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Abstract In this study, we propose a scenario superposition method for real‐time tsunami wave prediction.
In the offline phase, prior to actual tsunami occurrence, hypothetical tsunami scenarios are created, and their
wave data are decomposed into spatial modes and scenario‐specific coefficients by the singular value
decomposition. Then, once an actual tsunami event is observed, the proposed method executes an online phase,
which is a novel contribution of this study. Specifically, the predicted waveform is represented by a linear
combination of training scenarios consisting of precomputed tsunami simulation results. To make such a
prediction, a set of weight parameters that allow for appropriate scenario superposition is identified by the
Bayesian update process. At the same time, the probability distribution of the weight parameters is obtained as
reference information regarding the reliability of the prediction. Then, the waveforms are predicted by
superposition with the estimated weight parameters multiplied by the waveforms of the corresponding
scenarios. To validate the performance and benefits of the proposed method, a series of synthetic experiments
are performed for the Shikoku coastal region of Japan with the subduction zone of the Nankai Trough. All
tsunami data are derived from numerical simulations and divided into a training data set used as scenario
superposition components and a test data set for an unknown real event. The predicted waveforms at the
synthetic gauges closest to the Shikoku Islands are compared to those obtained using our previous prediction
method incorporating sequential Bayesian updating.

Plain Language Summary In this study, we propose a new tsunami waveform prediction method
that represents actual tsunami waveforms by superposing scenario waveforms resulting from a series of
precomputed tsunami simulations. The prediction scheme uses a Bayesian approach to sequentially estimate the
weight parameters assigned to the scenarios using actual real‐time wave height data. At the same time, it
identifies the probability distribution of the weight parameters and provides information to understand the
forecast error. The actual wave heights of the target event can be predicted by multiplying of the wave heights in
the scenario database by the estimated weight parameters. To verify the advantages of the proposed method, a
demonstration test is conducted for the Shikoku region of Japan, which is threatened by a large tsunami risk due
to the Nankai Trough subduction zone. We show that the proposed method can predict wave heights even when
the target event is not present in the scenario database, and we show its superiority over the previously proposed
method.

1. Introduction
Although early tsunami warning systems play a critical role in mitigating the catastrophic damage caused by
tsunamis, accurate forecasts remain challenging especially for near‐field tsunamis. Notable examples include the
2004 Indian Ocean earthquake and tsunami and the 2011 earthquake and tsunami off the Pacific coast of Tohoku
(Koshimura & Shuto, 2015; Satake, 2014). Based on the lessons learned from these experiences, various fore-
casting methods have been developed in the last decade to ensure both accuracy and rapid performance, and
notable studies are summarized in Table 1. In addition to physical computations of tsunami wave propagation
(Musa et al., 2018), methods such as data assimilation (Gusman et al., 2016; Heidarzadeh et al., 2019; Maeda
et al., 2015; Wang et al., 2017, 2018) and machine learning techniques (Alan et al., 2023; Liu et al., 2021;
Makinoshima et al., 2021; Mulia et al., 2022; Rim et al., 2022; Xu & Wu, 2023) have been developed. These
methods use observational data, such as offshore tsunami data or onshore geodetic displacements sampled by the
global navigation satellite system (GNSS) (Tsushima & Ohta, 2014).
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In addition to the abovementioned methods, probabilistic models have great potential in early forecasting due to
their ability to quantify uncertainty as discussed by Selva et al. (2021). To date, probabilistic models, also known
as probabilistic tsunami hazard assessments (PTHAs), have been used mainly for predisaster risk assessment.
Several studies have quantified the relationship between tsunami heights and their exceedance probabilities in a
specified period (Annaka et al., 2007; Fukutani et al., 2015; Geist & Parsons, 2006; Heidarzadeh & Kijko, 2011;
Kotani et al., 2020; Mori et al., 2018; Omira et al., 2017). It is evident that probabilistic models contribute not only
to prior assessment but also to real‐time prediction. Although many forecasting methods provide a single
outcome, probabilistic forecasting aims to account for the uncertainties latent in tsunami disasters and provide the
probability distribution of forecast information. If credibility can be assessed through a reliable probabilistic
scheme, better decisions can be made when issuing tsunami warnings.

Among previous studies, it is notable that some studies (Blaser et al., 2011, 2012; Tatsumi et al., 2014) have
effectively quantified the probability distribution of predicted tsunami amplitudes via the Bayesian approach.
Additionally, Nomura et al. (2022) proposed a sequential Bayesian update scheme for detecting the best‐fit
scenario in a precomputed database for an actual tsunami event. They demonstrated that the framework could
select similar tsunami scenarios from a hypothetical scenario database of Nankai Trough earthquakes and tsu-
namis (Koshimura & Nomura, 2022). One advantage of such best‐fit scenario detection techniques is their
feasibility due to their low computational costs and transparency of algorithms. In fact, the Japan Meteorological
Agency (JMA) employed scenario‐searching schemes (Tatehata, 1997) earlier than such academic studies on
best‐fit scenario detection (Fauzi &Mizutani, 2020; Gusman et al., 2014). The National Oceanic and Atmospheric
Administration (NOAA), which is responsible for most tsunami warnings in the Pacific Ocean, also employed a
scenario‐searching scheme (Gica, 2008) based on a precomputed tsunami database. In the Mediterranean areas,
the Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North‐
Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEANTWS) manages tsunami warnings and
mitigation strategies and uses decision matrices (Intergovernmental Oceanographic Commision, 2023), associ-
ating observed earthquake information with tsunami potential. These currently working tsunami warning systems
use earthquake information, such as hypocenter location and magnitude, as input data for tsunami forecasting.

Nevertheless, there are limitations to early tsunami forecasting using such best‐fit scenario detection methods.
That is, these methods assume the existence of a “best‐fit” scenario, but there is no guarantee that at least one

Table 1
Tsunami Prediction Methods and Their Characteristics

Methodology Studies Advantages Challenges

Real‐time tsunami
simulation

Oishi et al. (2015) Tsunami propagation computation with physical
model using governing equations

Treatment of uncertainty contained in initial input
data
Balance of computational cost and model
complexity

Musa et al. (2018)

Data assimilation Maeda et al. (2015)
Gusman et al. (2016)
Wang et al. (2017);
Wang et al. (2018)

Tsunami propagation computation with physical
model using governing equations
More reliable real‐time simulation by
sequentially assimilating observation data

Balance of computational cost and model
complexity

Database
searching
schemes

Gusman et al. (2014)
Fauzi and Mizutani (2020)
Nomura et al. (2022)

Model simplicity and low computational cost
Transparency of database search algorithms

Need a comprehensive scenario database

Machine learning
and
Deep learning

Liu et al. (2021)
Makinoshima et al. (2021)
Mulia et al. (2022)
Rim et al. (2022)
Xu and Wu (2023)
Alan et al. (2023)
Heidarzadeh et al. (2019)

Immediacy of prediction calculation
Model flexibility and applicability

Black‐box nature
Need a large amount of data sets and
computational cost in the training phase

Probabilistic
tsunami
forecasting

Blaser et al. (2011);
Blaser et al. (2012)
Tatsumi et al. (2014)

Quantification of uncertainty latent in prediction
models and observations

Calibration of model parameter settings
Existence of unclear uncertainty, such as
tsunami earthquakes and complex dynamics
near coasts.
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scenario in the database reasonably reproduces an actual event. Although the scenario database used by Nomura
et al. (2022) assumes a rectangular‐shaped uniform slip distribution, the actual slip distribution is heterogeneous.
With various tools for generating random seismic ruptures (LeVeque et al., 2017; Nakano et al., 2020; Scala
et al., 2020), we could make the scenarios more plausible, but this approach would simultaneously increase the
diversity of scenarios in the database. As highlighted by Geist (2002), the complexity resulting from heteroge-
neous slip patterns leads to significant variations in nearshore wave information, even if the earthquake moment,
location, and geometry remain identical. To ensure that the detected scenario is indeed the “best‐fit” scenario,
ideally, we would need numerous scenarios, numbering in the thousands. However, this may not always be
feasible due to constraints on components such as storage or computational resources. To predict an actual event
without a prepared similar scenario, it would be more reasonable to create a new scenario by superposing existing
scenarios, but it is nontrivial to do this in the best way. Indeed, Nomura et al. (2024) reported the difficulty of
forecasting to determine the optimal scenario by superposing scenarios using the relative fitness of each scenario
calculated by the previous method (Nomura et al., 2022) as weights.

This study proposes a scenario superpositionmethod for real‐time tsunamiwave prediction. Similar to the previous
best‐fit scenario detection method (Nomura et al., 2022), the proposed method has both offline and online phases,
namely data preparation and real‐time processing phases. The offline phase is similar to that of the previous
scenario detection method, where hypothetical tsunami scenarios are prepared and then decomposed into spatial
modes and scenario‐specific coefficients. In contrast, the online phase is an extension of the previous method and
thus a novel contribution of this study. Specifically, our prediction method assumes that waveforms of actual
tsunami events can be generated by a linear combination of prepared scenarios' waveforms. Under the assumption,
the set of weight parameters that allow for appropriate scenario superposition is identified by Bayesian update with
real‐time tsunami data obtained at synthetic gauges over time. The probability distribution of theweight parameters
is simultaneously estimated and provides information that can be used to understand the prediction error.

To validate the performance and advantages of the proposed method, synthetic experiments targeting the Shikoku
shore region of Japan are carried out. A hypothetical scenario database is generated from tsunami simulations of
earthquakes triggered by fault rupture in the Nankai Trough subduction zone. Then, 25% of the database scenarios
are randomly selected as the test set, and the remaining 75% of the scenarios are used as the training set. In all
synthetic experiments, the waveform at the gauge closest to the Shikoku Islands is examined to determine the
accuracy of the prediction. To demonstrate the capability of the proposed scenario superposition method, the
predicted waveforms are compared with those obtained using the previous sequential Bayesian update method
(Nomura et al., 2022), which determines the best‐fit scenario from the database.

2. Methodology
2.1. Scenario Superposition

Let us first assume that Ns hypothetical earthquake/tsunami scenarios are available and stored in a database. In
this database, each scenario includes synthetic wave heights at Ng synthetic gauges, each comprising Nt snapshot
data points as follows:

Xj = [x j
t1 x j

t2 ⋯ xtNt

j
]∈RNg×Nt , (1)

where the column vector x j
t stores a snapshot of wave heights at time step t and has Ng components as follows:

x j
t = {x

j
1,t x j

2,t ⋯ x j
Ng,t}

T ∈RNg . (2)

In addition, during a real event, the “actual” wave heights are assumed to be observed over time at the same
locations as the synthetic gauge points immediately after the tsunamigenic fault rupture and are denoted as

yt = {y1,t y2,t ⋯ yNg ,t}
T ∈RNg . (3)

Following the same rule as in Equation 1, the snapshot vector at each observational time can be stored in one data
matrix as follows:
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Y = [yt1 yt2 ⋯ ytNt
]∈RNg×Nt . (4)

Unlike the previous best‐fit scenario detection method (Nomura et al., 2022), this study assumes that the real‐time
event is not similar to any scenario in the database. Instead, we suppose that the real‐time event with the
observation Y corresponds to a new scenario whose waveforms are created by superposition, that is, a linear
combination of existing scenarios as follows:

Y =∑

Ns

j=1
wjXj, (5)

where w is a vector whose components are weight parameters wj. Notably, the weight parameters do not vary
depending on time. From the superposition relation in Equation 5, it can be understood that the set of weight
parameters is obtained as the solution to an inverse problem with actual and precomputed tsunami wave data.

The ultimate goal is therefore to identify a suitable set of weight parameters for scenario superposition within the
shortest possible observation duration T, which is much shorter than the period corresponding to the number of
snapshots, Nt. For this purpose, we extend the previous method (Nomura et al., 2022), which consists of two
processes: the offline and online phases. As with the previous method, the offline phase should be completed
before an actual tsunami occurs. The online phase, on the other hand, markedly improves on the previous method
by performing Bayesian estimation as described in the following sections.

Remark 1 Nomura et al. (2024) tried to determine an optimal waveform by superposing scenarios using relative
fitness of each scenario as weights. However, this prediction was found to be worse than the best‐fit scenario
detected by the previous method (Nomura et al., 2022). This is due to the estimation of weight parameters.
Specifically, the weights in the previous method are determined based on the similarity that is obtained by
comparing each scenario information with the actual event‐specific information independently. In other words,
the weight parameters were not identified to satisfy the superposition relation in Equation 5 even though the
prediction was represented by this relation. In contrast, our prediction method incorporates this relation explicitly
into the weight estimation process.

2.2. Offline Phase: Reduced‐Order Model (ROM)

As explained in the previous section, we assume that Ns hypothetical tsunami scenarios are available. Combining
the information of these scenarios into one matrix, the following training data matrix can be defined:

X = [X1 X2 ⋯ XNs]∈RNg×(Nt×Ns), (6)

which stores the wave height snapshots of all the scenarios for all the time steps in the row direction. This data
matrix X can be decomposed by singular value decomposition (SVD) (Klema & Laub, 1980), and a low‐rank
approximation of X is realized as follows:

X = ΦDVT ≈ ΦrDrVT
r , (7)

where Φ ∈ RNg ×Ng and V ∈ R(Nt ×Ns) ×Ng are matrices composed of left and right singular column vectors ar-
ranged in the row direction, respectively. Additionally, the left singular matrix Φ is referred to as the spatial mode
matrix because it contains the spatial features latent in the data matrix. The singular values σj ∈ {1, 2, … , Ng}

of X are
stored in the diagonal entries of matrix D in descending order as follows:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1 0

σ2

⋱

0 σNg

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where σ1 > σ2 > ⋯ > σNg
. (8)
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Here, Dr ∈ Rr× r is a dimensionally reduced matrix of D with only the first r singular values. Similarly,
Φr ∈ RNg × r and Vr ∈ R(Nt ×Ns) × r have been reduced, and they consist of the corresponding r left and right
singular column vectors, respectively.

The column vector x j
t in each Xt in Equation 7 can be expressed as a linear combination with the dimension‐

reduced mode matrix Φr as follows:

x j
t ≈ ΦrDrv j

t
T
= Φra j

t , (9)

where v j
t is a right singular column vector in Vr that is associated with scenario j at time t and a j

t ∈ Rr is referred
to as the set of “scenario coefficients” in this study. Notably, the spatial mode matrix Φr is common to all the time
steps of all the scenarios in the database, and the scenario coefficients a j

t contain dynamic information at all time
steps specific to the corresponding scenario. Such procedures of generating a data matrix and applying the SVD
are based on previous studies (Fujita et al., 2024; Nomura et al., 2022). Additionally, the substitution of Equa-
tion 9 into Equation 5 yields the following expression of the observational wave snapshot:

yt ≈ ∑

Ns

j=1
Φra j

t w
j. (10)

The row‐rank approximation through SVD is performed on the data matrix X as in Equation 9 and Equation 10,
and the observations yt are directly used in this scenario superposition relation.

2.3. Online‐Phase: Tsunami Forecasting

2.3.1. Bayesian Estimation of Weight Parameters

First, considering an error in the scenario superposition relation, we rewrite Equation 10 as follows:

yt =∑

Ns

j=1
Φra j

t w
j + εt, where t ∈ {t1, t2,… , tNt}. (11)

Here, the error vector εt arises from some potential uncertainties, such as observation noise, ROM representation,
the assumption of the superposition in Equation 5, and the assumption in generating hypothetical scenarios. For
simplicity, we assume the error vector follows a Gaussian distribution with means 0 and covariance matrices Σε;
that is, εt ∼ N(0, Σε) . For convenience, the element notation of Equation 11 is rewritten in matrix form as
follows:

yt = ΦrAtw + εt, (12)

where we define the components At and w as

At = [a j=1
t a j=2

t ⋯ a j=Ns
t ]∈Rr×Ns , (13)

w = {wj=1 wj=2 ⋯ wj=Ns}
T ∈RNs . (14)

From the perspective of the inverse problem, the weight parameters can be regarded as coefficients of a set of the
basis functions ΦrAt. Also, the mode reduction via SVD decreases the condition number and improves the so-
lution stability of the inverse problem by contracting sufficiently small singular values of the basis function matrix
ΦrAt; see Appendix A for more information. Additionally, it can be understood that the inverse problem of
identifying the set of weight parameters in Equation 12 is regarded as a typical linear regression problem in which
the model parameters are identified so that the regression model fits a known data set.
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To solve this regression problem with a probabilistic model, we assume that the weight parameters are random
variables following a probability density function. According to the Bayesian theorem, the conditional proba-
bilities of the weights w, given the real‐time observations yt, are as follows:

p(w ∣ yt) =
p( yt ∣ w) p(w)

p( yt)
, (15)

where p(w ∣ y)t and p(w) are the posterior and prior probability density distributions of the weight parameters,
respectively. Additionally, p( yt ∣ w) is a likelihood function that assesses the fitness of a weight parameter set for
the observations yt and p( yt) is a normalization factor. This procedure is recognized as a typical Bayesian linear
regression problem (Bishop & Nasrabadi, 2006; Yoshida et al., 2021).

According to Equation 12 and the nature of the error vector εt ∼ N(0, Σε) , the likelihood function p( yt ∣ w) or,
equivalently, the conditional probability of yt given w, is represented as a multivariate normal distribution as
follows:

p( yt∣w) =N ( yt ∣ ΦrAtw, Σε). (16)

For simplicity of calculating the posterior distribution, we introduce the following prior distribution, which is the
conjugate of the Gaussian likelihood function p( yt ∣ w) with an unknown mean ΦrAtw and known covariance Σε:

p(w) =N (w∣μw, Σw). (17)

This is referred to as the Gaussian prior distribution with mean μw and covariance Σw. Then, recalling Equa-
tion 12, the marginal probability density function of the observations yt is now defined as

p( yt) =N ( yt∣ΦrAtμw, Σε +ΦrAtΣw(ΦrAt)
T
). (18)

The substitution of Equations 16–18 into the Bayesian theorem in Equation 15 yields the following analytical
expression of the posterior distribution:

p(w∣yt) =N(w∣ŵt, Pt), (19)

where.

ŵt = μw + Pt(ΦrAt)
TΣ− 1

ε ( yt − ΦrAtμw), (20)

Pt = (Σw
− 1 + (ΦrAt)

TΣ− 1
ε ΦrAt)

− 1
. (21)

For a detailed derivation of this equation, see Yoshida et al. (2018); Yoshida et al. (2021); Gelman et al. (2013);
Bishop and Nasrabadi (2006). Thus, the proposed method sequentially estimates the expected value of the weight
parameter set ŵt using the Bayesian estimation. At the same time, the posterior covariance matrix Pt associated
with the reliability of the estimated weight parameters can be obtained. It should be noted here that the weight
parameters are assumed to follow a Gaussian distribution to analytically and quickly estimate the posterior
distribution.

2.3.2. Procedure of Sequential Updates

This section describes the specific procedure of sequential updating for the weight parameter set ŵt using the
observations yt that are measured at Ng offshore gauges. The entire procedure is summarized in Algorithm 1.

It is assumed that prior to the online phase, both the spatial mode matrix Φr and scenario coefficient matrix At
have been prepared as the results of the offline phase. At the beginning of the online phase, the initial
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observational wave snapshot yt1 is obtained via measurements at Ng offshore gauges. Then, the covariance matrix
Σε of the error vector εt is set as

Σε = I, (22)

where I is the identify matrix.

For weight parameter estimation, the Bayesian approach defined in Equations 16–18 (Lines 5–6 in Algorithm
1) requires two hyperparameters, Σw and μw, to determine the form of the initial distribution of the prior
probability p(w). A possible method of identifying the optimal hyperparameters according to observed data was
devised with the hierarchical Bayesian model (Gelman et al., 2013), which adaptively determines their com-
ponents by referring to another probability distribution. However, the resulting process will be computationally
expensive since analytical calculations are no longer possible, and there is no prior information on each
scenario's likelihood at the initial step. Therefore, in this study, fixed values are determined for these parameters
such that

μw = 0, Σw = αI. (23)

Here, α is a parameter for defining an initial distribution range of weight parameters and set to 0.01 by trial
calculations in this study. That is, both the mean and covariance are assumed to be uniform for all Ns scenarios.

By using the initial conditions above, the weight parameter set ŵt can be sequentially estimated as summarized as
the loop in Lines 3–9 in Algorithm 1. Finally, at time step T, the scenario superposition as described in Equa-
tion 10 provides a snapshot of the wave height prediction for all time steps, that is, waveform prediction, as

ŷt = ΦrAt ŵT . (24)

Here, the covariance matrix of the prediction error can be estimated as

Rt = ΦrAtPT(ΦrAt)
T. (25)

It should be emphasized that the predicted waveforms ŷt and their covariances Rt can be obtained for all time
steps, t ∈ {t1, t2,… ,Nt} , within a limited observation duration T, which is expected to be much shorter than the
observation time, as T ≪ tNt

.

Algorithm 1. Online Phase: Estimation of Weight Parameters

Require: Spatial mode matrix Φr ∈ RNg ×r and coefficient matrix At∈ {1, 2, … , T} ∈ Rr×Ns.

Require: Observation vector of wave heights yt∈ {1, 2, … , T}.

1: Σε = I.
2: μw = 0; Σw = 0.01I.
3: for t = 1, …, T≪Nt do
4: // Lines 5–8 estimate the joint probability distribution of the weight

parameters.

5: Pt = (Σ− 1w + (ΦrAt)
TΣ− 1ε ΦrAt)

− 1

6: ŵt = μw + Pt(ΦrAt)
TΣ− 1ε (yt − ΦrAtμw)

7: Σw ← Pt
8: μw ← ŵt
9: end for
10: // Lines 11–12 generate waveform prediction.
11: ŷt∈ {1, 2, … , Nt} = ΦrAt ŵT
12: Rt∈ {1, 2, … , Nt} = ΦrAtPT(ΦrAt)

T

13: return ( ŷt, Rt)
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3. Synthetic Experiments Targeting the Nankai Subduction Zone
The data matrix X and the observational snapshot yt are obtained from numerical simulation and used as input for
the offline and online phases instead of using the actual tsunami data according to Mulia and Satake (2021). In the
following, we refer to X and yt as “training” and “test” data, respectively, for convenience. To confirm the
improved accuracy of the proposed method over the previous best‐fit scenario detection‐based method (Nomura
et al., 2022), the same scenario database is used by both methods in the offline phase of the synthetic experiment,
where reduced‐order modeling by singular value decomposition is performed. In what follows, we refer to the
results obtained using the previous method as N.2022. The online phases are different for each prediction method.

3.1. Target Area

Synthetic experiments can be effective for sites where there is a future tsunami risk but historical data are poor or
unavailable. In this context, we target the Shikoku region of Japan, which is close to the Nankai Trough sub-
duction zone, consisting of three main fault sources: Tokai, Tonankai, and Nankai (Ando, 1975, 1982). If the three
source faults rupture simultaneously, the triggered tsunami is assumed to arrive on the Pacific coast of western
Japan within a few minutes. Although the earthquakes triggered by these faults are known to occur periodically,
there is no available tsunami evidence even for the most recent event in 1946 (Baba et al., 2002; Cummins
et al., 2002). In addition, considering that the estimated damage can reach 200,000 casualties at most (Cabinet
Office Japan, 2019), synthetic experiments targeting this region are also worth performing from a disaster
mitigation perspective.

3.2. Synthetic Tsunami Scenarios With Hypothetical Earthquake Events

As shown in the left panel of Figure 1, the Nankai subduction zone is first discretized into 1,119 triangular
subfaults assuming Slab 2 geometry (Hayes et al., 2018). Then, MudPy software (Melgar, 2020) implementing
the Karhunen‐Loève (KL) expansion (LeVeque et al., 2016) is used to calculate a variety of random lognormal
slip distributions with a specified covariance matrix for the slip on each subfault relative to other subfaults. The
parameters used are based on observed correlation lengths from past large subduction zone earthquakes (Melgar
& Hayes, 2019). In addition, the other rupture parameters, such as strike, dip, rake angle, and depth, were also
added to each subfault. See LeVeque et al. (2024) for the specific setting of each paramter and subfault location.
In this work, we assume that this provides a reasonable probability distribution for sampling possible earthquakes
to obtain the training data.

Using the created slip distribution patterns as input data, the time‐dependent seafloor displacements (Comninou &
Dundurs, 1975) are calculated with GeoClaw software (Clawpack Development Team, 2021). As an example, the
slip distribution and seafloor deformation of the Mw 9.1 event (#2274) are shown in Figure 1. Using the seafloor
displacements as input data, this software enables us to simulate the resultant tsunami wave propagation for 3 hr.
The governing equations employed for GeoClaw are the nonlinear shallow water equations, and it implements the
adaptive mesh refinement technique. The etopo1 data released by NOAA (Amante & Eakins, 2009) is used for the
topography and bathymetry data in the simulation target area. In order to enrich the training and test data, we
prepared 2,342 scenarios of synthetic Nankai Trough earthquakes/tsunamis with magnitudes ranging from Mw
8.1 to 9.1. Specifically, the numbers of scenarios are 400, 400, 399, 394, 392, and 357 for magnitudes 8.1, 8.3, 8.5,
8.7, 8.9, and 9.1.

In each tsunami simulation, synthetic gauges are located at selected calculation points to record synthetic tsunami
wave sequences. The number of synthetic gauges is Ng = 62, and their locations are shown in Figure 2; they were
selected to be identical to the actual observational instruments near Shikoku Island, such as the Dense Oceanfloor
Network System for Earthquakes and Tsunamis (DONET) (Kaneda, 2010) and the Nationwide Ocean Wave
information network for Ports and Harbors (NOWPHAS) (Ports and Harbours Bureau, 2022). The observation
network of DONET measures in situ water pressures, which can be converted to wave heights via the hydrostatic
pressure, and its gauges are connected with seafloor cables around depths of 1,000–5,000 m. In contrast, gauges of
the NOWPHAS network directly observe wave heights by ultrasonic wave gauges or Global Positioning System
(GPS) buoys. They are installed relatively close to the coast, and the water depths are up to 500 m. The previous
study (Nomura et al., 2022), which also focused on the tsunami prediction in the Shikoku region, considered 71
gauges. The gauge configuration consisted of 47 virtual gauges as well as 24 actual gauges of DONET and
NOWPHAS. In contrast, we set the actual 62 gauges selected fromDONET and NOWPHAS and eliminate virtual
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gauges to consider a more practical condition. Gauge A in the figure is one of the synthetic gauges used for
observation and is selected as a target point for tsunami waveform prediction.

For validation purposes, 2,342 hypothetical earthquake/tsunami scenarios are divided into test and training data
sets. Specifically, 586 scenarios, which correspond to 25% of the database, are randomly selected as test data, and
the remaining 1,756 scenarios are used as training data. In summary, each training scenario data matrix
Xj ∈ {1, 2, … , 1756} has dimensions of Ng × Nt = 62 × 2,160, where Nt corresponds to
3 [hr] × 3,600 [sec/hr]/5 [sec] in real time. Thus, the dimension of the data matrix X ∈ RNg × (Nt ×Ns) are
62 × (2,160 × 2,342). Additionally, there are 586 matrices of test scenarios, and each matrix Yi ∈ {1, 2, … , 586}
has dimensions of Ng × Nt(= 62 × 2,160).

3.3. Offline Phase

As explained in Section 2.2, the offline phase is carried out to extract the mode matrix Φr and the coefficient
matrix At from the training data matrix X via singular value decomposition. After decomposing the matrix X, we
need to determine the number of modes r needed to obtain the approximation in Equation 7. For this purpose, the
contribution rate cj of mode j is defined as

Figure 2. Synthetic gauge configuration in the targeted Shikoku shore region. The gauge locations are identical to those of the
existing gauges DONET1, DONET2, and NOWPHAS as illustrated by the different colored circles. Gauge A is the target
gauge for waveform prediction, and the training and test data of wave snapshots, denoted as xt and yt , are sampled at all
synthetic gauges, including Gauge A.

Figure 1. Left: Slip distribution of sample scenario #2274 (Mw 9.1) on the projected triangular subfaults of the Slab 2.0
model of Japan. The black rectangle shows a region in which synthetic observational gauges are installed as in Figure 2.
Right: Final seafloor deformation for scenario #2274 simulated with the Okada model.
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cj =
λj

∑n
i=1 λi

=
σ2

j

∑n
i=1 σ2

i
, (26)

where λi is the i‐th eigenvalue of a covariance matrix XXT and is equal to the square of the corresponding singular
value σi.

The obtained contribution rates are used to calculate the cumulative contribution rate ∑r
j=1cj, which generally

expresses the ROM performance of Φr ∈ RNg × r for the original data. Figure 3 shows the variation of the
contribution rate with the number of modes. From this figure and specific values that are not given here, it is found
that the cumulative contribution of the top 23 modes reaches 99% of the original data, which have a total of
62 (=Ng) modes. In other words, the higher modes, from 24 to 62, cumulatively have less than 1% of the in-
formation and can be regarded as noise. Therefore, we employ r = 23 modes for the ROM representation in
Equation 7 and for the online phases of both prediction methods.

3.4. Online Phase

During the online phase, the Bayesian estimation is carried out to evaluate the appropriate weight parameter set.
As summarized on Lines 1–2 of Algorithm 1, the initial condition of the probability distribution is first set ac-
cording to Equations 16–18. Figure 4 shows the initial probability density distribution of the weight parameters.
Here, the contour plot shows the joint probability of the weight parameters for the training scenarios, and the two
graphs of the sides show the probability of each weight parameter. Although only two training scenarios are
sampled to show the initial probability density distribution in the two‐dimensional space, the same initial dis-
tribution is given for all 1,756 training scenarios. As seen from these graphs and described in Section 2.3.2, the
prior information on the weight parameters is characterized by a Gaussian distribution with zero means and
covariance 0.01I.

With the observed wave heights yt, the weight parameter set is sequentially estimated at each time step as
described in Equations 16–18. Figure 5 shows the variation in the distribution of the joint probability of wj=1478

and wj=1526 for test scenario #136 and that of wj=2214 and wj=2231 for test scenario #2274. Here, these two specific
test events (#136 and #2274) have small and large amplitudes, respectively, and are selected from 586 test data to
show the prediction performance. These weight parameters for each test scenario are the largest and second‐
largest components in ŵT =600 and are commonly used as axes for all three panels, respectively. As seen from
the figures, the probability density varies as the sequential Bayesian update proceeds. Although the density
distribution of test scenario #136 does not significantly change, that of test scenario #2214 notably changes. More
specifically, the posterior means, corresponding to the darkest red zone, of wj=1526 and wj=1478 tend to stay near
(0,0), whereas the means of wj=2214 and wj=2231 are likely to reach approximately 0.15–0.20 at T = 600 s.

Figure 3. Cumulative contribution rate∑r
j=1 cj, where cj is the contribution rate of mode j, defined as Equation 26. The red

circle represents the 99% cumulative contributions at r = 23.
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Moreover, both distributions tend to shrink compared with the initial distri-
butions shown in Figure 4. Although only weights ranging from zero to 0.4
are shown in Figure 5, negative and larger positive values are also recorded
for all 1,756 training scenarios.

Figure 6 shows the histograms of the mean values of the estimated weight
parameters ŵT =600 for test scenarios #136 and #2274. The initial mean values
were set to zero for all the training scenarios, and the posterior weights at
T = 600 were also distributed around zero. Additionally, the range of the
weight values of Scenario #2274 is 10 times larger than that of Scenario #136,
implying that the former spreads more widely than the latter. This tendency
corresponds with the probability density variation shown in Figure 5, where
the two largest posterior estimates, ŵj=2214 and ŵj=2231, of Scenario #2274 are
much farther from zero than those of Scenario #136.

3.5. Tsunami Forecasting

Using the set of estimated weight parameters, ŵT , obtained at an arbitrary
observation time in the online phase, future waveforms at t = (T, tNt) that
have not been observed can be predicted for an arbitrary test scenario by the
superposition of training data for tsunami forecasting. For example, Figure 7
shows the superposed waveforms ŵT at Gauge A for Scenarios #136 (Mw
8.1) and #2274 (Mw 9.1) and their standard deviations according to Equa-
tions 16–18. As seen from this figure, the superposition or, equivalently, the
linear combination with the estimated weight parameters effectively traces

Figure 4. Initial prior distribution p(w) = N (μw,Σw) projected on a two‐
dimensional contour plot. The axes refer to the weights of two scenarios
selected from the 1,756 training scenarios. The contour lines show the joint
probability density distribution, and the upper and right side graphs show the
probability density function for each scenario.

Figure 5. Bayesian estimates of weight parameters at representative time steps, T = 150, 300, 600 s. (a) Results for test
scenario #136; (b) Results for test scenario #2274. Each contour plot shows the joint probability of the weight parameters that
correspond to the largest and second‐largest posterior estimates at T = 600 s.
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the trend of future waveforms in the range from the green vertical line to the right. The longer the observation
duration is, the better the performance in both scenarios, as a matter of course. This figure also shows a com-
parison with the conventional method (N.2022) for different observation duration periods (T = 150, 600 s) to
confirm the advantages of this method. The waveforms that are superpositions based on all training scenarios
provide much better predictions for both observations than those of the most likely scenario detected using
N.2022.

Another advantage of the proposed method is that treating the weight parameters as random variables allows us to
refer to their probability distributions. The pink bands around the predicted waveforms in Figure 7 indicate the
confidence intervals of ±1σ based on the covariance matrix Rt of the superposing prediction. The true waveforms
are within the pink bands even when they are not perfectly traced by the predicted waveforms. This suggests that
the proposed method has great potential for robust decision‐making in tsunami forecasting since it prevents the

Figure 6. Distribution of the estimated weights for test scenarios #136 and #2274 with an observation duration of T = 600 s.
The weight distribution is summarized as a histogram in the upper panel and a boxplot in the lower panel.

Figure 7. Predicted (superposed) waveforms at Gauge A and their standard deviations for two sampled test scenarios in
comparison with the true waveforms: (a) test scenario of #136 (Mw 8.1); (b) test scenario of # 2274 (Mw 9.1). The
waveforms are obtained by the proposed and previous (N.2022) methods using wave heights measured at all synthetic gauges
during observation durations T = 150 s (left panels) and 600 s (right panels).
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issuance of tsunami warnings based on unreliable forecasts. In other words, such probabilistic information
provided by the proposed method is expected to minimize the possibility of underestimating tsunamis by referring
only to predicted values.

Despite these promising results, further efforts must be made to address the relatively low reliability of pre-
dictions for earthquakes of smaller magnitudes. The range of the pink bands in Figure 7a is large compared to the
wave amplitudes in Scenario #136, which originated from an Mw 8.1 earthquake. Indeed, the confidence interval
of±1σ exceeds five m, almost three times the maximumwave amplitudes for this scenario. On the other hand, the
confidence interval for Scenario #2274, with a Mw 9.1 earthquake, is only half of the maximum wave height.
These results are attributed to the fact that the considered uncertainties, that is, the error vector εt and the initial
distribution of the weight parameters, p(w), are set uniformly for all the test scenarios. Thus, there is room to solve
this problem by adaptively setting the prior distribution of the weight parameters instead of using the Gaussian
distribution employed in this study and explicitly considering other sources of uncertainties.

To more quantitatively compare the prediction results of the proposed and previous methods, Taylor diagrams
(Taylor, 2001) are created for each test case as shown in Figure 8. The advantage of the Taylor diagram is that it
provides a comprehensive visualization of the similarities between two time series. The fan‐shaped single dia-
gram summarizes three evaluation indices: the normalized standard deviation, correlation coefficient, and
Euclidian distance (root‐mean‐squared error). In this figure, the black marker on the horizontal axis represents the
test case itself, that is, the true value. The polar axis shows the normalized standard deviation and represents the
scale difference in the wave amplitude from the test data. Additionally, the polar angle indicates the correlation
coefficient between the two referenced time series data. If a predicted waveform at Gauge A has a similar upward/
downward trend to the test data, the resulting point is plotted at a smaller counterclockwise angle from the
horizontal axis. In addition, the radial distance from the black marker represents the root‐mean‐squared error of
the predicted waveform at Gauge A. Thus, in simple terms, the closer the plot is to the black marker, the more
accurate the predicted waveform is. Since the proposed and N.2022 methods predict waveforms of the entire time
series, prediction errors can occur within the observation window. To fairly evaluate such errors, the three indices
are computed using the entire time series, including observation periods.

In both Taylor diagrams for different durations, the dark red, red, and orange markers, which correspond to the
waveforms predicted as superpositions of the training data by the proposed method, are closer to the black marker
than the light blue, blue, and dark blue makers are, respectively, which are predicted by N.2022. In addition, the
proposed method increases the accuracy of the results for longer observation periods as indicated by the circle and

Figure 8. Taylor diagram summarizing the accuracy of the predicted waveform at Gauge (a) (a) Scenario #136; (b) Scenario
#2274. The black marker shows the true value; the orange, red, and dark red markers show the waveforms superposed by the
proposed method; and the light blue, blue, and dark blue markers show the waveforms detected by the previous method
(N.2022). The rectangular, circular, and triangular shapes indicate the results for three different observation durations,
T = 150 s, 300 and 600 s, respectively. The inverted white triangle in each panel corresponds to the waveform at Gauge A for
the closest scenario that satisfies Equation 27.
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triangle markers. In contrast, improvements are not necessarily visible for N.2022 since the blue plots showing the
results of the previous method are close to each other.

To quantitatively evaluate whether the achieved accuracy is acceptable, we extract and compare the scenario with
the most similar waveform in the training database. In Figure 8, the inverted white triangle in each panel cor-
responds to the waveform at Gauge A for the closest scenario j, which satisfies the following relationship:

j = argmin
j∈{1, … , Ns}

‖Xj − Y‖F, (27)

where ‖ • ‖F is the Frobenius norm for all 3 hr wave heights. The extracted scenario j is located much farther from
the true plot (black marker) than the blue and red triangles for both test cases. This result means that the proposed
method is not only superior to the previous method but also makes more accurate predictions than are possible
with the straightforward scenario search method using complete observation data. It is also concluded that the
scenario superposition approach proposed in this study has a strong advantage for tsunami waveform prediction
even when a scenario similar to the actual event does not exist.

To further confirm the advantage of the present approach, we compare the predicted results with the true values in
terms of the maximum wave height at Gauge A for all 586 test cases. Figure 9 shows the scatter plots for this
comparison. Similar to the results of the Taylor diagram, the plots approach the diagonal as the observation
duration increases for the proposed method, whereas they remain scattered even for T = 600 s for the previous
method as shown in Figure 9b. In particular, the large‐magnitude scenarios represented by the diamond‐shaped
markers (Mw 9.1), which usually result in larger wave amplitudes, are over/underestimated in Figure 9b. Such
nonnegligible prediction errors are eliminated by the proposed method given sufficient observational duration;

Figure 9. Comparison between the observed and predicted maximum wave heights for all the test scenarios using the
proposed method and the method of N.2022. (a) Proposed method; (b) method of N.2022. The observation durations are
T = 150, 300 and 600 s from left to right.
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see Figure 9a. In addition to the superiority over the previous work (N.2022), comparison studies with other
prediction schemes would provide a comprehensive understanding of the prediction performance of the proposed
method, and therefore, such a study will be conducted in the future.

Remarks 2 From the above demonstration of tsunami waveform prediction, we argue that the proposed scenario
superposing scheme is superior over the previous one (Nomura et al., 2022). However, since the weight parameter
estimation is based on the regression problem, the prediction may lose its reliability if the solution of the inverse
problem described in Subsection 2.3 is unstable. For example, when two or more training scenarios have similar
waveforms at all synthetic gauges, the solution may be indeterminate because two or more basis functions become
almost identical. This leads to the existence of multiple possible sets of weight parameters and makes their
probability distribution have a very large variance. As another example, if the number of training scenarios is
insufficient, appropriate solutions may not be available, and an accurate prediction will not be achieved. It should
be noted that this study assumes that cases like these examples do not occur. Guaranteeing prediction accuracy in
such cases where the solution is unstable will be a future challenge.

4. Conclusion
In this study, we proposed a tsunami scenario superposition method that predicted an actual event by a linear
combination of all the scenarios in the database with appropriate weight parameters. The Bayesian approach was
used to search for the best weight parameter set as the solution of a linear regression problem.

Specifically, the scenario coefficients and spatial modes were extracted by singular value decomposition (SVD)
in the offline phase and used in the online phase to model the observational wave snapshots by a linear com-
bination. In the online phase, the set of suitable weight parameters for scenario superposition was found as the
solution to the Bayesian regression problem with real‐time tsunami data obtained at the synthetic gauge over time.

Synthetic experiments targeting the Nankai subduction zone were performed to validate the advantages of the
proposed method. In the experiments, hypothetical earthquake and tsunami scenarios were first generated, and
their wave sequences were recorded through a series of numerical simulations. Then, the proposed and our
previous methods were tested on the synthetic data for comparison. The results showed that the proposed method
performed better than the previous method in predicting the waveform near the Shikoku coast and provided more
accurate predictions with longer observation durations. In addition, the predicted waveforms of the proposed
method were more accurate than those of the most similar scenario detected using all 3 hr wave data. This fact
indicates the advantage of scenario superposition in situations where the closest scenario in the database is not
similar to the actual event. Accurate predictions of the maximum wave heights were also made for all test cases
within a few hundred seconds, such as 150, 300, and 600 s. In addition, the treatment of the weight parameters as
random variables with the Bayesian approach allowed us to refer to the confidence intervals of the predicted
waveforms. These confidence intervals are assumed to be beneficial for the local community in determining
tsunami mitigation with minimal uncertainty.

Overall, we argue that our extended method for real‐time tsunami prediction has advantages over the previous
scenario detection method in terms of tsunami mitigation. More appropriate prior probability distribution settings
have been mentioned as a topic to be investigated in the future to address the large uncertainties relative to small
tsunami wave amplitudes. Another probabilistic regression model, such as Bayesian Lasso, may also be a po-
tential tool for improving the probability distribution settings. Also, we need to explicitly define a variety of
uncertainties caused by assumptions in prediction models and hypothetical scenario generation to quantify the
uncertainty inherent in forecasts. Once these remaining tasks are completed, early warning of a nearshore tsunami
by scenario superposition will be a more feasible and promising tool for tsunami‐prone communities such as those
in the Shikoku region of Japan.

Appendix A: Effect of Singular Value Decomposition in Scenario Superposition
The effect of the low‐rank approximation via SVD in Equation 10 and Equation 12 is tested. The low‐rank
approximation reduces the condition number of the matrix X and induces a robust prediction model to obser-
vation noises. To test the prediction with noise conditions, we first generated 1,000 cases of noise‐added test data,
considering test scenario #2274, which is the same scenario tested in Section 3.4. Specifically, synthetic Gaussian
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noise with mean zero and covariance I were added to the original test data matrix Y. Using the noise‐added
observations as input, we carry out two cases of tsunami predictions: w/SVD and w/o SVD.

Figure A1 shows the variety of estimated weight values of sampled training scenarios through 1,000 case pre-
dictions with and without SVD conditions. Generally, the weights estimated without SVD are distributed more
widely, which means the weight estimation is more sensitive to input noise. Figure A2 shows the waveform
prediction results at Gauge A (Figure 2) through 1,000 cases. The mean values of the results, shown with black
triangles, show almost similar accuracy. It should be noted that only slight differences between the results with
and without SVD can be seen since the Bayesian approach is used to estimate a weight parameter set. The
Bayesian linear regression with a Gaussian prior, used in this study, is known to be equivalent to linear regression
with l2 regularization. Therefore, the prediction through the Bayesian linear regression is robust to input noise,
and the application of SVD leads to a slight improvement.

Figure A1. Comparison of the estimated weight parameters between the tsunami predictions with SVD (red) and without
SVD (black). The weight parameter estimation is conducted with 1,000 cases of synthetic noise conditions.

Figure A2. Comparison of the prediction results at Gauge A with and without SVD. The red circles show the prediction
results of 1,000 cases with synthetic noise conditions, and the black triangles show the mean values of 1,000 predictions.
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Data Availability Statement
The python codes used for all numerical experiments in this work are available at https://doi.org/10.5281/zenodo.
14029637 (Fujita, 2024). All synthetic wave sequences of 2342 hypothetical scenarios, and the locations of the
synthetic gauges are archived in https://doi.org/10.5281/zenodo.12696847 (LeVeque et al., 2024).
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