Noise-sensitivity in stochastic nonlinear models with delays and discontinuities

Rachel Kuske, UBC

In Collaboration with: David Simpson (UBC/Massey University), Yue Xian Li (UBC), John Hogan (U Bristol), Tony Shardlow (U. Bath) Evelyn Buckwar (U. Linz), Salah Mohammed (S. Illinois U.)

Noise reducing complexity:

$$dx = (\mu x - y^2 + 2z^2 - \delta z)dt$$

$$dy = y(x - 1)dt + \sqrt{2}\epsilon dW$$

$$dz = (\mu z + \delta x - 2xz)dt,$$

Hughes, Proctor 1990 Noise (dW = white noise) perturbs trajectories near slow manifold ($\mu \ll 1$)

Nearly periodic trajectory, well approximated by 2D probability density

Also, important in computations: identify potential computational error

K., Papanicolaou, 1998

Computational questions:

- Convergence of numerical methods: Strong (pathwise) convergence vs. Weak convergence
- Dynamics of numerical schemes
- Stochastic bifurcations: qualitative changes of dynamics at specific parameter values
- Stability of schemes
- Questions can vary with types of noise

(Concentrating on SDE's)

Examples:

 Convergence of numerical methods: Strong (pathwise) convergence vs. Weak (in distribution) convergence

Strong: $E|X - Y_h|$

Weak: $|E[X] - E[Y_h]| \qquad |f_X(x) - f_{Y_n}(y)|$

Forward, Backward Kolmogorov equations: PDE's Karniadakis (2013), Schwab (2012) (DG, discontinuous dynamics) **Examples:** dY = a(Y)dt + b(Y)dW

Strong:

 $O(\sqrt{h})$ Euler-Maruyama $Y_{n+1} = Y_n + a(Y_n)h + b(Y_n)Z_n\sqrt{h}$ O(h)

 θ - Maruyama method

Milstein

 $Y_{n+1} = Y_n + a(Y_n)h + b(Y_n)Z_n\sqrt{h} + b(Y_n)b'(Y_n)/2(Z_n^2 - 1)h$

Weak:

O(h) Euler-Maruyama $O(h^2)$: Multi-step uses: $Y_n + ah + bZ_n\sqrt{h}$ $Y_n + ah \pm b\sqrt{h}$ Higher order: Additional r.v.'s, derivatives needed

Kloeden, Platen 1992

Recent examples:

- Nonlinearities:, tamed explicit methods Hutzenhaler, 2012
- Stability of schemes: Questions can vary with types of noise, or quantities of interest

dx = a(X)dt + b(X)dW Multiplicative noise: could have X=0 as an equilibrium

dx = a(X)dt + bdW Additive noise: X=0 is not an equilibrium

Buckwar, Riedler, Kloeden, 2011

- Dynamics of schemes
- Dynamical behavior

Stability for nonlinear SDE's: contractive conditions Buckwar, Riedler, Kloeden, 2011

Non-normal drift - interaction of drift and diffusion in discretized system (stability) Buckwar, et al 20

Ito vs. Stratonovich interpretation of dW: endpt vs. midpt evaluation of integrand, Ito friendlier for coding, Stratonovich usually used for parametric noise in applications **Dynamical Questions:**

Noise driven order: "Stabilized" transients

Can't ignore: Transients from the deterministic dynamics "Small" random perturbations drive qualitative changes

Stochastic facilitation: Constructive roles of biologically relevant noise in the nervous system McDonnell, Ward Nature Neuroscience Reviews 2011

Various types of dynamics: bifurcations + delays

Discontinuous, Piecewise Smooth, dynamics: Sliding, grazing, impacts, virtual dynamics, control

Dynamical Questions:

- Interplay of computational results and analysis
- Interplay of dynamics (and time scales) with stochastic perturbations - not necessarily separable
- Relatively fast, easy-to-code simulations to test and motivate "interesting" cases/parameter ranges
- Whose time is more valuable: researcher time or machine time? Significance of higher order methods

Delays: Models of Balance

- Applications: Human Postural Sway, Stick Balancing, Robotics
- What are the contributing factors to stability, instability, balance, sway, other behaviors?

Transfer ideas between models in mechanics/ optics and biological applications: transients sustained by stochastic effects

Applications: Human Postural Sway, Stick Balancing, Robotics

Simple model: inverted pendulum

Stabilized on a cart

$$\left(1 - \frac{3m}{4}\cos^2\theta\right)\ddot{\theta} + \frac{3m}{8}\dot{\theta}^2\sin(2\theta) - \frac{3}{2}\frac{g}{L}\sin\theta + \frac{3F}{2L(M_p + M_c)}\cos\theta = 0.$$

$$\frac{4}{3}m\ell^2\ddot{\theta} - mg\ell\,\sin(\theta) = T_{\text{control}},$$

Even more simple model: inverted pendulum w/ pivot control (torque at the pivot)

Thursday, October 24, 2013

Reduced to essentials

$$\dot{\theta} = \phi$$

 $\dot{\phi} = \sin \theta - F(\theta, \dot{\theta}) \cos \theta$
 $F = a\theta(t - \tau) + b\dot{\theta}(t - \tau)$

(P) (D)

$$F = a\theta + b\dot{\theta}$$

Proportional Derivative

PD control

Biological considerations:

- Delay in the application of the control: neural transmission
- On-off control: not active control all the time
- Noise: Small random fluctuations can result in large changes in certain circumstances

Balance model:

Stability diagram for PD control (w/delay), control

$$\dot{\theta} = \phi$$

$$\dot{\phi} = \sin \theta - F(\theta, \dot{\theta}) \cos \theta$$

$$F = a\theta(t - \tau) + b\dot{\theta}(t - \tau)$$

Hopf bifurcation: oscillations for larger values of the control parameters a,b

 θ = 0 is stable in shaded area, D-shaped region Pitchfork bifurcation: stability of non-zero fixed point Hopf bifurcation, stability of oscillatory behavior

Fully nonlinear model: w/ Hopf bifurcation

Thursday, October 24, 2013

Mathematical Challenges:

- Nonlinearity: non-uniqueness, complex dynamics
- Delays: Delay Differential Equations (DDEs)
- Noise: Stochastic DDEs (SDDEs), minimal theory, limited computational methods

Dynamical References: Campbell, Milton, Ohira, Sieber, Krauskopf, Stepan, K. others **SDDE's:** $dx = f(x(t), x(t - \tau)dt + g(x(t), x(t - \tau)dW(t))$

- Dynamics: e.g. Mean Square Stability: Linear system w/ delays, Buckwar et al 2013
- Numerical methods

Milstein method (O(h) strong convergence) for SDDE's: Kloeden, Shardlow, 2012 (Taylor-like expansions)

Euler-Maruyama, (O(h) weak convergence) for SDDE's:

Distributed delays: Buckwar, et al, 2005 (linear), Clement, et al 2006

Anticipating (Malliavin) calculus: tame Ito formula on $\int_{t}^{t_2} f^{(i)}(Y(u-\tau), Y(u)) \dots dW(u-\tau)$ segments of solution

Buckwar, K., Mohammed, Shardlow, 2008

State-dependent control in balance models: PD control with delay

$$\dot{\theta} = \phi$$

$$\dot{\phi} = \sin \theta - F(\theta, \dot{\theta}) \cos \theta$$

$$F = a\theta(t - \tau) + b\dot{\theta}(t - \tau)$$

Phase plane for system with control off

State-dependent on/off control: control is on in state drifting away from origin

Asai, etal, 2009, PLOSI

Zig-zags and spirals:

$$\ddot{\theta} - \sin \theta + F(\theta, \dot{\theta}) \cos \theta = 0$$

$$F = a\theta(t - \tau) + b\dot{\theta}(t - \tau)$$

PD control with delay

On/Off Control : Note delay in switching from on/off, system enters off region before control is switched off

Weaker control: zig-zag behavior

Thursday, October 24, 2013

Periodic behavior:

$$\ddot{\theta} - \sin \theta + F(\theta, \dot{\theta}) \cos \theta = 0$$

$$F = a\theta(t - \tau) + b\dot{\theta}(t - \tau)$$

PD control with delay

Zig-zag orbits - periodic solutions away from origin, moving back and forth from on/off

Note: w/o delay: PWS system is Filipov, solution slides along the switching manifold, can calculate analytically

Balance model w/ noise: small random fluctuation

For larger control: oscillations near the origin: weak attraction to the

For smaller control, noise can cause transition to zig-zag orbit

Bifurcation diagram: control a vs. θ

Thursday, October 24, 2013

Experimental Bursting-like oscillations

Also prominent in cart model with significant mass

Thursday, October 24, 2013

Transitions from zig-zag to spirals?

D-shaped region: stable vertical position with cts control

Regions: analysis of linearized model

(unstable) zigzag and spirals w/ discts control

Thursday, October 24, 2013

4г

Transitions: sensitivity to noise Noise driven/amplified spirals, stabilized transients: complex dynamics expected for larger systems

unstable spiral, sustained by noise - similar to perturbed spiral unstable ZZ sustained as spiral via noise Results for stochastic + discontinuous dynamics

Discontinous noise sources : Jump-diffusion: R-K methods: Mean square (strong) convergence and Lipschitz-type conditions for increment functions Buckwar, et al 2011

Stochastic Flows for SDE's with singular coefficients: Many results carry-over for non-smooth, measurable drifts, as long as noise is "nice" (e.g. Brownian) Mohammed et al 2013

This result is counter-intuitive since the dominant `culture' in stochastic (and deterministic) dynamical systems is that the flow `inherits' its spatial regularity from the driving vector fields Results for stochastic + discontinuous dynamics

Smoothed systems (approximating discts system): Elemgard et al 2013, Simonsen et al 2013

Deterministic:

Acary, Brogliato, Numerical Methods for Nonsmooth, DS, 2008 Dieci, Lopez, Survey for IVPs, 2012

Weak existence and uniqueness vs. strong uniqueness, discontinuous drift bounded away from zero Pascu, 2013

Smooth vs. Piecewise Linear (PWL) models: Complex dynamics in higher dimensions or noise driven?

Neuro-dynamics: Typical structure

MMO's in PWL models w/ canard structure

MMO's robust over a larger range of control parameter for PWL

Analysis of PWL FHN type models, w/ noise

Linear analysis on subregionsTime dependent probabilities

In each for four regions, SDE:

$$\begin{split} dv &= (f(v) - w) \ dt \ , \\ dw &= \varepsilon (\alpha v - \sigma w - \lambda) \ dt + D \ dW \end{split}$$

Time dependent probability density with f(v) linear Solve PDE (Fokker Planck equation) with linear coefficients: Gaussian probabilities Time dependent Ornstein-Uhlenbeck processes

Time dependent densities: transition distributions

slope

 Time dependent probabilities •Semi-analytical approach: iterate on transitions between regions Additional local analysis at crossings: first vs. last crossing time

• Parametric dependence

w-nullcline

 (v_1^*, w_1^*)

Variability with λ and critical values v_1, w_1

 Σ_3

 Σ_{2^2}

w-nullcline

(1,1)

slope

 η_R

slope

Thursday, October 24, 2013

W

Σ

Sliding dynamics: Relay control

Potential contributions to O(I) change to average period $\mathbf{\dot{x}} = A\mathbf{x} + Bu$ Control (u) depends on state x φ phase plane u =Sg 0.05 0.1 no noise Α 0.3 0.2 x₃₀--3 --0.1 -0.3 -50 -0.05 70 60 10080 90 0.05 time 0.1 X₁ sliding w/ noise w/noise 0.3 0.3 0.2 X₁ _0 -0.2 -0.3 L 50 $-_{-3}$ 60 70 80 90 time

Thursday, October 24, 2013

time

deviation from sliding National States of Stochastic averaging, FPE

Constant drift case:

$$Var(y(t)) = \varepsilon \kappa t + \frac{(b_L - b_R)^2}{(a_L + a_R)^2} \varepsilon t + O(\varepsilon^2)$$

$$p_{\varepsilon}(x, t; x_0^{0}) = \frac{1}{10\varepsilon} \int_{t = 10\varepsilon}^{t = 10\varepsilon} \int_{t = 10\varepsilon}^{t = \frac{1}{20}\varepsilon} \int_{t = 0}^{t = \frac{1}{20}\varepsilon} \int_{0,02}^{t = \frac{1$$

$$\begin{aligned} & \left\{ \begin{array}{ll} \frac{2}{\varepsilon} \mathrm{e}^{\frac{2a_L x}{\varepsilon}} \int_0^\infty h_{\varepsilon}(t,b,a_R) * h_{\varepsilon}(t,b-x-x_0,a_L) \, db + G_{\mathrm{absorb},\varepsilon}(x,t,a_L|x_0) \,, & x_0 \leq 0, \, x \leq 0 \\ \frac{2}{\varepsilon} \mathrm{e}^{\frac{-2a_R x}{\varepsilon}} \int_0^\infty h_{\varepsilon}(t,b+x,a_R) * h_{\varepsilon}(t,b-x_0,a_L) \, db \,, & x_0 \leq 0, \, x \geq 0 \\ \frac{2}{\varepsilon} \mathrm{e}^{\frac{2a_L x}{\varepsilon}} \int_0^\infty h_{\varepsilon}(t,b+x_0,a_R) * h_{\varepsilon}(t,b-x,a_L) \, db \,, & x_0 \geq 0, \, x \leq 0 \\ \frac{2}{\varepsilon} \mathrm{e}^{\frac{-2a_R x}{\varepsilon}} \int_0^\infty h_{\varepsilon}(t,b+x+x_0,a_R) * h_{\varepsilon}(t,b,a_L) \, db + G_{\mathrm{absorb},\varepsilon}(x,t,-a_R|x_0) \,, & x_0 \geq 0, \, x \geq 0 \end{aligned} \end{aligned}$$

0.04

Thursday, October 24, 2013

Noise sensitivity: grazing

Grazing: vibro-impacts, friction, AFM, stick-slip

Poincare map: a discontinuity map captures impact

Grazing normal form: Nordmark map Square root behavior

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{cases} A \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} \mu, & x \le 0 \\ A \begin{bmatrix} x\\y-\chi\sqrt{x} \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} \mu, & x \ge 0 \end{cases}$$

Noise sensitivity: grazing

Stochastic Poincare map derived from cts model (vs. Poincare map + noise)

Gaussian densities: well separated branches

Non- Gaussian: branches overlap, square root "stretching" follows iterates near switching

Simpson, Hogan, K. SIADS, to appear

Different types of stochastic discontinuous dynamics: need a variety of ideas

- Mixed mode oscillations: Semi-analytical iterations of time dependent probability density functions
- Discontinuity induced bifurcations underlying sources of noise-sensitivity
- Positive occupation times: sliding
- Boundary layers and non-standard scaling limits: sliding transitions
- Grazing: Stochastic Poincare maps

Lots of mathematical and modeling challenges:

- Nonlinear models with delay: complex behaviors
- Piecewise continuous nonlinear systems: recently receiving more attention
- Stochastic modeling for systems with delay and discontinuities: open problems analytically and computationally, new approaches needed
- Robustness of different on/off control strategies
- Recent work: extension of results for continuous cases to discontinuous drift cases with "nice" noise (Mohammed, et al, 2013 in progress)