The Q-R Algorithm of Kublanovskaya \& Francis

Michael A. Epton

October 19, 2013

Summary of Results

- We consider the eigenvalue problem: Find $\mathbf{x} \in \mathbf{C}^{\nu}, \lambda \in \mathbf{C}$ such that $A \mathbf{x}=\lambda \mathbf{x}$.
- Formulate as a root finding problem in $v+1$ unknowns: $F(X)=0$.
- Apply Newton's Method. Obtain formula for the Newton decrement: $\Delta=\left[\delta \mathbf{x}_{n}, \delta \lambda_{n}\right]$
- Key facts: Application of Newton's Method plus insight reveals the algorithmic structure: $F(X)=0 \Rightarrow$ Newton's method \Rightarrow Wielandt Inverse Iteration \Rightarrow Q-R algorithm
- More: If the target λ is simple and known, next iteration determines \mathbf{x} exactly
- Motivates getting the best possible estimate of the eigenvalue
- This leads us to consider Inverse Taylor Series Iteration of degree p
- Newton's Method is the $p=1$ special case of this family
- We will obtain the $p=2$ Inverse Taylor Series update to \mathbf{x} and λ
- We will show that the Newton update to λ_{n} has error $O\left(\Delta^{3}\right)$ in the Hermitian case This implies that the Q-R algorithm is cubically convergent in the Hermitian case
- Obtain all the terms of Inverse Taylor Series by reversion of series

Heroes of our tale

Root Finding Formulation of Eigenvalue Problem

- Given matrix $A \in \mathbf{C}^{v \times v}$, find $\mathbf{x} \in \mathbf{C}^{v}, \lambda \in \mathbf{C}$ such that $A \mathbf{x}=\lambda \mathbf{x}$
- Formulate as a root finding problem in $v+1$ variables: $F(X)=0$ where:

$$
X=\left[\begin{array}{c}
\mathbf{x} \\
\lambda
\end{array}\right] \quad F(X) \stackrel{\text { def }}{=}\left[\begin{array}{c}
(\lambda I-A) \mathbf{x} \\
\mathbf{z}^{*} \mathbf{x}-1
\end{array}\right]
$$

The choice of \mathbf{z} is rather arbitrary. We will change it every iteration

- Last condition is normalization: $\mathbf{z}^{*} \mathbf{x}=1$. The condition $\mathbf{x}^{*} \mathbf{x}=1$ would not work!
- It would lead to an $F(X)$ that is not analytic in X.
- In fact we will renormalize \mathbf{x}_{n} each iteration. Also we will set $\mathbf{z}=\mathbf{x}_{n}$.

Application of Newton's Method to Solving $F(X)=0$

- Apply Newton's Method to find $\quad \Delta=\left[\delta \mathbf{x}_{n}, \delta \lambda_{n}\right] \quad$ s.t. $\quad \mathbf{x}_{n+1}=\mathbf{x}_{n}-\delta \mathbf{x}_{n}, \quad \lambda_{n+1}=\lambda_{n}-\delta \lambda_{n}$:

$$
\left(F_{X}\right)_{X_{n}} \Delta=F\left(X_{n}\right) \quad \Longrightarrow \quad\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]\left[\begin{array}{c}
\delta \mathbf{x}_{n} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{c}
\left(\lambda_{n} I-A\right) \mathbf{x}_{n} \\
\mathbf{z}^{*} \mathbf{x}_{n}-1
\end{array}\right]
$$

- The Newton decrement relation can be recast as

$$
\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]\left[\begin{array}{c}
\delta \mathbf{x}_{n}-\mathbf{x}_{n} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

- The inverse of the coefficient matrix is:

$$
\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
E / \gamma & \mathbf{g} \\
\mathbf{w}^{*} & -\gamma
\end{array}\right], \begin{array}{lll}
\gamma=1 /\left(\mathbf{z}^{*}\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}\right), & G=\gamma\left(\lambda_{n} I-A\right)^{-1} \\
\mathbf{w}^{*}=\mathbf{z}^{*} G, & \mathbf{g}=G \mathbf{x}_{n}, & E=G-\mathbf{g w}^{*}
\end{array}
$$

- Using the matrix inverse formula we find

$$
\left[\begin{array}{c}
\delta \mathbf{x}_{n}-\mathbf{x}_{n} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{r}
-\mathbf{g} \\
\gamma
\end{array}\right] \quad \Longrightarrow \quad \mathbf{x}_{n+1}=\mathbf{x}_{n}-\delta \mathbf{x}_{n}=\mathbf{g}=G \mathbf{x}_{n}, \quad \delta \lambda_{n}=\gamma
$$

Newton's Method, Inverse Iteration and the Q-R Algorithm

- We have obtained the Newton iterate \mathbf{x}_{n+1} and eigenvalue decrement $\delta \lambda_{n}$

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\delta \mathbf{x}_{n}=\mathbf{g}=G \mathbf{x}_{n}, \quad \delta \lambda_{n}=\gamma=1 /\left(\mathbf{z}^{*}\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}\right), \quad G=\gamma\left(\lambda_{n} I-A\right)^{-1}
$$

- Focusing on \mathbf{x}_{n+1}, observe its relation to Wielandt Inverse Iteration:

$$
\mathbf{x}_{n+1}=G \mathbf{x}_{n}=\delta \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}
$$

- G is the Inverse Iteration matrix. $\mathbf{w}^{*}=\mathbf{z}^{*} G$ estimates a left eigenvector by inverse iteration
- The L-Q variant of the Q-R algorithm is based on the following setup:
- The matrix A has been reduced to lower Hessenberg form
- We obtain the L-Q factorization: $\quad \lambda_{n} I-A=L Q, \quad L$ lower triangular, Q unitary
- Q is consequently lower Hessenberg: $\quad Q=L^{-1}\left(\lambda_{n} I-A\right)$
$-\mathbf{x}_{n}=\mathbf{e}_{v}$ (last natural unit vector) and $\left(\mathbf{z}^{*}\right)_{V}=1$. This leads to the following development

$$
\begin{array}{ll}
\mathbf{x}_{n+1}= & \delta \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}=\delta \lambda_{n}(L Q)^{-1} \mathbf{e}_{v}=\delta \lambda_{n} Q^{-1} L^{-1} \mathbf{e}_{v} \\
\Longrightarrow \quad \mathbf{x}_{n+1}^{\prime}=Q \mathbf{x}_{n+1}=\delta \lambda_{n} L^{-1} \mathbf{e}_{v}=\left(\delta \lambda_{n} / \ell_{v, v}\right) \mathbf{e}_{v}
\end{array}
$$

- Absolutely crucial: $\mathbf{x}_{n+1}^{\prime}$ is paralle/ to \mathbf{e}_{v} : This is half the magic of Q-R!

How the Q-R Algorithm Works

- We make the following observations:
- The vector $\mathbf{x}_{n+1}^{\prime}=Q \mathbf{x}_{n+1}$ is parallel to \mathbf{e}_{v}
- If we change basis using Q and renormalize, $\mathbf{x}_{n+1}^{\prime}$ can be set equal to \mathbf{e}_{v}
- In the new coordinate system, $A^{\prime}=Q A Q^{-1}$. Consequently:

$$
A^{\prime}=Q A Q^{-1}=Q\left(\lambda_{n} I-\left(\lambda_{n} I-A\right)\right) Q^{-1}=\lambda_{n} I-Q(L Q) Q^{-1}=\lambda_{n} I-Q L
$$

- Because Q is lower Hessenberg and L is lower triangular, A^{\prime} is again lower Hessenberg
- Key features: By changing basis using Q, we achieve these useful results:
- The matrix A^{\prime} (similar to A) remains lower Hessenberg (tridiagonal if Hermitian)
- The Newton update to the eigenvector, $\mathbf{x}_{n+1}^{\prime}=Q \mathbf{x}_{n+1}$, remains parallel to \mathbf{e}_{v}
- Preservation of lower Hessenberg form reduces computational cost by factor of v.

Condition of the Iteration Matrix at Convergence

- At convergence to $\left[\mathbf{x}_{n}, \mu\right]$ we expect that $A \mathbf{x}_{n}=\mu \mathbf{x}_{n}$ and $\mathbf{z}^{*} A=\mu \mathbf{z}^{*}$.
- Put μ in the last position of the Jordan Normal form; assume it is simple
- This implies $\mathbf{x}_{n}=V \mathbf{e}_{v}$, and $\mathbf{z}^{*}=\mathbf{e}_{v}^{*} V^{-1}$
- Using $V^{-1} A V=J$, we find that $\lambda_{n}=\mu, \mathbf{x}_{n}=V \mathbf{e}_{v}$ and $\mathbf{z}^{*}=\mathbf{e}_{\mathrm{v}}^{*} V^{-1}$ imply

$$
\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
\mu V V^{-1}-V J V^{-1} & V \mathbf{e}_{v} \\
\mathbf{e}_{v}^{*} V^{-1} & 0
\end{array}\right]=\left[\begin{array}{cc}
V & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\mu I-J & \mathbf{e}_{v} \\
\mathbf{e}_{v}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
V^{-1} & 0 \\
0 & 1
\end{array}\right]
$$

- For μ simple, the matrix in the middle and its spectral condition number is given

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mu I_{v-1}-J_{v-1} & \mathbf{0}_{v-1} & \mathbf{0}_{v-1} \\
\mathbf{0}_{v-1}^{T} & 0 & 1 \\
\mathbf{0}_{v-1}^{T} & 1 & 0
\end{array}\right]}
\end{aligned}
$$

- Provided V is well conditioned we conclude these facts about \mathbf{E}, \mathbf{g} and \mathbf{w} :

$$
E=O(\gamma) \quad \mathbf{g}=O(1) \quad \mathbf{w}^{*}=O(1)
$$

- For $\gamma=\delta \lambda_{n} \approx 0$ this implies $G=\mathbf{g w}^{*}+E=\mathbf{g w}^{*}+O\left(\delta \lambda_{n}\right) \Longrightarrow G$ approximately rank 1;

Convergence in One Iteration if $\lambda_{n}=\mu$, a Simple Eigenvalue

- Recast the iteration relation as

$$
\left[\begin{array}{cc}
A-\lambda_{n} I & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{n+1} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right] \quad \text { put } \lambda_{n}=\mu \text { and place in position } v
$$

- Recalling the Jordan Normal Transformation $A=V J V^{-1}$ we employ V to find

$$
\left[\begin{array}{cc}
J-\mu I & V^{-1} \mathbf{x}_{n} \\
\mathbf{z}^{V} V & 0
\end{array}\right]\left[\begin{array}{c}
V^{-1} \mathbf{x}_{n+1} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]
$$

- Using the fact that $(J)_{v, v}=\mu=\lambda_{n}$, this implies

$$
\left[\begin{array}{ccc}
J_{v-1}-\mu I_{v-1} & \mathbf{0}_{v-1} & \left(V^{-1} \mathbf{x}_{n}\right)_{1: v-1} \\
\mathbf{0}_{v-1}^{T} & 0 & \left(V^{-1} \mathbf{x}_{n}\right)_{v} \\
\left(\mathbf{z}^{*} V\right)_{1: v-1} & \left(\mathbf{z}^{*} V\right)_{v} & 0
\end{array}\right]\left[\begin{array}{c}
\left(V^{-1} \mathbf{x}_{n+1}\right)_{1: v-1} \\
\left(V^{-1} \mathbf{x}_{n+1}\right)_{v} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0}_{v-1} \\
0 \\
1
\end{array}\right]
$$

- This implies that

$$
\begin{array}{rc}
\text { eqn } v & \left(V^{-1} \mathbf{x}_{n}\right)_{v} \delta \lambda_{n}=0 \Longrightarrow \delta \lambda_{n}=0 \\
\text { eqns 1: }(v-1) & \left(J_{v-1}-\mu I_{v-1}\right)\left(V^{-1} \mathbf{x}_{n+1}\right)_{1: v-1}=\mathbf{0}_{v-1} \Longrightarrow\left(V^{-1} \mathbf{x}_{n+1}\right)_{1: v-1}=\mathbf{0}_{v-1} \\
\text { conclude: } & \left(V^{-1} \mathbf{x}_{n+1}\right)=\theta \mathbf{e}_{v} \Longrightarrow \mathbf{x}_{n+1}=\theta V \mathbf{e}_{v}
\end{array}
$$

- We find $\mathbf{x}_{n+1} \| V \mathbf{e}_{\mathrm{v}}$, the last column of V, the eigenvector associated with μ
- Observation: Getting λ_{n} as close as possible to μ is crucial; corresponds to the shift in the Q-R algorithm
- This observation motivated study of the Inverse Taylor Series Method.
- Its stronger convergence enabled proof of cubic convergence for Hermitian problems

The Inverse Taylor Series Method

- Consider determining X^{*} such that $F\left(X^{*}\right)=0$.
- Let G denote the inverse function such that $G(F(X))=X$. Clearly $X^{*}=G(0)$
- Let X_{n} be our current estimate of X^{*} and let $Y_{n}=F\left(X_{n}\right)$; consider the series:

$$
G(Y)=G\left(Y_{n}\right)+G_{Y}\left(Y-Y_{n}\right)+\frac{1}{2} G_{Y Y}\left(Y-Y_{n}\right)\left(Y-Y_{n}\right)+\frac{1}{6} G_{Y Y Y}\left(Y-Y_{n}\right)\left(Y-Y_{n}\right)\left(Y-Y_{n}\right)+\ldots
$$

- Set $Y=0$ to evaluate X^{*}. Use $X_{n}=G\left(F\left(X_{n}\right)\right)=G\left(Y_{n}\right)$

$$
X^{*}=G(0)=X_{n}-G_{Y}\left(Y_{n}\right)+\frac{1}{2} G_{Y Y}\left(Y_{n}\right)\left(Y_{n}\right)-\frac{1}{6} G_{Y Y Y}\left(Y_{n}\right)\left(Y_{n}\right)\left(Y_{n}\right)+\ldots
$$

- The Inverse Taylor Series Method of order p retains the first $p+1$ terms.
- Newton's Method is the special case of $p=1$. It retains just the first 2 terms.
- Convergence Analysis is easy: $X_{n+1}-X^{*}=O\left(X_{n}-X^{*}\right)^{p+1}$
- Trivially, for Newton's Method: $X_{n+1}-X^{*}=O\left(X_{n}-X^{*}\right)^{2}$
- Apply this to our $F(X)$ for the eigenvalue problem:

$$
F(X) \stackrel{\text { def }}{=}\left[\begin{array}{c}
(\lambda I-A) \mathbf{x} \\
\mathbf{z}^{*} \mathbf{x}-1
\end{array}\right] \quad\left(F_{X}\right)_{X_{n}}=\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]
$$

- The first order term is the Newton decrement:

$$
G_{Y}\left(Y_{n}\right)=F_{X}^{-1} F\left(X_{n}\right)=\Delta=\left[\begin{array}{l}
\delta \mathbf{x}_{n} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{n}-\mathbf{x}_{n+1} \\
\delta \lambda_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{n}-G \mathbf{x}_{n} \\
\gamma
\end{array}\right]
$$

Computation of 2nd Order Inverse Taylor Series Term

- We focus on the 2nd order update term: $(1 / 2) G_{Y Y}\left(Y_{n}\right)\left(Y_{n}\right)$. Consider the development

$$
\begin{array}{rll}
G(F(X)) X \Longrightarrow G_{Y} F_{X}=I & \Longrightarrow & G_{Y Y} F_{X} F_{X}+G_{Y} F_{X X}=0 \\
\text { Apply last identity to two copies of } \Delta & & G_{Y Y}\left(F_{X} \Delta\right)\left(F_{X} \Delta\right)+G_{Y}\left(F_{X X} \Delta \Delta\right)=0 \\
\text { Use Newton relation } F_{X} \Delta=Y_{n}, \text { and conclude } & & G_{Y Y} Y_{n} Y_{n}=-G_{Y}\left(F_{X X} \Delta \Delta\right)
\end{array}
$$

- Doing all the algebra, the second order update term is:

$$
\frac{1}{2} G_{Y Y}\left(Y_{n}\right)\left(Y_{n}\right)=-F_{X}^{-1}\left[\begin{array}{c}
\delta \lambda_{n} \delta \mathbf{x}_{n} \\
0
\end{array}\right]=-\left[\begin{array}{c}
E \delta \mathbf{x}_{n}\left(\delta \lambda_{n} / \gamma\right) \\
\mathbf{w}^{*} \delta \mathbf{x}_{n} \delta \lambda_{n}
\end{array}\right]
$$

- Proof that Q-R is cubically convergent for Hermitian matrices
- Setting $\mathbf{z}=\mathbf{x}_{n}$, we will show that the quadratic update to λ_{n} is actually $O\left(\Delta^{3}\right)$

$$
\tau_{2}=-\mathbf{w}^{*} \delta \mathbf{x}_{n} \delta \lambda_{n}=-\mathbf{z}^{*} G \delta \mathbf{x}_{n} \delta \lambda_{n}=-\mathbf{x}_{n}^{*} G \delta \mathbf{x}_{n} \delta \lambda_{n}
$$

- Focusing on $\mathbf{x}_{n}^{*} G \delta \mathbf{x}_{n}$:

$$
\mathbf{x}_{n}^{*} G \delta \mathbf{x}_{n}=\left(G^{*} \mathbf{x}_{n}\right)^{*} \delta \mathbf{x}_{n}=\left(G \mathbf{x}_{n}\right)^{*} \delta \mathbf{x}_{n}=\mathbf{x}_{n+1}^{*} \delta \mathbf{x}_{n}=\left(\mathbf{x}_{n}-\delta \mathbf{x}_{n}\right)^{*} \delta \mathbf{x}_{n}=\mathbf{x}_{n}^{*} \delta \mathbf{x}_{n}-\delta \mathbf{x}_{n}^{*} \delta \mathbf{x}_{n}
$$

- But, provided $\mathbf{z}^{*} \mathbf{x}_{n}=1$, the Newton update formula asserts $\mathbf{x}_{n}^{*} \delta \mathbf{x}_{n}=\mathbf{z}^{*} \delta \mathbf{x}_{n}=0$
- Conclude that $\quad \mathbf{x}_{n}^{*} G \delta \mathbf{x}_{n}=-\delta \mathbf{x}_{n}^{*} \delta \mathbf{x}_{n} \quad \Longrightarrow \quad \tau_{2}=\left|\delta \mathbf{x}_{n}\right|^{2} \delta \lambda_{n} \quad \ldots$ third order!

Solving $F(X)=0$ by series reversion: Setup

- We attack directly the problem of computing $G(Y)$ defined implicity by $G(F(X))=X$.
- Setting $Y_{n}=F\left(X_{n}\right)$, expand $G(Y)$ in a series about Y_{n} :

$$
G(Y)=G\left(Y_{n}\right)+\sum_{r=1}^{\infty} \frac{1}{r!} G_{Y Y \ldots Y}\left(Y-Y_{n}\right)^{r}
$$

where the action of the derivative tensor $G_{Y Y \ldots Y}$ on r copies of V is interpreted as:

$$
G_{Y Y \ldots Y}(V)^{r} \sim \sum_{j_{1}=1}^{v+1} \sum_{j_{2}=1}^{v+1} \ldots \sum_{j_{r}=1}^{v+1} \frac{\partial^{r} G^{i}}{\partial Y^{j_{1}} \partial Y^{j_{2}} \ldots \partial Y^{j_{r}}} V^{j_{1}} V^{j_{2}} \ldots V^{j_{r}}
$$

- Similarly, the quadratic function $F(X)$ is expanded in a series about X_{n}

$$
F(X)=F\left(X_{n}\right)+F_{X}\left(X-X_{n}\right)+\frac{1}{2} F_{X X}\left(X-X_{n}\right)^{2}
$$

- Make the substitutions $G(Y)=X, G\left(Y_{n}\right)=X_{n}, F(X)=Y, F\left(X_{n}\right)=Y_{n}$ and obtain

$$
\begin{aligned}
X & =X_{n}+\sum_{r=1}^{\infty} \frac{1}{r!} G_{Y Y \ldots Y}\left(Y-Y_{n}\right)^{r} \\
Y & =Y_{n}+F_{X}\left(X-X_{n}\right)+\frac{1}{2} F_{X X}\left(X-X_{n}\right)^{2}
\end{aligned}
$$

- Introduce shifted variables $U=X-X_{n}, V=Y-Y_{n}$ along with linear and multilinear operators

$$
\begin{aligned}
A_{1}=F_{X}, \quad A_{2}=(1 / 2) F_{X X}, \quad B_{r} & =(1 / r!) G_{Y Y \ldots Y} \text { and find } \\
U & =\sum_{r=1}^{\infty} B_{r}(V)^{r}, \quad V=A_{1} U+A_{2}(U)^{2}
\end{aligned}
$$

Solving $F(X)=0$ by series reversion: Recursion

- Substitute the first of these equations into the second and obtain the identity

$$
V=A_{1}\left(\sum_{r=1}^{\infty} B_{r}(V)^{r}\right)+A_{2}\left(\sum_{r=1}^{\infty} B_{r}(V)^{r}\right)\left(\sum_{s=1}^{\infty} B_{s}(V)^{s}\right)
$$

- Matching terms by their degree in V, we obtain the identities

$$
\begin{aligned}
& V=A_{1} B_{1} V \\
& 0=A_{1} B_{r}(V)^{r} \quad+A_{2} \sum_{s=1}^{r-1}\left(B_{s} V^{s}\right)\left(B_{r-s} V^{r-s}\right)
\end{aligned}
$$

- Evaluation: We want $U=X-X_{n}$ corresponding to $Y=0$, i.e. $V=0-Y_{n}=-Y_{n}$

$$
X-X_{n}=U=\sum_{r=1}^{\infty}(-1)^{r} B_{r}\left(Y_{n}\right)^{r}
$$

- Define $Z_{r}=B_{r}\left(Y_{n}\right)^{r}$ and obtain the recursions

$$
Y_{n}=A_{1} Z_{1} \quad 0=A_{1} Z_{r}+A_{2}\left(\sum_{s=1}^{r-1} Z_{s} Z_{r-s}\right) \quad(r \geq 2)
$$

- Solve for Z_{r} (Δ is the Newton decrement):

$$
Z_{1}=A_{1}^{-1} Y_{n}=F_{X}^{-1} F\left(X_{n}\right)=\Delta \quad Z_{r}=-A_{1}^{-1}\left(A_{2} \sum_{s=1}^{r-1} Z_{s} Z_{r-s}\right) \quad(r \geq 2)
$$

Solving $F(X)=0$ by series reversion: Application

- Partitioning Z_{r} into vector and scalar parts: $Z_{r}=\left[\mathbf{z}_{r}, \zeta_{r}\right]$, we compute the sum in Z_{r} 's definition

$$
A_{2} \sum_{s=1}^{r-1} Z_{s} Z_{r-s}=\frac{1}{2} \sum_{s=1}^{r-1} F_{X X}\left[\begin{array}{l}
\mathbf{z}_{s} \\
\zeta_{s}
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{r-s} \\
\zeta_{r-s}
\end{array}\right]=\frac{1}{2} \sum_{s=1}^{r-1}\left[\begin{array}{c}
\zeta_{s} \mathbf{z}_{r-s}+\zeta_{r-s} \mathbf{z}_{s} \\
0
\end{array}\right]=\sum_{s=1}^{r-1}\left[\begin{array}{c}
\zeta_{s} \mathbf{z}_{r-s} \\
0
\end{array}\right]
$$

- Apply $A_{1}^{-1}=F_{X}^{-1}$ to this expression and obtain Z_{r}

$$
\left[\begin{array}{l}
\mathbf{z}_{r} \\
\zeta_{r}
\end{array}\right]=Z_{r}=-A_{1}^{-1} \sum_{s=1}^{r-1}\left[\begin{array}{c}
\zeta_{s} \mathbf{z}_{r-s} \\
0
\end{array}\right]=-\left[\begin{array}{c}
E / \gamma \\
\mathbf{w}^{*}
\end{array}\right] \sum_{s=1}^{r-1} \zeta_{s} \mathbf{z}_{r-s}
$$

- Introduce cooefficients $\theta_{s}=\zeta_{s} / \gamma$, obtain recursions

$$
\left[\begin{array}{c}
\mathbf{z}_{r} \\
\theta_{r}
\end{array}\right]=-\left[\begin{array}{c}
E \\
\mathbf{w}^{*}
\end{array}\right] \sum_{s=1}^{r-1} \theta_{s} \mathbf{z}_{r-s}
$$

- Usually $\mathbf{z}_{r}=O\left(\Delta^{r}\right)$ and $\theta_{r}=O\left(\Delta^{r-1}\right)$. (note: $\left.\theta_{1} \equiv 1\right)$

But for Hermitian problems, $\quad \theta_{r}=O\left(\Delta^{r}\right)(r \geq 2)$ because $\mathbf{x}_{n}^{*} E=0$ (superconvergence!)

- Evaluation of eigenvector/eigenvalue pair: $\quad X=X_{n}+\sum_{r=1}^{\infty}(-1)^{r} Z_{r}$
- Reversion of series not usually a good idea. It works here because $\operatorname{deg}(F)=2$.

Conclusions

- Formulating the eigenvalue as a root finding problem provides several useful insights
- Application of Newton's method produces Wielandt Inverse Iteration
— Use of the LQ factorization to solve the system leads to the Q-R algorithm
- Quadratic convergence of the Q-R algorithm follows trivially
- Other important insights
— Exact eigenvalue \Longrightarrow Convergence on next iteration
— Motivates getting best possible eigenvalue estimate: Inverse Taylor Series
- Cubic convergence of Q-R in the Hermitian case follows from quadratic Taylor Series
- Getting the best possible eigenvalue estimate is crucial!
— Originally developed Inverse Taylor Series Method up through $p=4$
- A web-search turned up notion of Series Reversion
- That worked well: All terms are easily computed by a recursion
- Consequently: Cost of solving dense eigenvalues problem can be minimized
- Also, superconvergence in the Hermitian case persists to all orders
— Result: Hermitian at ~ 1.45 iterations/eigenvalue; Non-hermitian at ~ 2.1

Verification of Inversion Formula

- Form the product:

$$
\begin{gathered}
{\left[\begin{array}{cc}
\lambda_{n} I-A & \mathbf{x}_{n} \\
\mathbf{z}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
E / \gamma & \mathbf{g} \\
\mathbf{w}^{*} & -\gamma
\end{array}\right]=\left[\begin{array}{cc}
\left(\lambda_{n} I-A\right) E / \gamma+\mathbf{x}_{n} \mathbf{w}^{*} & \left(\lambda_{n} I-A\right) \mathbf{g}-\gamma \mathbf{x}_{n} \\
\mathbf{z}^{*} E / \gamma & \mathbf{z}^{*} \mathbf{g}
\end{array}\right]} \\
\text { with definitions: } \quad \begin{array}{l}
\gamma=1 /\left(\mathbf{z}^{*}\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}\right), \quad G=\gamma\left(\lambda_{n} I-A\right)^{-1} \\
\mathbf{w}^{*}=\mathbf{z}^{*} G, \quad \mathbf{g}=G \mathbf{x}_{n}, \quad E=G-\mathbf{g w}^{*}
\end{array}
\end{gathered}
$$

- Check the terms of the RHS product. Start with $(1,2)$, then do $(1,1)$.
$(1,2)$ term: $\quad\left(\lambda_{n} I-A\right) \mathbf{g}-\gamma \mathbf{x}_{n}=\left(\lambda_{n} I-A\right) \gamma\left(\lambda_{n} I-A\right)^{-1} \mathbf{x}_{n}-\gamma \mathbf{x}_{n}=\gamma \mathbf{x}_{n}-\gamma \mathbf{x}_{n}=0$
$(1,1)$ term:

$$
\begin{aligned}
\left(\lambda_{n} I-A\right) E / \gamma & +\mathbf{x}_{n} \mathbf{w}^{*}=\frac{1}{\gamma}\left\{\left(\lambda_{n} I-A\right)\left[G-\mathbf{g w}^{*}\right]+\gamma \mathbf{x}_{n} \mathbf{w}^{*}\right\} \\
& =I+\frac{1}{\gamma}\left\{-\left(\lambda_{n} I-A\right) \mathbf{g}+\gamma \mathbf{x}_{n}\right\} \mathbf{w}^{*}=I+\frac{1}{\gamma}\{0\} \mathbf{w}^{*}=I
\end{aligned}
$$

- By virtue of the Newton update formula, the $(2,2)$ term is given by

$$
\mathbf{z}^{*} \mathbf{g}=\mathbf{z}^{*} G \mathbf{x}_{n}=\mathbf{z}^{*} \mathbf{x}_{n+1}=1
$$

- The $(2,1)$ term can now be easily verified:

$$
\mathbf{z}^{*} E / \gamma=\mathbf{z}^{*}\left(G-\mathbf{g w}^{*}\right) / \gamma=\left[\mathbf{w}^{*}-\left(\mathbf{z}^{*} \mathbf{g}\right) \mathbf{w}^{*}\right] / \gamma=\left[\mathbf{w}^{*}-\mathbf{w}^{*}\right] / \gamma=0
$$

