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Abstract. The variable projection algorithm for solving separable nonlinear
least squares problems with a single data vector is well known|[l]. We review that
theory and present a modification of the algorithm for solving problems in which
it is desired to fit more than one data vector with the same nonlinear parameters
(though possibly different linear parameters) for each right hand side. We give
an example from chemical kinetics and also show how such problems arise from
an inverse differential equations problem as in compartmental analysis. A further
modification is presented for dealing with total least squares problems: problems
in which the independent variables as well as the observartions may have errors.
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1. Introduction.

The variable projection algorithm [1] has gained much popularity in recent
years as a method for solving separable nonlinear least szquares problems. A
separable problem is one in which the model can be written in the form

n(t) ~ > Bdilaity . a€ R, (L.1)

5=l

~ where the ¢; are given functions of a and ¢ and ~ indicates approximation
in the least squares sense. Given data y = (m,ng,...,nm)T observed at times
tiytayeeeytm lzespectively, the problem consists of finding the optimal parameters
b= (Byy..P)7, &= (&,...,8)7 which minimize the sum of the squares of the

residuals, given by

o i(ﬂ.‘— i Bybs(a; t-’))z-

=1 j=l1

If we let the matrix ®(a) consist of the components ¢;(a;t;), + = 1,2,...,m;
j=1,2,...,n, then the problem can be restated as

minimize |ly— ®(a)b||* overbE R", a€E IR*,

Here we have used the 2-norm, ||z||? = }_ 2. The theory presented here can be
casily extended to the case of weighted norms, lzll3 = 3 wi€?.
The separable least squares problem which is probably most often encountered

in practice is that of exponential fitting. In this case we want to fit

n . .
ﬂiNEﬂjeam) 1=12,...,m.
J=l

This leads to a matrix @(a) of the form

el ... gOnh

®(a) = :
‘ cal‘m coe eau‘m

In the next section we review the variable projection algorithm as modified

by Kaufman[2]. We then present an extension of the algorithm to handle mul-

tiple right hand sides and discuss some uses of the algorithm in solving inverse
differential equations and total least squares problems.
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2. The variable projection algorithm.

For any fixed a, the problem of finding the optimal b corresponding to that
a is & linear least squares problem. A solution is given by
b=dt(a)y
where <I>+( ) is the pseudo-inverse of ®(a). The idea behind the variable projection
algorithm is to define the functional r{a) by

r(a) = min [ly — (a)el|?

= [ly— &(a)+(a)yll%. B (2.1)

This functional is then minimized with respect to @ by means of the Levenberg-
Marquardt algorithm (descnbed below) to give the optimal &.-The linear parameters s ot dews

b are then recovered from b = ®1(&)y. It can be shown[l] that this method ww sxyonenyd
Kring, iF some-

of solution yields the correct result provided that ®(a) has constant rank in a o% Aaa oS Swod)
neighborhood of the solution &. The advantage of this technique is that the non- e equed X
linear functional r(a) which must be minimized is now a function only of a. The

parameters f; do not appear explicitly and so the size of our nonlinear problem

has been reduced.
For any given a, there is an orthogonal matrix

Qu(a)
Qa) = (@i(a))
"(a)Qla) =

(a) )= IR(m—n)Xm
such that Q(a) triangularizes ®(a), that is,

Qi(a) a L1C)
(2(0))(}() ( 0 ) | 23)

~with Uj(a) right trianguiar. From the invariance of the 2-norm under orthogonal
transformations, we have that :

lly — 2(@)bll* = [1Q(a)ly — 2(a)p)I® .

“(% ) (3

= [|Qi(a)y — Ui(a)bll* + l|Qa(a)wll®.

with
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Since the optimal b for any a is b = ®T(a)y = U (a)Qi(a)y, the residual r(a)
is simply

. - rla) =IQe(a)yll"

It is this form of r to which we apply the minimization algorithm..
The Levenberg-Marquardt algorithm is a general iterative procedure for min-

 imizing ||f(a)||? for a nonlinear m-vector valued function f. At the jth stage we
have an approximation al? to the solution and we compute the Jacobian J(a(?)

of f,
» [6f@D)  8/(aD
,(am)=( e | I )),

where .
o (%% o
Sa; aa,-’ B 8a; '

We also choose a value for the "Marquardt parameter” v; and then solve the

system
J(a®) 0 it
( vil )6 ( 0 )

in the least squares sense for the correction §U), The next iterate a0+ is then
obtained as a1 = aU) — §0), The parameter v; is used to control the length

of thg corrqction vector 6§, The correction §0) minimizes
7 (@98 — 7112 4- s D) 2.

If u_,"== 0, this becomes simply the Gauss-Newton algorithm. For further discussion
of this minimization technique, see [5]. '

In the present context, f(a) = @:(a)y, so in order to apply this algorithm we
must be able to compute the columns of the Jacobian matrix,

8(Qfa)y) _ 6Qu(a)
day o - Oay v

~ Recall from (2.2) that @;(a)®(a) = 0, so by differentiating we get

8%(a)

80i(e)
Ty )= o)




Golub and Pereyra[l] give an exact expression for 8% (a)/8a;, but Kaufman[2] has
suggested the simplification

) o) (o 23)

which works well in practice.

3. Bxtensions to multiple right hand sides.

Occasionally one wishes to solve a problem in which there are a number of
vectors Y1,y ...,Ys of data each of which is to be fit by a model of the form
(1.1). We allow the linear parameters b to be different for each data vector. If
the nonlinear parameters a are also allowed to be different for each y;, then there
is no problem. We are simply faced with s distinct problems of the type already
discussed. If however, a is constrained to be the same for each data vector, then we
have a new problem. In this case, we wish to fit the matrix Y = (vrywy.. v u) €

IR™** by a matrix of the form ®(a)B where (I>(a) is as before and B E R"X¢,
. The minimization problem is now

minimize [|Y — ®(a)B||%  overa€ IR", B e R"%¢, (3.1)

Here we use the Frobenius norm of the matrix, ”X % = Emé
One example of this type of problem occurs in the analysis of data from the

biological substance bacteriorhodopsin.' The data vectors y; consist of measure-
ments of the amount of light absorbed by the substance at m different times during
the course of a chemical reaction. We have s different data vectors, one for each
of several wavelengths of light used. In this case the kinetic theory dictates that
for each wavelength the absorbtion curve should be a sum of exponentials, and
that the rate constants a should be the same for all wavelengths. Hence the data
Y must be fit by a model of the form &(a)B where ¢;(a; ;) = €%,
One approach to solving this problem would be to write

uy - : by
g= : € R™, 5= : € R"™,
Ys bs
(a) | |
da)=| %@ g mmexm (39
®(a)



and then minimize ||§ — ©b]|? by mcans of the algorithm as previously discussed.
However, the matrix ®(a) is excessively large. The problem (3.1) has a special
structure which is not sufficiently exploited by this approach.

Instead, for any a we proceed as before by finding @(a) such that (2.2) holds.
Since the Frobenius norm, like the 2-norm, is invariant under orthogonal trans-
- formations, we are led as before to the problem of simply minimizing HQg(a) |12
But ||@2(a)Y||% = ||2(a)||> where the vector z(a) is defined by

Q(a)u
da)=| | | (3.3)
\ @)y

The Levenberg-Mérquardt algorithm previously described can be applied directly
to this problem, provided we can compute 8z(a)/8a; for j = 1,2,...,k. But from
(3.3) it is clear that

yx
&fa) |
day !
8Q
3.," Us

where 8Qs(a)/8a;is computed exactly as before.
So, in summary, at the Jth step of the minimization procedure we solve for
the correction term 6 from the linear system

(69ah,, -\'-\@%‘&@m\ | (Qz(a‘”)vm\‘

0 a:m §0) = '
Wy, .. oy, Qala)y,

\ wl ) U o ) |

Note that this system is the same size as that which would result from using
the alternative formulation (3.2). The advantage of the latter approach lies in the
calculation of Qy(a) and its derivatives. Here @y(a) € R(M™™X™ whereas (3.2)

would lead to an (m — n)s by ms matrix.

This algorithm has been applied to the bacteriorhodopsin problem described
earlier with satisfactory results. For that problem, we had m s 175, 8 == 5. The
correct number of exponential terms was not known a priors, so fits were computed
with 3, 4, 5 and 6 terms. Figure 1 shows the residuals for one such calculation.

For more information on this particular application, see [4].




3 term cxponential fit
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4 term exponentxal ﬁt
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.Bacteriorhodopsin data and magnified residuals

The data‘ at each wavelength N\ = 420 through N = 660 is shown as points. The
solid line is the residual from the fit obtained, multxphed by a factor of 100 to..

make it visible,



4. Inverse differential equations.

A special case of the exponential fitting problem of the previous section occurs
when s = k, the number of right hand sides equals the number of exponential
terms. In this case we may view the problem as a problem in inverse differential
equations. We have vector-observations y(t;) € RY, j=1,...,m which are as-
sumed to be the values of the solution to some linear differential equation y' = Ay
at times ¢;. The problem is then to approximate the eigenvalues of the unknown
matrix A. The solution is given by the optimal nonlmcar parameters obtained by
solving Y = ®(a)B with

el ... et

Pla) =] :
eéx‘m ver  gOkim

and B € IR***, This follows from the fact that the solution to y' = Ay is of the
form .

y(t) = Cety(0)

where C € IR*%¥, So, assuming A is diagonalizable,

y(t) = CXA(t)X~'y(0)

= XA(t)z,

where '
A(t) = diag(c®,..., "),

So in fact . :

ko k

e = Y Eie®ey= ) By
i=l1 i=l
where ;
Bji = &%

5. Total least lquuu.

Up to this point we have assumed that the values of the mdependent varlable
t were known exactly. In that case our task was to minimize ||Y — ®(a; t)B]%.
Note that we have written ®(a;t) to show the dependence of ¢ on {. For now we
will consider the problem in which ¢ as well as Y may have errors. In this case we




wish to solve a problem of the form

minimize (|[Y — @(e; IR+ Nir — ¢

over a€ R¥, Be R¥**, re R™

(5.1)

1] a 3
We can consider @ = ('r) as the vector of unknown nonlinear parameters. In

order for the estimate of a to be consistent, the parameter N must be chosen in
proportion to the ratio of variances of the errors. For more generality, the norms
in (B.1) can be weighted norms without introducing any difficulties.

Again there are two possible approaches to solving this problem. The first
approach uses the variable projection algorithm as presented in section 2 on the

problem

minimize ||®(a; 7)B — Y|4 over a,B

where | )

" B " Y
B=(———-———, y=(_.__.
- 1 toe 1 t% v :s)—t

This is straightforward but requires that we be able to fix some of the linear
parameters at 1. The variable projection algorithm can be easily modified to
impose this constraint. Such a modification was first proposed by Krogh|[3].

The second method which can be used for solving the total least squares
problem involves a further modification of the functional to be minimized. Let

Q(a) = g:za; be the ortﬁogonal matrix which triangularizes ®(a; 7). Then we
a v

wish to find @ to minimize
r(a) = [|@a(a)Y Il + Mir — ¢JI%

This residual function#l can be rewritten in partitioned from as
r(a) = |[@(a)Y | Mr —t)]II3.

The Levenberg-Marquardt algorithm can be used for this minimization. Recall
from section 2 that we require the derivatives of the columns of [@a(a)Y | A(r — t)]



-

with respect to each nonlincar parameter. The derivatives of @y(a)y; with respect
to any a: sr 7; can be computed exactly as before. For the final column we have

o(r—

__(_‘r« t) —0

I(r—t

r—1) =¢;, the 8 unit vector.
ar; .

So we see that at each stage of the minimization process we must solve for the

corrections
50 — 50
. 59)

from the system
) W) eqEY) ) :
(ey . Sy, | S, ‘-’9%4 A (@)
:u) :m 8 u) m €)) 5
Wy, o R, | s, . s, (j(,,) e |

0 o I S r0) —¢

Both of the approaches described here were used on an example from Powell
and Macdonald[7]. The set of data was originally given by Pearson[8] and the
weights by York[8]). This data is given in Table 1. In this example both the
times ¢; and the observations y; are weighted, by v; and w; respectively. This
data was fitted by a linear polynomial y ~ B, -~ foz, as was done in [7]. The
results, §) = 5.4799, B = —0.48053, agree with those reported there. The ¢;
were used as initial approximations to the nonlinear parameters and convergence
to the accuracy shown occured in 5 iterations. The resulting fit is shown in figure
2. The given data points (¢;, ;) are shown by X's, the points (7, y,) by boxes. Note
the effect of the weights.
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. Table 1

Pearson's data and York's weights

J b Vg Yi w;
1 00 10000 59 L0
2 0.9 1000.0 5.4 1.8
3 1.8 500.0 4.4 4.0
4 28 - 8000 4.6 8.0
5 3.3 2000 . 3.5 20.0
6 4.4 80.0 3.7 20.0
7 5.2 60.0 2.8 70.0
8 6.1 200 2.8 70.0
9 8.5 1.8 24 100.0
10 74 %.0 1.5 $00.0

Total Least Squares fit to Pearson's Data with York's Weights

8:""I","I""l""l""l""_
__r
_;
__;
O:[,..‘l,,.,.l,,.,"l...11...-1.114,,,.:
2 0 2 4 6 8 10

Iigure 2
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