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Shock formation

For nonlinear problems wave speed generally depends on gq.

Waves can steepen up and form shocks
— even smooth data can lead to discontinuous solutions.

*+

Note:
o System of two equations gives rise to 2 waves.
e Each wave behaves like solution of nonlinear scalar
equation.
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Shocks in traffic flow
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Car following model Notes:
X;(t) = location of jth car at time t on one-lane road.
dXx;(t) _
Velocity Vj(t) of jth car varies with j and .
Simple model: Driver adjusts speed (instantly) depending on
distance to car ahead.
Vi(t) = v(X;41(t) — X;(1))
for some function v(s) that defines speed as a function of
separation s.
Simulations: http://www.traffic-simulation.de/
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Function v(s) (speed as function of separation) Notes:
VD
L
o(s) = J 1 (1-1%) ts2L,
0 if s <L.
where:
L = car length
Umax = Maximum velocity
Local density: 0 < L/s <1 (s =L = bumper-to-bumper)
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Continuum model Notes:

Switch to density function:

Let q(z, t) = density of cars, normalized so:
Units for z: carlengths, so = = 10 is 10 carlengths from z = 0.

Units for ¢: cars per carlength, so 0 < ¢ < 1.

Total number of cars in interval 21 < x < x5 at time ¢ is

T2
/ q(z,t) dx

T
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Flux function for traffic

q(z,t) = density, u(z,t) = velocity = U(q(z,1t)).
flux: f(q) = ug Conservation law: ¢ + f(q). = 0.

Constant velocity u,.x independent of density:

f(@) = Umaxq = @ + Umaxg> =0 (advection)
Velocity varying with density:

V(s) = tumax(1 = L/s) = U(q) = tumax(1 —q),
f(q) = umaxq(1 —¢q)  (quadratic nonlinearity)
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Characteristics for a scalar problem

g+ f(@)e =0 = ¢+ f(¢)g. =0 (if solution is smooth).

Characteristic curves satisfy X'(t) = f'(¢(X (¢),t)), X(0) = zo.

How does solution vary along this curve?

d

S0 (0, 1) = a2 (X(8), )X (1) + (X (2), 1)

= q2(X (1), 1) f(a(X (1), 1)) + @ (X (2),¢)
=0
So solution is constant on characteristic

as long as solution stays smooth.

q(X(t),t) = constant = X'(t) is constant on characteristic,
so characteristics are straight lines!
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Nonlinear Burgers’ equation

Conservation form: u; + (3u?) =0,  f(u) = Ju’.
Quasi-linear form: Uy + ug = 0.

This looks like an advection equation with « advected with
speed wu.

True solution: u is constant along characteristic with speed
f'(u) = w until the wave “breaks” (shock forms).
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Burgers’ equation Notes:
The solution is constant on characteristics so each value
advects at constant speed equal to the value...
Time t = 0.0
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Burgers’ equation Notes:
Equal-area rule:
The area “under” the curve is conserved with time,
We must insert a shock so the two areas cut off are equal.
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Vanishing Viscosity solution Notes:

Viscous Burgers’ equation: u; + (3u?), = €ug,.

This parabolic equation has a smooth C*° solution for all ¢ > 0
for any initial data.

Limiting solution as ¢ — 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?

e Solving parabolic equation requires implicit method,

o Often correct value of physical “viscosity” is very small,
shock profile that cannot be resolved on the desired grid
= smoothness of exact solution doesn’t help!
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as e — 0 of the solution ¢¢(x, t) of the parabolic
advection-diffusion equation

qt + UGy = €qQzx.
For any € > 0 this has a classical smooth solution:

e=0.1
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Weak solutions to ¢; + f(q). =0

q(z,t) is a weak solution if it satisfies the integral form of the
conservation law over all rectangles in space-time,

/ (](I,tg)d.’[}*/ q(z,t1) dx

1 z1
to

- / Cfatentydi— [ fas ) de

tq

Obtained by integrating

d [

@ . Q(:C’t) dz = f(Q(Iht)) - f(Q(w%t))

from ¢, t0 t41.
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Weak solutions to ¢: + f(q). =0

Alternatively, multiply PDE by smooth test function ¢(x, t), with
compact support  (¢(z,¢) = 0 for |z| and ¢ sufficiently large),
and then integrate over rectangle,

/0“ /_C: (@ + f(@)2)p(a,t) da di

Then we can integrate by parts to get

/0<>C /:: (900 + f(q)¢e) da dt = — /ODO q(z,0)¢(z,0) dz.

q(z,t) is a weak solution if this holds for all such ¢.
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Weak solutions to ¢; + f(q). =0

A function ¢(z, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

e The PDE is satisfied where ¢ is smooth,
e The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!
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Shock speed with states ¢; and ¢, at instant ¢;

shock with b])(?(‘(i S
lki

q=qr

a=aq

1 T +\A\4

Then
1 +Ax ) +Ax
/ q(z, t1 + At)dz — / q(z,t1) dx
T T
t1+AL t1+AL
= / f(q(zl,t))dtf/ flg(z1 + Az, t)) dt.
tq t1

Since ¢ is essentially constant along each edge, this becomes
Az q — Az q. = Atf(q) — Atf(q,) + O(AL?),
Taking the limit as At — 0 gives
s(gr —a) = flar) = fa)-
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Rankine-Hugoniot jump condition

s(gr — @) = far) — fla)-

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

fg) — fla)

S=—.
qr —aq

For systems, ¢. — ¢, and f(q,) — f(q;) are vectors, s scalar,
R-H condition: f(g.) — f(q;) must be scalar multiple of ¢, — ¢;.
For linear system, f(q) = Agq, this says

Algr — @) = s(ar — 1),

Jump must be an eigenvector, speed s the eigenvalue.
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Figure 11.1 — Shock formation in traffic Notes:

Discrete cars: Continuum model: f'(¢) = tmax(1 —2q)

B

T

. A

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11] R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011  [FVMHP Chap. 11]

Figure 11.1 — Shock formation Notes:

(a) particle paths (car trajectories) u(x,t) = umax(1 — ¢(z,t))
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Figure 11.1 — Shock formation Notes:

(b) characteristics: f'(¢) = umax(1 — 2¢)
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Figure 11.2 — Traffic jam shock wave

Cars approaching red light (¢, <1, ¢, =1)
Shock speed:

s — f(QT) - f(qe) _ _2umaXQZ <0.
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Figure 11.3 — Rarefaction wave
Cars accelerating at green light (g =1, ¢, =0)

Characteristic speed f'(q) = tmax(1 — 2¢)

varies from f'(q;) = —tmax 10 f'(¢r) = Umax-
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Nonlinear scalar conservation laws

Burgers’ equation: u; + (%uQ)T =0.
Quasilinear form: u; + wu, = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for « > 0:

Conservative: U™ = U — % (U2 = (Ur,)?)

7

HR . +1 At 771 n 71
Quasilinear: U = U* — 3 UMU = U )).

Ok for smooth solutions, not for shocks!
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Importance of conservation form Notes:
Solution to Burgers’ equation using conservative upwind:
Solution to Burgers’ equation using quasilinear upwind:
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Weak solutions depend on the conservation law Notes:
The conservation laws
1
up + <7uz> =0
2 T
and
(u2) + gug’ =0
t 3 -
both have the same quasilinear form
up + uugy =0
but have different weak solutions,
different shock speeds!
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Conservation form Notes:

The method

At

Qi =qr - (1711/2 F )

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

Az Qi = Az Z Qr — — F+oo —F_).

Note: an isolated shock must travel at the right speed!
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Lax-Wendroff Theorem Notes:

Suppose the method is conservative and consistent with

qt + f(Q)T = O:

Fio1j2 =F(Qi—1,Qi) with F(q,q) = f(q)
and Lipschitz continuity of F.

If a sequence of discrete approximations converge to a function

q(z,t) as the grid is refined, then this function is a weak

solution of the conservation law.

Note:

Does not guarantee a sequence converges

Two sequences might converge to different weak solutions.

Also need stability and entropy condition.
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Non-uniqueness of weak solutions Notes:

For scalar problem, any jump allowed with speed:

o e~ fl@)
qr —4qi

So even if f'(¢,) < f'(q) the integral form of cons. law is

satisfied by a discontinuity propogating at the R-H speed.

In this case there is also a rarefaction wave solution.

In fact, infinitely many weak solutions.

Which one is physically correct?
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Vanishing viscosity solution Notes:

We want ¢(z, t) to be the limit as ¢ — 0 of solution to

q: + f(Q)z = €Gzg-

This selects a unique weak solution:
e Shock if f’(ql) > f/(qv')a
e Rarefaction if f'(q;) < f'(gv).

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a
convex scalar conservation law is admissible only if

@) > s> f(gr).
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