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Summary of Results

FaST | Platform Performance Technology

• We consider the eigenvalue problem: Find x ∈ Cν, λ ∈ C such that Ax = λx.

• Formulate as a root finding problem in ν+1 unknowns: F(X) = 0.

• Apply Newton’s Method. Obtain formula for the Newton decrement: ∆ = [δxn,δλn]

• Key facts: Application of Newton’s Method plus insight reveals the algorithmic structure:

F(X) = 0 ⇒ Newton’s method ⇒ Wielandt Inverse Iteration ⇒ Q-R algorithm

• More: If the target λ is simple and known, next iteration determines x exactly

• Motivates getting the best possible estimate of the eigenvalue

• This leads us to consider Inverse Taylor Series Iteration of degree p

• Newton’s Method is the p = 1 special case of this family

• We will obtain the p = 2 Inverse Taylor Series update to x and λ

• We will show that the Newton update to λn has error O(∆3) in the Hermitian case
This implies that the Q-R algorithm is cubically convergent in the Hermitian case

• Obtain all the terms of Inverse Taylor Series by reversion of series
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Heroes of our tale

FaST | Platform Performance Technology

Copyright c© 2013 Boeing all rights reserved Pacific NW Numerical Analysis, October 19 2013



Root Finding Formulation of Eigenvalue Problem

FaST | Platform Performance Technology

• Given matrix A ∈ Cν×ν, find x ∈ Cν, λ ∈ C such that Ax = λx

• Formulate as a root finding problem in ν+1 variables: F(X) = 0 where:

X =
[

x
λ

]
F(X) def=

[
(λI−A)x
z∗x−1

]
The choice of z is rather arbitrary. We will change it every iteration

• Last condition is normalization: z∗x = 1. The condition x∗x = 1 would not work!

• It would lead to an F(X) that is not analytic in X .

• In fact we will renormalize xn each iteration. Also we will set z = xn.
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Application of Newton’s Method to Solving F(X) = 0
FaST | Platform Performance Technology

• Apply Newton’s Method to find ∆ = [δxn,δλn] s.t. xn+1 = xn−δxn, λn+1 = λn−δλn:

(FX)Xn
∆ = F(Xn) =⇒

[
λnI−A xn

z∗ 0

][
δxn
δλn

]
=
[

(λnI−A)xn
z∗xn−1

]
• The Newton decrement relation can be recast as[

λnI−A xn
z∗ 0

] [
δxn−xn

δλn

]
=
[

0
−1

]
• The inverse of the coefficient matrix is:[

λnI−A xn
z∗ 0

]−1

=
[

E/γ g
w∗ −γ

]
,

γ = 1
///(

z∗(λnI−A)−1xn
)
, G = γ(λnI−A)−1

w∗ = z∗G, g = Gxn, E = G−gw∗

• Using the matrix inverse formula we find[
δxn−xn

δλn

]
=
[
−g

γ

]
=⇒ xn+1 = xn−δxn = g = Gxn, δλn = γ
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Newton’s Method, Inverse Iteration and the Q-R Algorithm
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• We have obtained the Newton iterate xn+1 and eigenvalue decrement δλn

xn+1 = xn−δxn = g = Gxn, δλn = γ = 1
///(

z∗(λnI−A)−1xn
)
, G = γ(λnI−A)−1

• Focusing on xn+1, observe its relation to Wielandt Inverse Iteration:

xn+1 = Gxn = δλn (λnI−A)−1 xn

– G is the Inverse Iteration matrix. w∗= z∗G estimates a left eigenvector by inverse iteration

• The L-Q variant of the Q-R algorithm is based on the following setup:

– The matrix A has been reduced to lower Hessenberg form

– We obtain the L-Q factorization: λnI−A = LQ, L lower triangular, Q unitary

– Q is consequently lower Hessenberg: Q = L−1(λnI−A)

– xn = eν (last natural unit vector) and (z∗)ν = 1. This leads to the following development

xn+1 = δλn(λnI−A)−1xn = δλn(LQ)−1eν = δλnQ−1L−1eν

=⇒ x′n+1 = Qxn+1 = δλn L−1eν = (δλn/`ν,ν)eν

– Absolutely crucial: x′n+1 is parallel to eν: This is half the magic of Q-R!
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How the Q-R Algorithm Works

FaST | Platform Performance Technology

• We make the following observations:

– The vector x′n+1 = Qxn+1 is parallel to eν

– If we change basis using Q and renormalize, x′n+1 can be set equal to eν

– In the new coordinate system, A′ = QAQ−1. Consequently:

A′ = QAQ−1 = Q(λnI− (λnI−A))Q−1 = λnI−Q(LQ)Q−1 = λnI−QL

– Because Q is lower Hessenberg and L is lower triangular, A′ is again lower Hessenberg

• Key features: By changing basis using Q, we achieve these useful results:

– The matrix A′ (similar to A) remains lower Hessenberg (tridiagonal if Hermitian)

– The Newton update to the eigenvector, x′n+1 = Qxn+1, remains parallel to eν

– Preservation of lower Hessenberg form reduces computational cost by factor of ν.
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Condition of the Iteration Matrix at Convergence
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• At convergence to [xn,µ] we expect that Axn = µxn and z∗A = µz∗.

– Put µ in the last position of the Jordan Normal form; assume it is simple

– This implies xn = V eν, and z∗ = e∗νV−1

• Using V−1AV = J, we find that λn = µ, xn = V eν and z∗ = e∗νV−1 imply[
λnI−A xn

z∗ 0

]
=

[
µVV−1−V JV−1 V eν

e∗νV−1 0

]
=
[

V 0
0 1

][
µI− J eν

e∗ν 0

][
V−1 0

0 1

]
• For µ simple, the matrix in the middle and its spectral condition number is given µIν−1− Jν−1 0ν−1 0ν−1

0T
ν−1 0 1

0T
ν−1 1 0

 condρ =
max

(
1,

max
λ j 6= µ

|µ−λ j|
)

min
(

1,
min

λ j 6= µ
|µ−λ j|

)

• Provided V is well conditioned we conclude these facts about E, g and w:

E = O(γ) g = O(1) w∗ = O(1)

• For γ = δλn ≈ 0 this implies G = gw∗+E = gw∗+O(δλn) =⇒ G approximately rank 1;
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Convergence in One Iteration if λn = µ, a Simple Eigenvalue
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• Recast the iteration relation as[
A−λnI xn

z∗ 0

][
xn+1
δλn

]
=
[

0
1

]
put λn = µ and place in position ν

• Recalling the Jordan Normal Transformation A = V JV−1 we employ V to find[
J−µI V−1xn
z∗V 0

][
V−1xn+1

δλn

]
=
[

0
1

]
• Using the fact that (J)ν,ν = µ = λn, this implies Jν−1−µIν−1 0ν−1 (V−1xn)1:ν−1

0T
ν−1 0 (V−1xn)ν

(z∗V )1:ν−1 (z∗V )ν 0

[ (V−1xn+1)1:ν−1
(V−1xn+1)ν

δλn

]
=

[
0ν−1

0
1

]

• This implies that
eqn ν (V−1xn)ν δλn = 0 =⇒ δλn = 0 (no surprise here!)

eqns 1:(ν−1) (Jν−1−µIν−1)(V−1xn+1)1:ν−1 = 0ν−1 =⇒ (V−1xn+1)1:ν−1 = 0ν−1

conclude: (V−1xn+1) = θeν =⇒ xn+1 = θV eν

• We find xn+1 ||V eν, the last column of V , the eigenvector associated with µ

• Observation: Getting λn as close as possible to µ is crucial; corresponds to the shift in the Q-R algorithm

• This observation motivated study of the Inverse Taylor Series Method.

• Its stronger convergence enabled proof of cubic convergence for Hermitian problems
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The Inverse Taylor Series Method
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• Consider determining X∗ such that F(X∗) = 0.

– Let G denote the inverse function such that G(F(X)) = X . Clearly X∗ = G(0)

– Let Xn be our current estimate of X∗ and let Yn = F(Xn); consider the series:

G(Y ) = G(Yn)+GY (Y−Yn)+
1
2

GYY (Y−Yn)(Y−Yn)+
1
6

GYYY (Y−Yn)(Y−Yn)(Y−Yn)+ ...

• Set Y = 0 to evaluate X∗. Use Xn = G(F(Xn)) = G(Yn)

X∗ = G(0) = Xn−GY (Yn)+
1
2

GYY (Yn)(Yn)−
1
6

GYYY (Yn)(Yn)(Yn)+ ...

– The Inverse Taylor Series Method of order p retains the first p+1 terms.

– Newton’s Method is the special case of p = 1. It retains just the first 2 terms.

– Convergence Analysis is easy: Xn+1−X∗ = O(Xn−X∗)p+1

– Trivially, for Newton’s Method: Xn+1−X∗ = O(Xn−X∗)2

• Apply this to our F(X) for the eigenvalue problem:

F(X) def=
[

(λI−A)x
z∗x−1

]
(FX)Xn =

[
λnI−A xn

z∗ 0

]
• The first order term is the Newton decrement:

GY (Yn) = F−1
X F(Xn) = ∆ =

[
δxn
δλn

]
=
[

xn−xn+1
δλn

]
=
[

xn−Gxn
γ

]
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Computation of 2nd Order Inverse Taylor Series Term

FaST | Platform Performance Technology

• We focus on the 2nd order update term: (1/2)GYY (Yn)(Yn). Consider the development

G(F(X))X =⇒ GY FX = I =⇒ GYY FXFX +GY FXX = 0
Apply last identity to two copies of ∆ GYY (FX∆)(FX∆)+GY (FXX∆∆) = 0

Use Newton relation FX∆ = Yn, and conclude GYYYnYn =−GY (FXX∆∆)

• Doing all the algebra, the second order update term is:

1
2

GYY (Yn)(Yn) = −F−1
X

[
δλnδxn

0

]
= −

[
Eδxn(δλn/γ)

w∗δxnδλn

]

• Proof that Q-R is cubically convergent for Hermitian matrices

– Setting z = xn, we will show that the quadratic update to λn is actually O(∆3)

τ2 = −w∗δxnδλn = −z∗Gδxnδλn = −x∗nGδxnδλn

– Focusing on x∗nGδxn:

x∗nGδxn = (G∗xn)∗δxn = (Gxn)∗δxn = x∗n+1δxn = (xn−δxn)∗δxn = x∗nδxn−δx∗nδxn

– But, provided z∗xn = 1, the Newton update formula asserts x∗nδxn = z∗δxn = 0

– Conclude that x∗nGδxn =−δx∗nδxn =⇒ τ2 = |δxn|2δλn ... third order!
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Solving F(X) = 0 by series reversion: Setup

FaST | Platform Performance Technology

• We attack directly the problem of computing G(Y ) defined implicity by G(F(X)) = X .

• Setting Yn = F(Xn), expand G(Y ) in a series about Yn:

G(Y ) = G(Yn)+
∞

∑
r=1

1
r!

GYY...Y (Y −Yn)r

where the action of the derivative tensor GYY...Y on r copies of V is interpreted as:

GYY...Y (V )r ∼
ν+1

∑
j1=1

ν+1

∑
j2=1

...
ν+1

∑
jr=1

∂rGi

∂Y j1∂Y j2...∂Y jr
V j1V j2...V jr

• Similarly, the quadratic function F(X) is expanded in a series about Xn

F(X) = F(Xn)+FX(X−Xn)+
1
2

FXX(X−Xn)2

• Make the substitutions G(Y ) = X , G(Yn) = Xn, F(X) = Y , F(Xn) = Yn and obtain

X = Xn +
∞

∑
r=1

1
r!

GYY...Y (Y −Yn)r

Y = Yn +FX(X−Xn)+
1
2

FXX(X−Xn)2

• Introduce shifted variables U = X−Xn, V = Y −Yn along with linear and multilinear operators

A1 = FX , A2 = (1/2)FXX , Br = (1/r!)GYY...Y and find

U =
∞

∑
r=1

Br(V )r, V = A1U +A2(U)2
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Solving F(X) = 0 by series reversion: Recursion
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• Substitute the first of these equations into the second and obtain the identity

V = A1

(
∞

∑
r=1

Br(V )r

)
+A2

(
∞

∑
r=1

Br(V )r

)(
∞

∑
s=1

Bs(V )s

)

• Matching terms by their degree in V , we obtain the identities

V = A1B1V
0 = A1Br(V )r + A2 ∑

r−1
s=1(BsV s) (Br−sV r−s)

• Evaluation: We want U = X−Xn corresponding to Y = 0, i.e. V = 0−Yn =−Yn

X−Xn = U =
∞

∑
r=1

(−1)r Br(Yn)r

• Define Zr = Br(Yn)r and obtain the recursions

Yn = A1Z1 0 = A1Zr + A2
(
∑

r−1
s=1 ZsZr−s

)
(r ≥ 2)

• Solve for Zr (∆ is the Newton decrement):

Z1 = A−1
1 Yn = F−1

X F(Xn) = ∆ Zr = −A−1
1

(
A2 ∑

r−1
s=1 ZsZr−s

)
(r ≥ 2)
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Solving F(X) = 0 by series reversion: Application
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• Partitioning Zr into vector and scalar parts: Zr = [zr,ζr], we compute the sum in Zr’s definition

A2

r−1

∑
s=1

ZsZr−s =
1
2

r−1

∑
s=1

FXX

[
zs
ζs

][
zr−s
ζr−s

]
=

1
2

r−1

∑
s=1

[
ζszr−s +ζr−szs

0

]
=

r−1

∑
s=1

[
ζszr−s

0

]
• Apply A−1

1 = F−1
X to this expression and obtain Zr[
zr
ζr

]
= Zr = −A−1

1

r−1

∑
s=1

[
ζszr−s

0

]
= −

[
E/γ

w∗
] r−1

∑
s=1

ζszr−s

• Introduce cooefficients θs = ζs/γ, obtain recursions[
zr
θr

]
= −

[
E
w∗

] r−1

∑
s=1

θszr−s

• Usually zr = O(∆r) and θr = O(∆r−1). (note: θ1 ≡ 1)

But for Hermitian problems, θr = O(∆r) (r ≥ 2) because x∗nE = 0 (superconvergence!)

• Evaluation of eigenvector/eigenvalue pair: X = Xn + ∑
∞
r=1(−1)rZr

• Reversion of series not usually a good idea. It works here because deg(F) = 2.
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Conclusions
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• Formulating the eigenvalue as a root finding problem provides several useful insights

— Application of Newton’s method produces Wielandt Inverse Iteration

— Use of the LQ factorization to solve the system leads to the Q-R algorithm

— Quadratic convergence of the Q-R algorithm follows trivially

• Other important insights

— Exact eigenvalue =⇒ Convergence on next iteration

— Motivates getting best possible eigenvalue estimate: Inverse Taylor Series

— Cubic convergence of Q-R in the Hermitian case follows from quadratic Taylor Series

• Getting the best possible eigenvalue estimate is crucial!

— Originally developed Inverse Taylor Series Method up through p = 4

— A web-search turned up notion of Series Reversion

— That worked well: All terms are easily computed by a recursion

— Consequently: Cost of solving dense eigenvalues problem can be minimized

— Also, superconvergence in the Hermitian case persists to all orders

— Result: Hermitian at ∼ 1.45 iterations/eigenvalue; Non-hermitian at ∼ 2.1
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Verification of Inversion Formula
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• Form the product:[
λnI−A xn

z∗ 0

][
E/γ g
w∗ −γ

]
=
[

(λnI−A)E/γ+xnw∗ (λnI−A)g− γxn
z∗E/γ z∗g

]

with definitions: γ = 1
///(

z∗(λnI−A)−1xn
)
, G = γ(λnI−A)−1

w∗ = z∗G, g = Gxn, E = G−gw∗

• Check the terms of the RHS product. Start with (1,2), then do (1,1).

(1,2) term: (λnI−A)g− γxn = (λnI−A)γ(λnI−A)−1xn− γxn = γxn− γxn = 0

(1,1) term: (λnI−A)E/γ + xnw∗ =
1
γ
{(λnI−A) [G−gw∗]+ γxnw∗}

= I +
1
γ
{−(λnI−A)g+ γxn}w∗ = I +

1
γ
{0}w∗ = I

• By virtue of the Newton update formula, the (2,2) term is given by

z∗g = z∗Gxn = z∗xn+1 = 1

• The (2,1) term can now be easily verified:

z∗E/γ = z∗(G−gw∗)/γ = [w∗− (z∗g)w∗]/γ = [w∗−w∗]/γ = 0
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