Noise-sensitivity in stochastic nonlinear models with delays and discontinuities

Rachel Kuske, UBC

In Collaboration with:
David Simpson (UBC/Massey University), Yue Xian Li
(UBC), John Hogan (U Bristol),
Tony Shardlow (U. Bath) Evelyn Buckwar (U. Linz),
Salah Mohammed (S. Illinois U.)

Noise reducing complexity:

$$
\begin{aligned}
d x & =\left(\mu x-y^{2}+2 z^{2}-\delta z\right) d t \\
d y & =y(x-1) d t+\sqrt{2} \epsilon d W \\
d z & =(\mu z+\delta x-2 x z) d t
\end{aligned}
$$

Noise (dW = white noise) perturbs trajectories near slow manifold ($\mu \ll 1$)

Also, important in computations: identify potential computational error

Computational questions:

- Convergence of numerical methods: Strong (pathwise) convergence vs.Weak convergence
- Dynamics of numerical schemes
- Stochastic bifurcations: qualitative changes of dynamics at specific parameter values
- Stability of schemes
- Questions can vary with types of noise
(Concentrating on SDE's)

Examples:

- Convergence of numerical methods: Strong (pathwise) convergence vs. Weak (in distribution) convergence

Strong: $\quad E\left|X-Y_{h}\right|$

Weak: $\left|E[X]-E\left[Y_{h}\right]\right| \quad\left|f_{X}(x)-f_{Y_{n}}(y)\right|$

Forward, Backward Kolmogorov equations: PDE's Karniadakis (20I3), Schwab (20I2) (DG, discontinuous dynamics)

Examples: $\quad d Y=a(Y) d t+b(Y) d W$

Strong:

$O(\sqrt{h})$ Euler-Maruyama $Y_{n+1}=Y_{n}+a\left(Y_{n}\right) h+b\left(Y_{n}\right) Z_{n} \sqrt{h}$ $O(h)$
θ - Maruyama method
Milstein
$Y_{n+1}=Y_{n}+a\left(Y_{n}\right) h+b\left(Y_{n}\right) Z_{n} \sqrt{h}+b\left(Y_{n}\right) b^{\prime}\left(Y_{n}\right) / 2\left(Z_{n}^{2}-1\right) h$
Weak:
$O(h)$ Euler-Maruyama
$O\left(h^{2}\right)$: Multi-step uses: $Y_{n}+a h+b Z_{n} \sqrt{h} \quad Y_{n}+a h \pm b \sqrt{h}$
Higher order: Additional r.v.'s, derivatives needed
Kloeden, Platen I992

Recent examples:

- Nonlinearities:, tamed explicit methods Hutzenhaler, 2012
- Stability of schemes: Questions can vary with types of noise, or quantities of interest

$$
d x=a(X) d t+b(X) d W
$$

Multiplicative noise: could have $X=0$ as an equilibrium
$d x=a(X) d t+b d W \quad$ Additive noise: $\mathrm{X}=0$ is not an equilibrium

Buckwar, Riedler, Kloeden, 20II

- Dynamics of schemes
- Dynamical behavior

Stability for nonlinear SDE's: contractive conditions Buckwar, Riedler, Kloeden, 20II

Non-normal drift - interaction of drift and diffusion in discretized system (stability) Buckwar, et al 20

Ito vs. Stratonovich interpretation of dW: endpt vs. midpt evaluation of integrand, Ito friendlier for coding, Stratonovich usually used for parametric noise in applications

Dynamical Questions:

Noise driven order: "Stabilized" transients
Can't ignore: Transients from the deterministic dynamics "Small" random perturbations drive qualitative changes

Stochastic facilitation: Constructive roles of biologically relevant noise in the nervous system
McDonnell, Ward Nature Neuroscience Reviews 20II

Various types of dynamics: bifurcations + delays

Discontinuous, Piecewise Smooth, dynamics: Sliding, grazing, impacts, virtual dynamics, control

Dynamical Questions:

- Interplay of computational results and analysis
- Interplay of dynamics (and time scales) with stochastic perturbations - not necessarily separable
- Relatively fast, easy-to-code simulations to test and motivate "interesting" cases/parameter ranges
- Whose time is more valuable: researcher time or machine time? Significance of higher order methods

Delays: Models of Balance

- Applications: Human Postural Sway, Stick Balancing, Robotics
- What are the contributing factors to stability, instability, balance, sway, other behaviors?

Transfer ideas between models in mechanics/ optics and biological applications: transients sustained by stochastic effects

- Applications: Human Postural Sway, Stick Balancing, Robotics

Simple model: inverted pendulum

Stabilized on a cart

$\left(1-\frac{3 m}{4} \cos ^{2} \theta\right) \ddot{\theta}+\frac{3 m}{8} \dot{\theta}^{2} \sin (2 \theta)-\frac{3}{2} \frac{g}{L} \sin \theta+\frac{3 F}{2 L\left(M_{\mathrm{p}}+M_{\mathrm{c}}\right)} \cos \theta=0$.
$\frac{4}{3} m \ell^{2} \ddot{\theta}-m g \ell \sin (\theta)=T_{\text {control }}$,
Even more simple model: inverted pendulum w/ pivot control (torque at the pivot)

Reduced to essentials

$\begin{aligned} \dot{\theta} & =\phi \\ \dot{\phi} & =\sin \theta-F(\theta, \dot{\theta}) \cos \theta\end{aligned}$
$F=a \theta(t-\tau)+b \dot{\theta}(t-\tau)$

$$
F=a \stackrel{(\mathrm{P})}{(\stackrel{(\mathrm{D})}{\theta}+b \dot{\theta}}
$$

Proportional Derivative

PD control

Biological considerations:

- Delay in the application of the control: neural transmission
- On-off control: not active control all the time
- Noise: Small random fluctuations can result in large changes in certain circumstances

Balance model:

$$
\begin{aligned}
\dot{\theta} & =\phi \\
\dot{\phi} & =\sin \theta-F(\theta, \dot{\theta}) \cos \theta
\end{aligned}
$$

Stability diagram for PD control (w/delay), control always on
G. Stépán and L. Kollár

Hopf bifurcation: oscillations for larger values of the control parameters a,b
$\theta=0$ is stable in shaded area, D-shaped region
Pitchfork bifurcation: stability of non-zero fixed point Hopf bifurcation, stability of oscillatory behavior

Fully nonlinear model: w/ Hopf bifurcation

control parameter $\left(c_{1}\right)$

Hopf bifurcation: oscillatory solutions for certain delay

Smaller nonlinear oscillatory solutions unstable

Larger nonlinear oscillatory solutions bi-stable with $\mathrm{x}=0$ solution

- Nonlinearity: non-uniqueness, complex dynamics
- Delays: Delay Differential Equations (DDEs)
- Noise: Stochastic DDEs (SDDEs), minimal theory, limited computational methods

Dynamical References: Campbell, Milton, Ohira, Sieber, Krauskopf, Stepan, K. others

SDDE's: $\quad d x=f(x(t), x(t-\tau) d t+g(x(t), x(t-\tau) d W(t)$

- Dynamics: e.g. Mean Square Stability: Linear system w/ delays, Buckwar et al 2013
- Numerical methods

Milstein method ($O(h)$ strong convergence) for SDDE's: Kloeden, Shardlow, 2012 (Taylor-like expansions)

Euler-Maruyama, ($O(h)$ weak convergence) for SDDE's:
Distributed delays:
Buckwar, et al, 2005 (linear), Clement, et al 2006
Anticipating (Malliavin) calculus: tame Ito formula on $\int_{t_{1}}^{t_{2}} f^{(i)}(Y(u-\tau), Y(u)) \ldots d W(u-\tau)$ segments of solution

Buckwar, K. , Mohammed, Shardlow, 2008

State-dependent control in balance models:

PD control with delay

Phase plane for system with control off

State-dependent on/off control: control is on in state drifting away from origin

Asai, etal, 2009, PLOS I

Zig-zags and spirals:

$$
\begin{aligned}
& \ddot{\theta}-\sin \theta+F(\theta, \dot{\theta}) \cos \theta=0 \\
& F=a \theta(t-\tau)+b \dot{\theta}(t-\tau)
\end{aligned}
$$

Weaker control: zig-zag
On/Off Control : Note delay in switching from on/off, system enters off region before control is switched off behavior

Larger delay/
Stronger control: yields spiral

Asai, etal, 2009,
PLOSI

Periodic behavior:

$$
\begin{aligned}
& \ddot{\theta}-\sin \theta+F(\theta, \dot{\theta}) \cos \theta=0 \\
& F=a \theta(t-\tau)+b \dot{\theta}(t-\tau)
\end{aligned}
$$

PD control with delay

Zig-zag orbits - periodic solutions away from origin, moving back and forth from on/off

Note: w/o delay: PWS system is Filipov, solution slides along the switching manifold, can calculate analytically

Balance model w/ noise: small random fluctuation
For larger control: oscillations near the origin: weak attraction to the origin

For smaller control, noise can cause transition to zig-zag orbit

Bifurcation diagram: control a vs. θ

Bursting-like oscillations

Also prominent in cart model with significant mass

Transitions from zig-zag to spirals?

D-shaped region:
stable vertical position with cts control

Regions: analysis of linearized model

(unstable)
zigzag and spirals w/ discts control

Transitions: sensitivity to noise

Noise driven/amplified spirals, stabilized transients: complex dynamics expected for larger systems

unstable spiral, sustained by noise - similar to perturbed spiral

unstable $Z Z$ sustained as spiral via noise

Results for stochastic + discontinuous dynamics
Discontinous noise sources : Jump-diffusion: R-K methods: Mean square (strong) convergence and Lipschitz-type conditions for increment functions Buckwar, et al 20II

Stochastic Flows for SDE's with singular coefficients: Many results carry-over for non-smooth, measurable drifts, as long as noise is "nice" (e.g. Brownian) Mohammed et al 2013

This result is counter-intuitive since the dominant 'culture' in stochastic (and deterministic) dynamical systems is that the flow 'inherits' its spatial regularity from the driving vector fields

Results for stochastic + discontinuous dynamics

Smoothed systems (approximating discts system): Elemgard et al 2013, Simonsen et al 2013

Deterministic:
Acary, Brogliato, Numerical Methods for Nonsmooth, DS, 2008 Dieci, Lopez, Survey for IVPs, 20 I2

Weak existence and uniqueness vs. strong uniqueness, discontinuous drift bounded away from zero Pascu, 2013

Smooth vs. Piecewise Linear (PWL) models:

Complex dynamics in higher dimensions or noise driven?
Neuro-dynamics:Typical structure

$$
\begin{aligned}
d v & =(f(v)-w) d t, \\
d w & =\varepsilon(\alpha v-\sigma w-\lambda) d t+D d W
\end{aligned}
$$

$$
f(v)=3 v^{2}-2 v^{3}
$$

$$
f(v)=\left\{\begin{array}{lc}
\eta_{L} v, & v \leq 0 \\
\eta_{1} v, & 0<v \leq v_{1} \\
\eta_{2}\left(v-v_{1}\right)+w_{1}, & v_{1}<v \leq 1 \\
\eta_{R}(v-1)+1, & v>1
\end{array}\right.
$$

MMO's in PWL models w/ canard structure

MMO's robust over a larger range of control parameter for PWL

Simpson, K. Physica D, 201 I

Analysis of PWL FHN type models, w/ noise
-Linear analysis on subregions - Time dependent probabilities

In each for four regions, SDE:

$$
\begin{aligned}
d v & =(f(v)-w) d t, \\
d w & =\varepsilon(\alpha v-\sigma w-\lambda) d t+D d W
\end{aligned}
$$

Time dependent probability density with $f(v)$ linear Solve PDE (Fokker Planck equation) with linear coefficients: Gaussian probabilities
Time dependent Ornstein-Uhlenbeck processes

Time dependent densities: transition distributions

- Time dependent probabilities - Semi-analytical approach: iterate on transitions between regions - Additional local analysis at crossings: first vs. last crossing time
- Parametric dependence

Variability with λ and critical values v_{1}, w_{1}

Sliding dynamics: Relay control

$\dot{\mathrm{x}}=A \mathrm{x}+B u$
$\varphi=C^{\top} \mathbf{x}$,
$u=-\operatorname{sgn}(\varphi)$

Control (u) depends on state x

no noise

vector field is discontinuous along the switching (sliding) manifold

Potential contributions to $\mathrm{O}(\mathrm{I})$ change to average period

$$
\begin{aligned}
& \dot{\mathrm{x}}=A \mathbf{x}+B u \\
& \varphi=C^{\top} \mathbf{x}, \\
& u=-\operatorname{sgn}(\varphi)
\end{aligned}
$$

Control (u) depends on state x
no noise

w/ noise

sliding
w/noise

3D model

$$
\begin{aligned}
\dot{\mathbf{x}} & =A \mathbf{x}+B u \\
\varphi & =C^{\top} \mathbf{x}, \\
u & =-\operatorname{sgn}(\varphi)
\end{aligned}
$$

Results: influence of noise in deviation from sliding

Other regions: connection of sliding with other dynamics (exit/ entrance), use of stochastic averaging, asymptotic analysis of FPE

Distributions, moments

Constant drift case:

$\operatorname{Var}(y(t))=\varepsilon \kappa t+\frac{\left(b_{L}-b_{R}\right)^{2}}{\left(a_{L}+a_{R}\right)^{2}} \varepsilon t+O\left(\varepsilon^{2}\right)$

Time dependent density:
Needed to compute correlations (Karatzas, Shreve)

$\mathrm{p}(\mathrm{x}, \mathrm{t} \mid \mathrm{x}$ _ 0$)=$
$\begin{cases}\frac{2}{\varepsilon} \mathrm{e}^{\frac{2 a_{L} x}{}} \int_{0}^{\infty} h_{\varepsilon}\left(t, b, a_{R}\right) * h_{\varepsilon}\left(t, b-x-x_{0}, a_{L}\right) d b+G_{\text {absorb }, \varepsilon}\left(x, t, a_{L} \mid x_{0}\right), & x_{0} \leq 0, x \leq 0 \\ \frac{2}{\varepsilon} \mathrm{e} \frac{2 a_{R}}{\varepsilon} \int_{0}^{2} \int_{0}^{\infty} h_{\varepsilon}\left(t, b+x, a_{R}\right) * h_{\varepsilon}\left(t, b-x_{0}, a_{L}\right) d b, & x_{0} \leq 0, x \geq 0 \\ \frac{2}{\varepsilon} \mathrm{e}^{2 a_{L} x} \int_{0}^{\infty} \int_{0}^{\infty} h_{\varepsilon}\left(t, b+x_{0}, a_{R}\right) * h_{\varepsilon}\left(t, b-x, a_{L}\right) d b, & x_{0} \geq 0, x \leq 0 \\ \frac{2}{\varepsilon} \mathrm{e} \frac{-2 a_{R}}{\varepsilon} \int_{0}^{\infty} h_{\varepsilon}\left(t, b+x+x_{0}, a_{R}\right) * h_{\varepsilon}\left(t, b, a_{L}\right) d b+G_{\text {absorb }, \varepsilon}\left(x, t,-a_{R} \mid x_{0}\right), & x_{0} \geq 0, x \geq 0\end{cases}$

Implications for (near) sliding dynamics

$$
\begin{aligned}
& \langle y(t)\rangle=y_{\text {slide }}(t)+\frac{\left(a_{L}^{2} d_{R}-a_{R}^{2} d_{L}\right)\left(a_{L}+a_{R}\right)-\left(a_{L}^{2} c_{R}-a_{R}^{2} c_{L}\right)\left(b_{L}-b_{R}\right)}{2 a_{L} a_{R}\left(a_{L}+a_{R}\right)^{2}} \varepsilon t+o(\varepsilon) \\
& \operatorname{Var}(y(t))=\varepsilon \kappa t+\frac{\left(b_{L}-b_{R}\right)^{2}}{\left(a_{L}+a_{R}\right)^{2}} \varepsilon t+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Standard deviation larger than mean shift from sliding Large coefficients can shift average oscillation time

B
oscillation time
Influence on time in sliding state, probability to stay in sliding state

Noise sensitivity: grazing

Grazing: vibro-impacts, friction, AFM, stick-slip

\rangle

Poincare map: a discontinuity map captures impact
Grazing normal form:
Nordmark map
Square root behavior

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left\{\begin{array}{cc}
A\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mu, & x \leq 0 \\
A \\
y-\chi \sqrt{x}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mu, \quad x \geq 0
$$

Noise sensitivity: grazing
Stochastic Poincare map derived from cts model (vs. Poincare map + noise)

Gaussian densities: well separated branches

Non- Gaussian:
branches overlap, square root "stretching" follows iterates near switching

Simpson, Hogan, K. SIADS, to appear

Different types of stochastic discontinuous dynamics: need a variety of ideas

- Mixed mode oscillations: Semi-analytical iterations of time dependent probability density functions
- Discontinuity induced bifurcations - underlying sources of noise-sensitivity
- Positive occupation times: sliding
- Boundary layers and non-standard scaling limits: sliding transitions
- Grazing: Stochastic Poincare maps

Lots of mathematical and modeling challenges:

- Nonlinear models with delay: complex behaviors
- Piecewise continuous nonlinear systems: recently receiving more attention
- Stochastic modeling for systems with delay and discontinuities: open problems analytically and computationally, new approaches needed
- Robustness of different on/off control strategies
- Recent work: extension of results for continuous cases to discontinuous drift cases with "nice" noise (Mohammed, et al, 2013 in progress)

