

Flux function for traffic

q(x,t) = density, u(x,t) = velocity = U(q(x,t)).flux: f(q) = uq Conservation law: $q_t + f(q)_x = 0$. Constant velocity u_{max} independent of density:

 $f(q) = u_{\max}q \implies q_t + u_{\max}q_x = 0$ (advection)

Velocity varying with density:

 $V(s) = u_{\max}(1 - L/s) \implies U(q) = u_{\max}(1 - q),$ $f(q) = u_{\max}q(1-q)$ (quadratic nonlinearity)

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11]

Characteristics for a scalar problem

 $q_t + f(q)_x = 0 \implies q_t + f'(q)q_x = 0$ (if solution is smooth). Characteristic curves satisfy $X'(t) = f'(q(X(t), t)), X(0) = x_0.$

How does solution vary along this curve?

$$\frac{d}{dt}q(X(t),t) = q_x(X(t),t)X'(t) + q_t(X(t),t) = q_x(X(t),t)f(q(X(t),t)) + q_t(X(t),t) = 0$$

So solution is constant on characteristic as long as solution stays smooth.

 $q(X(t),t) = \text{constant} \implies X'(t)$ is constant on characteristic, so characteristics are straight lines!

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11]

Nonlinear Burgers' equation

Conservation form: $u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$

Quasi-linear form: $u_t + uu_x = 0.$

This looks like an advection equation with u advected with speed u.

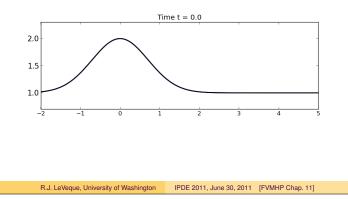
True solution: u is constant along characteristic with speed f'(u) = u until the wave "breaks" (shock forms).

Notes: IPDE 2011, June 30, 2011 [FVMHP Chap. 11] R.J. LeVeque, University of Washington Notes:

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11] Notes:

Burgers' equation

The solution is constant on characteristics so each value advects at constant speed equal to the value ...

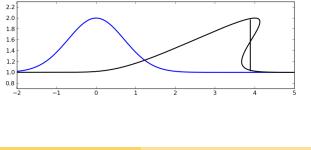


Burgers' equation

Equal-area rule:

The area "under" the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.



R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11]

Vanishing Viscosity solution

Viscous Burgers' equation: $u_t + (\frac{1}{2}u^2)_x = \epsilon u_{xx}$.

This parabolic equation has a smooth C^{∞} solution for all t > 0for any initial data.

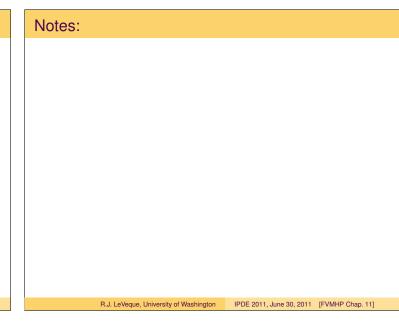
Limiting solution as $\epsilon \to 0$ gives the shock-wave solution.

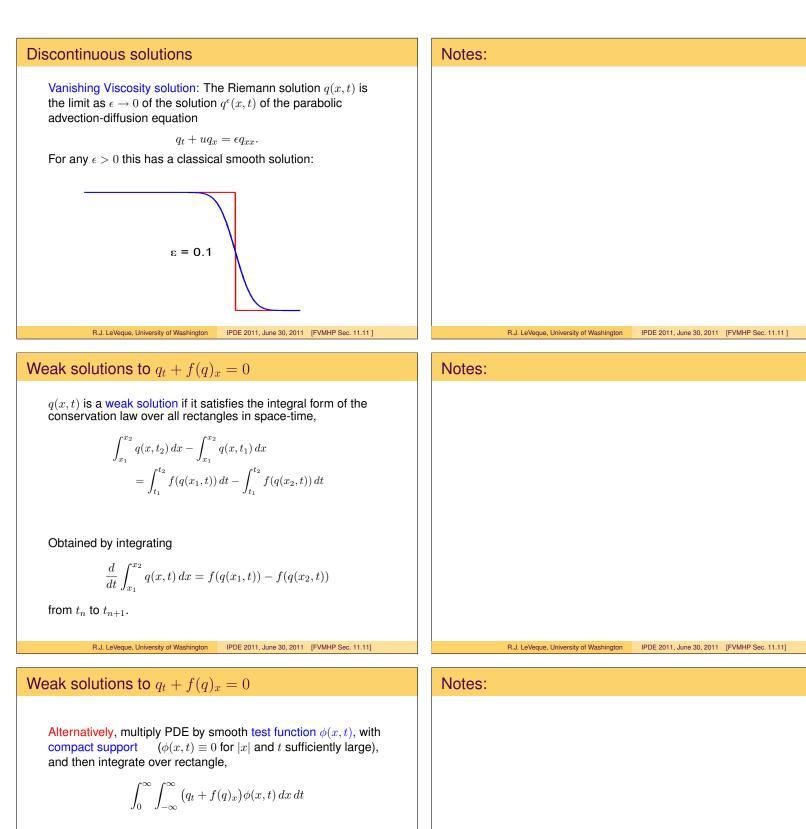
Why try to solve hyperbolic equation?

- · Solving parabolic equation requires implicit method,
- Often correct value of physical "viscosity" is very small, shock profile that cannot be resolved on the desired grid \implies smoothness of exact solution doesn't help!

Notes:			
	R.J. LeVeque, University of Washington	IPDE 2011, June 30, 2011	[FVMHP Chap. 11]

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Chap. 11]



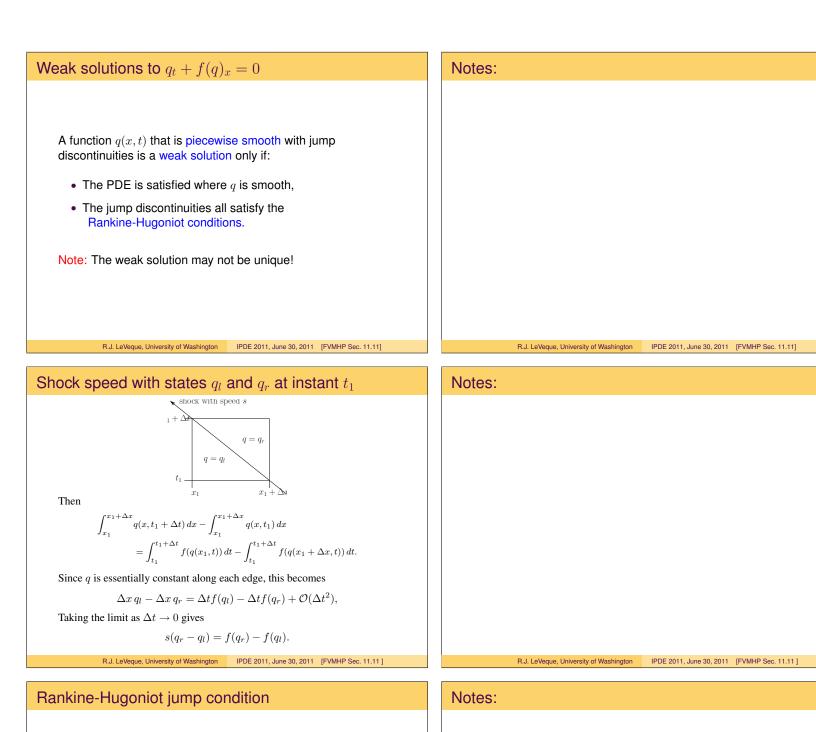


Then we can integrate by parts to get

$$\int_0^\infty \int_{-\infty}^\infty \left(q\phi_t + f(q)\phi_x \right) dx \, dt = -\int_0^\infty q(x,0)\phi(x,0) \, dx.$$

q(x,t) is a weak solution if this holds for all such ϕ .

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec. 11.11]



$$s(q_r - q_l) = f(q_r) - f(q_l).$$

This must hold for any discontinuity propagating with speed *s*, even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}$$

For systems, $q_r - q_l$ and $f(q_r) - f(q_l)$ are vectors, *s* scalar,

R-H condition: $f(q_r) - f(q_l)$ must be scalar multiple of $q_r - q_l$.

For linear system, f(q) = Aq, this says

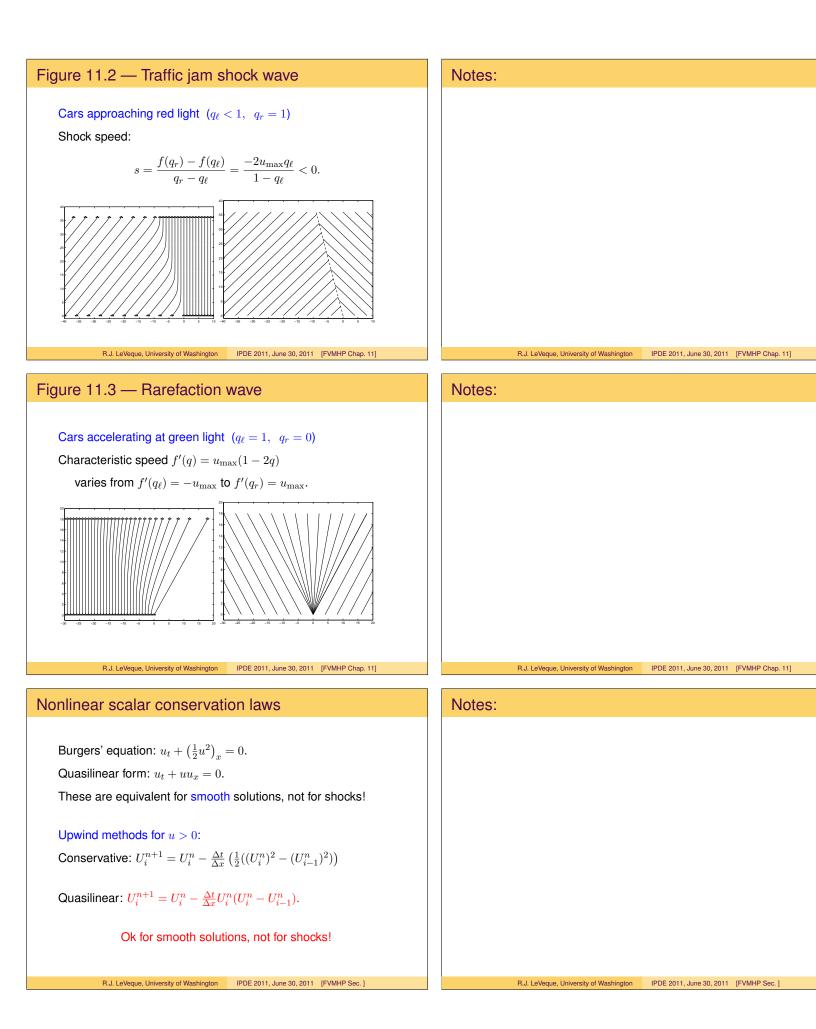
$$A(q_r - q_l) = s(q_r - q_l),$$

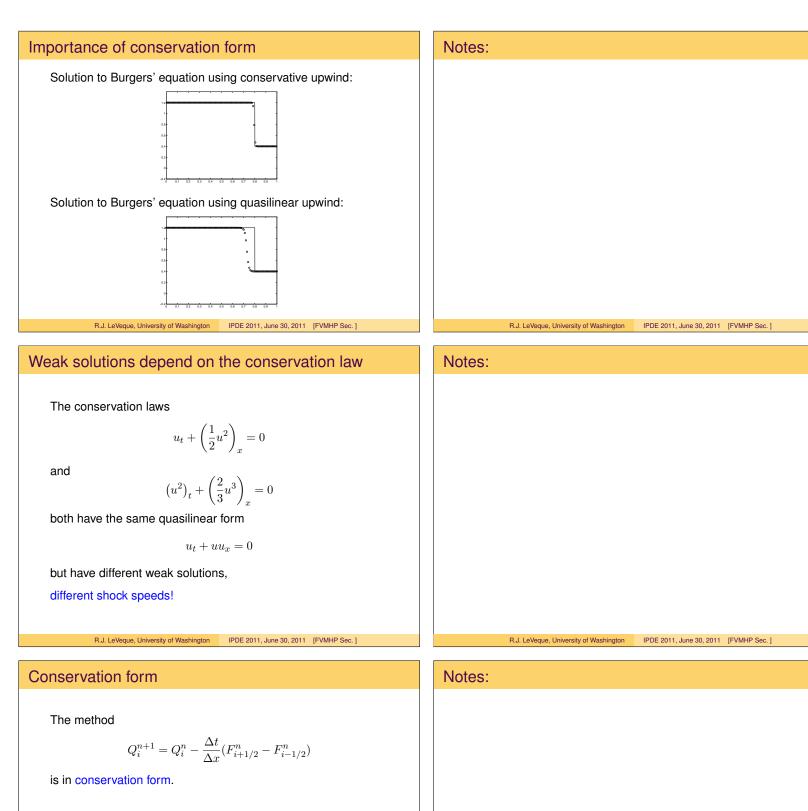
Jump must be an eigenvector, speed *s* the eigenvalue.

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec. 11.11]

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec. 11.11]







The total mass is conserved up to fluxes at the boundaries:

$$\Delta x \sum_{i} Q_{i}^{n+1} = \Delta x \sum_{i} Q_{i}^{n} - \frac{\Delta t}{\Delta x} (F_{+\infty} - F_{-\infty}).$$

Note: an isolated shock must travel at the right speed!

R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec.]

Lax-Wendroff Theorem Notes: Suppose the method is conservative and consistent with $q_t + f(q)_x = 0,$ $F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i)$ with $\mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$ and Lipschitz continuity of \mathcal{F} . If a sequence of discrete approximations converge to a function q(x,t) as the grid is refined, then this function is a weak solution of the conservation law. Note: Does not guarantee a sequence converges Two sequences might converge to different weak solutions. Also need stability and entropy condition. R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec.] IPDE 2011, June 30, 2011 [FVMHP Sec.] R.J. LeVeque, University of Washington Non-uniqueness of weak solutions Notes: For scalar problem, any jump allowed with speed: $s = \frac{f(q_r) - f(q_l)}{q_r - q_l}.$ So even if $f'(q_r) < f'(q_l)$ the integral form of cons. law is satisfied by a discontinuity propogating at the R-H speed. In this case there is also a rarefaction wave solution. In fact, infinitely many weak solutions. Which one is physically correct? R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec. 11.11] R.J. LeVeque, University of Washington IPDE 2011, June 30, 2011 [FVMHP Sec. 11.11] Vanishing viscosity solution Notes: We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to $q_t + f(q)_x = \epsilon q_{xx}.$ This selects a unique weak solution: • Shock if $f'(q_l) > f'(q_r)$, • Rarefaction if $f'(q_l) < f'(q_r)$. Lax Entropy Condition: A discontinuity propagating with speed *s* in the solution of a convex scalar conservation law is admissible only if $f'(q_l) > s > f'(q_r).$