearizes the problem at
each cell interface in such a way that the wave-propagation approach is guaranteed to
be conservative. The general wave-propagation algorithm is written symbolically as

qn+1
i = qni −

k

h
[A+∆qi + A−∆qi+1] −

k

h
[F̃i+1 − F̃i],(3.7)

where A+∆qi represents the right-going “fluctuation” from the ith Riemann problem,
at the left edge of cell i, while A−∆qi+1 is the left-going fluctuation from the Riemann
problem at the right edge of this cell. Each fluctuation is just the sum over all waves
moving in the appropriate direction of the wave speed multiplied by the wave strength.
The notation is motivated by the fact that, for the constant-coefficient linear system
qt +Aqx = 0, we have

A+∆qi = A+(qi − qi−1) =

m
∑

p=1

(λp)+Wp
i

and

A−∆qi = A−(qi − qi−1) =

m
∑

p=1

(λp)−Wp
i ,

where A± = RΛ±R−1, with A = RΛR−1 being the eigendecomposition of A so that
R = [r1|r2| · · · |rm] is the matrix of right eigenvectors. The waves Wp in this case are
given by Wp = αprp, where the vector of wave strengths is α = R−1∆q.

Note that in this linear case A+ + A− = A. For a general conservation law, the
method (3.7) is conservative provided that

A+∆qi + A−∆qi = f(qi) − f(qi−1),(3.8)

i.e., the fluctuations are defined by a flux-difference splitting. This is easy to see since
we can then define

F̄i ≡ f(qi) −A+∆qi = f(qi−1) + A−∆qi(3.9)

so that

F̄i+1 − F̄i =
(

f(qi) + A−∆qi+1

)

−
(

f(qi) −A+∆qi
)

= A−∆qi+1 + A+∆qi.

Using this in (3.7) shows that the method can be rewritten in conservation form, with
flux Fi = F̄i + F̃i.

4. Wave-propagation at grid interfaces. At the interface between a fine and
coarse grid, the wave-propagation form can still be used to update the values on each
grid independently, using “ghost-cell” values as needed near grid interfaces. We can
still replace the new coarse-grid value by an average of fine-grid values in any cell
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covered by a fine grid. The only tricky part in extending the AMR algorithm to wave-
propagation algorithms is the conservative correction of the coarse cells adjacent to
finer grids, e.g., the value q1j in Figure 2.1b. Recall that with the flux-differencing
algorithm this value must be modified by the correction (2.4) to ensure conservation,
since then the flux “into” the coarse cell agrees with the total flux “out of” the adjacent
fine cells. With the wave-propagation algorithm, we must apply a similar fix-up to
ensure that the waves match up in an appropriate manner to yield conservation when
conservation is expected. This turns out to be only slightly more difficult when no
numerical flux is available than for the flux-differencing form discussed in section 2.

Note that the second-order correction terms are written in flux-differencing form
F̃i+1−F̃i, even for nonconservative systems, and so these terms can again be corrected
using (2.4). It is only the first-order upwind terms written in terms of the fluctuations
A−∆q and A+∆q that must be handled differently, and so we concentrate on the
first-order algorithm below.

Both the difficulty and the solution can be most easily seen by examining the
constant coefficient advection equation qt + uqx = 0 on the one-dimensional grid of
Figure 2.1, in the case u < 0, so that waves are moving from the coarse grid to the fine
grid. Suppose we are solving the Cauchy problem and the data has compact support
while the fine and coarse grids extend off to −∞ and +∞, respectively. Then we hope
to have conservation in the sense that

ĥ
∑

i≤m

q̂2i + h
∑

i≥j

q1i = ĥ
∑

i≤m

q̂0i + h
∑

i≥j

q0i .

On the coarse grid we have

q1i = q0i −
k

h
u(q0i+1 − q0i ),

and when we sum this over the coarse-grid cells we get a telescoping of the q-differences
everywhere except in the first cell, so that

h
∑

i≥j

q1i = h
∑

i≥j

q0i + kuq0j .

Similarly, after two steps on the fine grid, we find that

ĥ
∑

i≤m

q̂2i = ĥ
∑

i≤m

q̂0i − k̂u(q̂0m+1 + q̂1m+1).

Summing these two results we see that the method is globally conservative only if we
add in a correction to this global sum of magnitude

−kuq0j + k̂u(q̂0m+1 + q̂1m+1).

This can be accomplished by modifying the value q1j by

k

h
u

[

1

2
(q̂0m+1 + q̂1m+1) − q0j

]

.(4.1)

Note that this is exactly the modification (2.4) obtained when the flux-differencing
form is used, since for the advection equation f(q) = uq.
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Fig. 4.1. (a) Waves arising from solving all Riemann problems on the fine and coarse grids

separately. (b) The wave arising from solving the Riemann problem between the ghost-cell value

q̂0
m+1 and the coarse-grid value q0

j
must also be included in order to maintain conservation.

Instead of relying on a flux function, we will interpret this correction in another
way using wave propagation. Figure 4.1a shows all of the waves which affect the rele-
vant cell values at the end of the time increment if we only apply the wave-propagation
algorithm on each grid separately. Clearly something is wrong with this picture. If
we view the initial data as defining a piecewise constant function, then we need to
solve the Riemann problem at each discontinuity and add the total fluctuation from
the Riemann problem (A−∆q + A+∆q) to some grid value(s) in order to maintain
conservation. In general A−∆q is added to the cell on the left and A+∆q to the cell on
the right. As Figure 4.1a shows, we have failed to solve the Riemann problem between
states q̂0m+1 (the ghost-cell value on the fine grid) and q0j at the initial time. To restore
conservation we must solve the Riemann problem between these states and add in the
resulting total fluctuation A−∆q+A+∆q, weighted by k̂/h = 1/2 since the time step

is k̂ while the cell size is h, to the cell value q1j . In terms of maintaining conservation,
this sort of correction could equally well be added to some other cell value(s) instead
of to q1j , but this choice is clearly most reasonable from the figure and agrees with
how modifications are applied in the flux-differencing framework.

Similarly, in the second step on the fine grid we must also solve a Riemann problem
between q̂1m+1 and q0j and add these fluctuations into q1j . For the advection example
considered above, these two corrections will sum to exactly the required correction
(4.1), since this can be rewritten as

k̂

h
[u(q̂0m+1 − q0j ) + u(q̂1m+1 − q0j )].

This correction is easily extended to an arbitrary hyperbolic system, since we pre-
sumably have a Riemann solver that produces A−∆q and A+∆q from the two states
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q̂0m+1 and q0j . We modify q1j by

k̂

h
(A−∆q + A+∆q).(4.2)

A similar modification must be made in each of the R time steps on the refined grid
within the single coarse-grid step, where R is again the refinement ratio. The fix-up
algorithm thus takes the form

for N = 0, 1, . . . , R− 1 do
solve the Riemann problem with data q̂Nm+1 and q0j

to compute A−∆q and A+∆q,

update q1j := q1j + k̂
h (A−∆q + A+∆q).

For the case of a conservation law, this will restore conservation, and, in fact, agrees
with the flux function modification (2.4) if numerical fluxes are defined by (3.9).
Note that, in view of (3.8), in the conservation law case the coarse-grid value q1j is

simply updated by the entire flux difference f(q̂Nm+1) − f(q0j ), and we wouldn’t need
to actually solve the Riemann problem. However, implementing it as presented above
gives a uniform and general formulation.

The above idea extends directly to two space dimensions (and also to three di-
mensions). The multidimensional wave-propagation algorithm consists of solving one-
dimensional Riemann problems normal to each cell interface. This defines waves and
fluctuations exactly as in one dimension. These are used as in the one-dimensional
algorithm and are also used to define “transverse corrections” by essentially solving
a Riemann problem in the transverse direction using the fluctuations as data. These
corrections are needed to give second-order accuracy in multidimensions as well as
to increase the stability limit to allow Courant numbers close to 1. The corrections
are fully described in [14]. For our present purposes we need only note that these
corrections modify the correction fluxes F̃ (and corresponding y-fluxes G̃) and are
in flux-differencing form, so that they are automatically corrected at grid interfaces
in the step (2.4), where corrections are made due to the fluxes. Numerical experi-
ments demonstrate full second-order accuracy for both conservation laws and non-
conservative equations when the above approach is used (along with the second-order
correction terms discussed in section 3).

5. Further extensions. The amrclaw software contains some further exten-
sions of the wave-propagation algorithms discussed in [14] and implemented in claw-

pack. These will only be briefly described here, with emphasis on new issues that
arise in connection with mesh refinement.

5.1. Source terms. Consider the hyperbolic equation

qt +Aqx = ψ(q, x, t).

The source terms ψ can be handled using a standard fractional step method, also called
a “splitting method.” In this approach, we alternate between solving the homogeneous
hyperbolic equation, ignoring the source term, and solving the ODE qt = ψ. In the
context of AMR, we need to apply this sequence within each time step on each grid.
We must implement this carefully in order to avoid generating excessive noise at the
interface which can contaminate the solution. Whenever we solve a Riemann problem
we must ensure that the data on each side contain the same total contribution from
source terms in order to avoid the generation of spurious waves. This must be carefully
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observed in computing ghost-cell values for the fine grid at intermediate times and also
in solving the additional Riemann problem needed for the conservative fix described in
section 4. Recall that this Riemann problem is between the ghost-cell values at each
intermediate time and the coarse-grid value at the original time, but when source
terms are included, this coarse-grid value must be modified to incorporate the correct
source contributions.

These interface details will be presented below. First we discuss the basic frac-
tional step method that we use on each grid. In each time step we first solve the
homogeneous hyperbolic equation over time ∆t and then use the resulting solution
as initial data for the source-term equation over time ∆t. This is a so-called “first-
order” splitting (or “Godunov splitting”), as opposed to the “Strang splitting” in
which one advances first by a half time step on one equation, then by a full time
step on the other equation, and ends with a half time step on the first equation again
[17], [18]. Formally the Strang splitting can give second-order accuracy in situations
where only first-order accuracy is achieved with our choice, but in practical problems
where methods of this nature are useful, the differences in resolution actually seen are
generally negligible. This is because applying the Strang splitting over N time steps is
equivalent to starting with a half time step with one operator, then alternating with
∆t steps with each until the Nth step, where we finish with a half step of the first
operator again. The change made by this minor modification of shifting one half a
time step from the beginning to the end of the computation can be formally O(∆t),
and hence reduce the global accuracy to first order, but clearly will not degrade the
overall resolution of the solution to any degree. The solution may simply be shifted
by O(∆t) relative to its correct location, for example. This is very different from the
sort of errors introduced by a genuine first-order method, e.g., by using a first-order
upwind method in place of the high-resolution flux-limiter method. See [14] for more
discussion of this point.

Using the simpler splitting has a number of advantages in the context of coupling
source terms with the hyperbolic solver, particularly with AMR. For one thing it is
less expensive, since the source terms are advanced only once per time step instead
of twice. (Of course one could combine the half time steps together in the Strang
splitting as alluded to above, but this is impractical when variable time steps are used,
particularly with adaptive refinement.) The specification of boundary conditions is
also simplified. The user-supplied routine that extends values from the computational
grid to the ghost cells is called at the beginning of the time step, producing values in
the ghost cells that guarantee the physical boundary conditions will be satisfied. For
example, the normal momentum must be negated at a solid wall boundary for the
Euler equations. Since the hyperbolic equation is advanced first, these conditions are
used immediately. Then the source terms are advanced, typically a local ODE solve in
each grid cell which does not require using ghost-cell values. We do not need to worry
about solving the ODEs in ghost cells since these values are replaced immediately at
the start of the next time step.

Applying the hyperbolic solver first also simplifies the modifications needed at
the grid interfaces to minimize noise generation, and the algorithm is a fairly simple
extension of what has been presented already. Let H(k) represent the solution operator
for the hyperbolic equation and S(k) the solution operator for the source terms. Then
the fractional step method over one time step on a single grid takes the form

q∗ = H(k)qn,

qn+1 = S(k)q∗.
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Now consider a refined grid, with refinement ratio R. As before, let q̂ represent the
solution on the fine grid, where the time step is k̂, and let q be the coarse-grid solution
with time step k = Rk̂. The algorithm is then

# Coarse-grid update:
q∗ = H(k)q0

q1 = S(k)q∗

# Initialize coarse-grid value needed for conservation fix-up:

q0,0j = q0j

# Advance fine grids:
for N = 0, 1, . . . , R− 1 do

Space-time interpolate the ghost-cell values q̂Nm+1, q̂
N
m+2 using q0

and q1

q̂∗ = H(k̂)q̂N

q̂N+1 = S(k̂)q̂∗

# Conservation fix-up:

Solve the Riemann problem with data q̂Nm+1 and q0,Nj

to compute A−∆q and A+∆q

q1j := q1j + k̂
h (A−∆q + A+∆q)

# Apply source terms to coarse-grid value:

q0,N+1

j = S(k̂)q0,Nj

end

This is basically a direct extension of the algorithm described previously except
for the final step, which ensures that the Riemann problem solved in the correction
phase has consistent data at each fine time step.

Numerical tests have shown that this approach performs quite well. Attempts
with other styles of splitting, e.g., the Strang splitting or the Godunov splitting with
the order of H and S reversed, were much less successful. To gain a better appreciation
of how mismatches at the interface can generate noise, the reader is encouraged to
explore various strategies on the simple scalar equation

qt + uqx = q(5.1)

with constant advection speed u and data q that is initially constant in space. If a
numerical ODE method is used to solve qt = q (rather than using the trivial exact
solution operator), then any approach will lead to the generation of noise at the
interface simply because this ODE will be solved more accurately on the fine grid
than on the coarse grid, leading to jumps in q at the interface and hence to waves
propagating at speed u. The approach outlined above will only generate O(k2) noise,
as long as the ODE solver is at least first-order accurate, whereas any other approach
considered would generate O(k) noise.

5.2. Capacity-form differencing. The wave-propagation algorithm in [14] is
also described in a more general form that applies to a quasi-linear equation of the
form

κ(x)qt +Aqx = 0
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in one dimension, with obvious generalization to more dimensions. Here the function
κ(x) is called the “capacity function” since it represents in some way the capacity of
the medium to hold the quantity q. Working in this form is particularly useful for
equations in the conservation form

κ(x)qt + f(q)x = 0,

where it is κ(x)q(x, t) that is the conserved quantity rather than q alone, while the
flux is defined in terms of q. As a one-dimensional example consider flow through a
variable-area duct where κ(x) is the cross-sectional area and q represents concentration
per unit volume. In this case κih is the volume of the ith grid cell. Flow in porous
media is another example, where κ represents the porosity in one or more dimensions.
This form also arises in using mapped curvilinear grids, in which case κ is the Jacobian
of the grid transformation. More details are presented in [14].

The idea of capacity-form differencing is to replace the update formula (3.7) by

qn+1
i = qni −

k

κih
(A+∆qi + A−∆qi−1) −

k

κih
(F̃i+1 − F̃i).

In the case of a conservation law, assuming (3.8) holds, this guarantees conservation
of h

∑

i κiqi. In the definition of F̃i, we must also incorporate κi into the second-order
corrections, replacing (3.6) by

F̃i =
1

2

m
∑

p=1

|λpi |

(

1 −
k

hκi
|λpi |

)

W̃p
i .(5.2)

Using capacity-form differencing with AMR is direct, provided we ensure that
conservation is maintained in transferring information between grids. Returning to
Figure 2.1b, suppose we have capacities κi defined on the coarse grid and κ̂i defined
on the fine grid. In a region where the two grids overlap, we assume that these values
are consistent. For example, in Figure 2.1b we should have

κj−1 =
1

2
(κ̂m−1 + κ̂m)(5.3)

so that the capacity of this coarse-grid cell agrees with the total capacity of the two
fine cells: hκj−1 = ĥ(κ̂m−1 + κ̂m).

When updating the coarse-grid value q1j−1 by the average of the fine-grid values

q̂2m−1 and q̂2m, we must weigh by the capacity functions and replace (2.3) by

q1j−1 :=
κ̂m−1q̂

2
m−1 + κ̂mq̂

2
m

κ̂m−1 + κ̂m
.

Finally, in the grid-interface correction (4.2), we replace h in the denominator by κjh.

6. Numerical results. We present AMR computations on some examples from
[14] to illustrate that source terms, nonconservative hyperbolic systems, capacity form
differencing, and curvilinear grids can all be successfully handled. Further examples
can be found on the amrclaw webpage [6], including some animations.

Example 6.1. We repeat Example 3.8.3 from [14], which consists of the linear
equations of acoustics (a hyperbolic system of three equations) with a discontinuity
in the sound speed across a line oblique to the grid. A plane wave strikes the interface
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Fig. 6.1. Pressure contours for a plane wave hitting a discontinuity in sound speed in the

acoustics equations at four different times. In this test, refinement was allowed only for x < 0.6 so

that the wave moves out of the refined region.

at some angle, leading to transmitted and reflected waves. The time-evolution is best
seen in Figure 6.1.

The acoustics equations for the pressure perturbation p and velocities u and v
can be written

qt +Aqx +Bqy = 0,(6.1)

where

q =





p
u
v



 , A =





0 K 0
1/ρ 0 0
0 0 0



 , B =





0 0 K
0 0 0

1/ρ 0 0



 .

The coefficients are the density ρ(x, y) and bulk modulus of elasticity K(x, y). In the
example ρ has a discontinuity across the interface while K is constant. The Riemann
solvers for this system in the wave-propagation form are given in [14].

Figure 6.1a shows a contour plot of the initial pressure, a cosine hump as in [14]
moving toward the upper right. The dashed line shows the location of the disconti-
nuity in sound speed. The heterogeneous material is described by a density and bulk
modulus of elasticity, and here the bulk modulus is taken to be constant while the
density is discontinuous, leading to the discontinuity in sound speed. In each grid cell
the density is defined as the cell average of the true density over that cell. In [14] it is
shown that the wave-propagation algorithm handles this problem well even when the
discontinuity in density is not aligned with the grid. Figure 6.2 shows an amrclaw

calculation where the coarsest grid is 76 × 50 and two levels of refinement are used
with R = 2 in each, so that the finest grid compares with the resolution seen in the
lower plots of Figure 8 of [14]. The tolerance used here was chosen in such a way
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Fig. 6.2. Pressure contours for a plane wave hitting a discontinuity in sound speed in the

acoustics equations at time t = 0.6. The finer grids are shaded, with darker shading indicating finer

levels. Three levels are used with a 76× 50 grid at the coarsest level and refinement by a factor of 2
in each level.

that the weaker reflected wave has only been refined to level 2. A smaller tolerance
would cause level 3 refinement of this wave as well. Here we have used a ratio of 2 for
refinement in each level for demonstration purposes.

Example 6.2. The previous example does not fully test the new interface condi-
tions between the fine and coarse grids in the nonconservative case. These acoustics
equations fail to be in conservation form only along the interface where the density
is discontinuous, and the wave stays embedded in level 3 grids as it moves along this
interface. As a more severe test we repeated this computation with a simple change
in the error estimation procedure so that points are flagged for refinement only if
x < 0.6. For x > 0.6 there is only the coarsest grid, so the wave moves from the
initial fine grids onto the coarse grid as time advances. Figure 6.1 shows a sequence
of times ending with the time shown in Figure 6.2. Some smearing of the wave is
seen on the coarser grid, which is inevitable, but no difficulties are observed along the
discontinuity in density.

Example 6.3. We repeat Example 3.10.1 from [14]. This is the advection equation

ρqt + (ρuq)x + (ρvq)y = 0(6.2)

for a tracer q(x, t) in a density-stratified flow over a hump. We take (u(x, y), v(x, y))
to be a fixed velocity field, chosen so that

(ρu)x + (ρv)y = 0(6.3)

while ρq is the conserved quantity.
In the test problem we consider flow over a hump with the bottom topography

given by

B(x) =
α

1 + βx2
(6.4)

in the domain −1 ≤ x ≤ 1, B(x) ≤ y ≤ 1 (with α < 1). The velocity field is chosen
by using the “stream function”

ψ(x, y) =
y −B(x)

1 −B(x)
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Fig. 6.3. Density-stratified flow over a hump. Left: Initial data is 1 inside the circular region

and 0 elsewhere. The region where the solution is 1 at time t = 0.18 is also shown. Right: Computed

results on a 200 × 100 Cartesian grid. (Reprinted from [14] with permission from Academic Press.)

to define

ρu = ψy =
1

1 −B(x)
,

ρv = −ψx =
B′(x)(1 − y)

(1 −B(x))2
,

so that condition (6.3) is satisfied. Dividing by ρ gives the velocity field. Note that
(u, v) is not divergence free and ψ is not a stream function for this velocity, though
it is true that contours of constant ψ give streamlines of the flow. We use the density
profile

ρ(x, y) = ρ(y) = e−γy for some γ,(6.5)

as in [14], so that the velocities increase exponentially with y.
In the test below we use α = 0.6, β = 10, and γ = 2.5. Figure 6.3 shows the

initial data and exact solution at time t = 0.18 for data consisting of a circular blob
of tracer:

q(x, y, 0) =

{

1 if (x+ 0.75)2 + (y − 0.5)2 < (0.2)2,
0 otherwise.

The problem is solved on a curvilinear grid. The irregular region of the x-y plane
can be mapped smoothly to a rectangle. Then (6.2) can be transformed to an advection
equation on the rectangle and solved on a uniform Cartesian grid in this computational
ξ − η space. Here we use “Grid 2” of [14], with the mapping

X(ξ, η) = ξ, Y (ξ, η) = B(ξ) + η(1 −B(ξ)).

Capacity-form differencing is used where κ = ρJ , with J being the Jacobian of
the grid mapping, as explained in [14]. Figure 6.4 shows computed results with three
levels of refinement and refinement ratio 2 in each case. The finest grid has the same
resolution as the calculation shown in Figure 10 in [14].

7. Conclusions. An adaptive mesh refinement algorithm developed for the Eu-
ler equations of gas dynamics has been extended to employ high-resolution wave-
propagation algorithms in a more general framework. In particular, we have discussed
the modifications needed to allow the application of this method to hyperbolic prob-
lems which are not in conservation form, following the approach of [14]. This has been
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Fig. 6.4. (a) Computed density at time t = 0.18 for stratified flow over a hump. Contour levels

are at 0.05, 0.1, . . . , 0.95. Compare to Figure 10 in [14]. (b) A blow-up of the grids near the top of

the hump.

done in a way that still maintains conservation when applied to a conservation law,
in spite of the fact that a wave-propagation approach is used to update cell averages
rather than standard flux-differencing. A generalization of this has also been presented
for fractional step methods on hyperbolic equations with source terms.

We have also discussed extensions to capacity-form differencing. This formulation
is useful in applying the methods on curvilinear grids, where refinement is done on
logically rectangular patches. This is illustrated in section 6 for one example with
the advection equations. In the future we intend to explore the use of curvilinear
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grids more fully for nonlinear conservation laws such as the Euler equations, since
body-fitted curvilinear grids are crucial for some applications.

Adaptive mesh refinement is even more crucial in solving three-dimensional prob-
lems than in two space dimensions. Recently clawpack has been extended to three
dimensions [9], [10], and work is underway to extend the amrclaw version. The un-
derlying AMR code for the Euler equations has previously been successfully extended
to three dimensions (see, e.g., [1], [20]), and the ideas presented in this paper carry
over easily as well.

Acknowledgment. We are indebted to Smadar Karni for pointing out the diffi-
culty of maintaining conservation at grid interfaces with the wave-propagation frame-
work. This led to the development of some of the ideas presented here.
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