
by Todd Rosenquist, Technical Consulting Engineer, Intel® Math Kernal Library
and Shane Story, Manager of Intel® MKL Technical Strategy, Intel Corporation

Using the Intel® Math Kernel Library
(Intel® MKL) and Intel® Compilers
to Obtain Run-to-Run Numerical
Reproducible Results

INteL® SOftwaRe tOOLS RepROdUCIbILIty CONtROLS

Intel® MKL 11.0
mkl_cbwr_set()
MKL_CBWR (environment variable)

Intel® Composer XE 2013
-fp-model or /fp
KMP_DETERMINISTIC_REDUCTION=yes

Floating-point applications from Hollywood to Wall Street have long faced the challenge of providing
both great performance and exactly the same results from run to run, or in other words, reproducible
results. While the main factor causing a lack of reproducible results is the non-associativity of most
floating point operations, there are other contributing factors such as runtime, selectable optimized
code paths, non-deterministic threading and parallelism, array alignment, and even the underlying
hardware floating-point control settings.
 In this article for Intel® software tool users and programmers, we outline how to use the Intel® Math
Kernel Library (Intel® MKL) and Intel® compiler features to balance performance with the reproducible
results applications require. These new reproducibility controls in Intel® Parallel Studio XE 2013 help
make consistent results from run to run possible:

“Floating-point applications
from Hollywood to Wall
Street have long faced the
challenge of providing
both great performance and
exactly the same results
from run to run, or in other
words, reproducible results.“

After many years of seeing software performance increase
with processor clock speed, the last half-decade has seen the flattening
of clock rates and the increasing availability of multicore systems. With
each successive generation of microprocessors, improvement in software
performance requires the use of newly added instructions to exploit the
capabilities of the processor, as well as threaded algorithms designed to
leverage the growing number of computational cores. To keep up with
these changes, many developers turn to software tools. Optimizing
compilers exploit opportunities for instruction and data-level parallelism
and can automatically thread computationally intensive portions of a
program. Software libraries provide tools to thread your code or allow
you to extract parallelism automatically through calls to highly optimized,
threaded functions. Many software programmers have adopted and use
these high performance tools to extract greater levels of performance. In
doing so, the likelihood of generating inconsistent results from run to run
has grown.

Let’s consider two scenarios. Artists in animation studios work every
day with advanced modeling tools that allow them to move their
actors through a virtual world. These modeling tools include physics
engines that can simulate the real-world behavior of clothes, hair, or
fluids, and therefore will naturally use floating-point models similar to
those used in science and engineering applications. While accuracy
and precision may not always be the first concern, especially in early
stages of the process, getting the same results can be of the utmost
importance. If a cloak follows a slightly different trajectory each time
the artist runs through a multi-second sequence, the artist has lost
some control over the creative process. Which trajectory will be used
when the scene goes through further rendering and post-processing
steps? The problem would be compounded by the fact that a single
scene may have many such models that may interact to produce
completely unpredictable results.

A second scenario involves mathematicians on Wall Street who
develop algorithms for various applications from options pricing to
risk analysis. In this field, getting results quickly means money—and
sometimes a lot of money. The “quants” who develop these algorithms
are faced with a balancing act between getting the answer quickly
and the simulation time required to provide the most reliable answer.
An increase in the performance of an algorithm can mean a decision
sooner or a better decision in the same amount of time—a win in
either case. However, optimized floating-point calculations that are a
part of these models can often introduce rounding error. This means
that if an earlier decision must be revisited and the model run again, it
is possible that the result might be slightly different. The uncertainty
can result in questions or issues later that programmers would prefer
to avoid.

These are just two of many scenarios1 encountered over the last
few years by users of Intel MKL. This is a popular library of highly
optimized parallel floating-point math functions that has been
successfully used by customers in many application areas for over
15 years. For application programmers who demand reproducible
results, there have not been any guarantees and only the limited
option of running a sequential version of the library.

So, what exactly is the reproducibility problem? The issue is rooted
in the way floating-point numbers are represented, the order in which
they are operated on by the computer, and the rounding errors that
may be introduced. It is a well-known fact that for general floating-
point numbers represented in an IEEE single or double precision
format2, the mathematical associative property does not in general
hold.3 In simpler terms, (a + b) + c may not equal a + (b + c).

It may help to consider a specific example. With pencil and paper, 2-63
+ 1 + -1 = 2-63. If, instead we do this same computation on a computer
using double precision floating-point numbers, we get (2-63 + 1)
+ (-1) ≈ 1 + (-1) = 0 since (2-63 + 1) rounds to 1, or possibly 2-63 + (1 + (-1))
≈ 2-63 + 0 = 2-63 through a slight modification in the order of operations.
Clearly 0 does not equal 2-63, so the order of operations not only influ-
ences how and when rounding occurs but also the final computed result.
Compilers typically refer to this ordering ambiguity as re-association.

Introducing application-level parallelism further increases the likelihood
of producing nonreproducible results. The reason is a direct carryover
from the order of operations argument just described. Whenever
work is distributed among multiple threads or processes, any change
in the order of operations within a computational dependency chain
may result in a difference not only in the intermediate results, but also
in the final computed results. Straightforward array element sum and
product reduction operations are simple examples when the array
elements have been distributed across multiple threads; partial sums
or products are computed and then combined across threads into a
single value. Any change in how the arrays are distributed, or the order
in which a thread-specific sum or product is combined with another,
may influence the final reduced sum or product. More broadly, how to
handle parallelism in a consistent and predictable way falls under the
category of deterministic parallelism.4

When you consider that a typical application may do millions of
floating-point operations, it becomes readily apparent how the order
of operations influences the final computed results.

2

“Increasingly, with each successive generation of microprocessors,
improvement in software performance requires the use of
newly added instructions to exploit the capabilities of the
processor, as well as threaded algorithms designed to leverage
the growing number of computational cores.“

Intel Math Kernel Library
Intel MKL 11.0 introduces Conditional Numerical Reproducibility
functions to help users obtain reproducible floating-point results from
Intel MKL functions under certain conditions.5 When using these new
features, Intel MKL functions are designed to return the same floating-
point results from run to run, subject to the following limitations:

 > Input and output arrays in function calls must be aligned
on 16-, 32-, or 64-byte boundaries on systems with SSE/
AVX1/AVX2 instructions support respectively.

 > Control over the number of threads must remain the same
from run to run for the results to be consistent.

The application-related factors within a single executable program
that affect the order in which floating-point operations are computed
include code path selection based on runtime processor dispatching,
data array alignment, variation in number of threads, threaded algorithms,
and internal floating-point control settings. Up until now, users were
unable to control the library’s runtime dispatching and how its functions
were internally threaded. However, they were able to manage the
number of threads, check the floating-point settings, and take steps
to align memory when it is allocated.6

Intel MKL does runtime processor dispatching in order to identify
the appropriate internal code paths to traverse for the Intel MKL
functions called by the application. The code paths chosen may differ
across a wide range of Intel® processors and IA-compatible processors,
and may provide varying levels of performance. For example, an
Intel MKL function running on an Intel® Pentium® 4 processor may run
an SSE2-based code path. On a more recent Intel® Xeon® processor
supporting Intel® Advanced Vector Extensions (AVX) that same
library function may dispatch to a different code path that uses AVX
instructions. This is because each unique code path has been
optimized to match the features available on the underlying processor.
This feature-based approach to optimization, by its very nature,
amplifies the reproducibility challenges already described. If any of
the internal floating-point operations are done in a different order,
or are re-associated, then the computed results may differ.

3

Using the Reproducibility Features
Intel MKL 11.0 includes new functions and environment variables (shown
in the table) designed to help users get numerical reproducible results from
the Intel MKL functions used. These functions and variables allow users
to control what code paths are executed and ensure deterministic thread
execution. The greater the number of unique processors a given Intel
MKL-based application needs to support with reproducible results, the
tighter the restriction on which instructions can be used by the common
code path executed within the library. For reproducible results across all
processors supported by Intel MKL, specify that the “COMPATIBLE” code
path be used. Because this code path uses instructions common across
all IA-compatible processors, users should not expect to see the same
levels of performance that can be achieved on the latest processors. If
on the other hand, your processors are limited to more recent generations
of Intel® processors, then a code path can be chosen that uses the latest
instruction sets and therefore provides greater performance. The table
outlines the trade-off between breadth of compatibility and performance
for a number of the code paths found in Intel MKL.

Notes:

 > Ensure your application uses a fixed number of threads and
aligns input and output arrays for Intel MKL function calls.

 > On non-Intel CPUs, the results may differ because the MKL_
CBWR_COMPATIBLE code-path is run instead.

 > The implementation of approximation instructions (e.g., rcpss/
ps, rsqrtss/ps) in Intel processors may differ with the
implementations from other vendors and may return different
results. The COMPATIBLE setting ensures that Intel MKL uses
an SSE2-only code-path which does not use these instructions.

Performance Implications
Dispatching optimized code paths based on the capabilities of the
processor on which it is running is central to the optimization approach
used by Intel MKL, so it is natural that there should be some performance
trade-offs when requiring consistent results. If limited to a particular
code path, Intel MKL performance can in some circumstances degrade
by more than half. This can be easily understood by noting that matrix-
multiply performance nearly doubled with the introduction of new
processors supporting AVX instructions, primarily because the internal
vector register width also doubled. In other cases, performance may
degrade by between 10 percent and 20 percent if the algorithms are
merely constrained to maintain the order of operations.

for consistent results … function Call
mkl_cbwr_set(…)

environment Variable
MKL_CbwR=

on Intel® or Intel®-compatible CPUs supporting SSE2
instructions or later

MKL_CBWR_COMPATIBLE COMPATIBLE

on Intel® processors supporting SSE2 instructions or later MKL_CBWR_SSE2 SSE2

on Intel processors supporting SSE4.2 instructions or later MKL_CBWR_SSE4_2 SSE4_2

on Intel processors supporting Intel® AVX or later MKL_CBWR_AVX AVX

from run to run (but not processor-to-processor) MKL_CBWR_AUTO AUTO

Maximum
Compatiblity

Maximum
performance

4

Intel® Composer XE 2013
This new feature in Intel MKL ensures that in many circumstances you
can get excellent performance, while still meeting your reproducibility
requirements. It is worth noting that a comprehensive solution that
ensures reproducible results across your entire application will require
that the other tools used to build your application also provide repro-
ducible results. The optimizing compilers in Intel Composer XE 2013 are
part of Intel’s broader reproducibility solution and provide compilation
options to ensure that compiler-generated code produces reproducible
results from run to run.

For example, the -fp-model compilation switches on Linux* (or /fp on
Windows*) provide options for controlling value safety, floating-point
expression evaluation, floating-point unit environment access, precise
floating-point exceptions, and handling floating-point contractions.
As with Intel MKL, these controls will affect the ability of the compiler
to optimize code using re-association, expression evaluation, divide and
sqrt, and other math library approximations.7 The Intel compiler also
provides threading via the OpenMP* model. With the latest compiler,
the reduction stage in threaded parallel sections can be forced to
provide reproducible results by setting
KMP_DETERMINISTIC_REDUCTION=yes.

Let’s consider the case where you would like the resulting executable
to produce the same results on the following three systems:

 > One 4-core processor supporting SSE 4.2 instructions
 > One 4-core processor supporting AVX instructions
 > Two 4-core processors supporting AVX instructions

First, to ensure that Intel MKL functions provide reproducible results,
we must make sure all arrays are aligned on 16-byte boundaries (the
mkl_alloc() function suits this purpose). Then, ensure that the number
of threads used on each system remains fixed and does not vary
during the run. By default, Intel MKL uses as many threads as there
are cores, so you should fix the number of threads at four using the
mkl_set_num_threads() function. Finally, because, Intel MKL dispatches
an optimized code path based on the instruction set available, you
need to use the new reproducibility control to configure this: mkl_
cbwr_set(MKL_CBWR_SSE4_2. You will then also need to use an
appropriate –fp-model (or /fp) flag to ensure the compiler returns
consistent results. Applications threaded using OpenMP should also
specify a fixed number of threads (omp_set_num_threads(4)) and set
KMP_DETERMINISTIC_REDUCTION=yes.

Conclusion
The features described here are intended to help programmers generate
reproducible results within their applications under a manageable set of
constraints, such as a fixed number of threads, when running on the
same operating system, if the underlying processor family stays the
same, only when input/output arrays are aligned, and so on. Looking
forward, the plan is to continue to explore ways to lessen the constraints
and extend product features to incorporate the latest algorithms that
ensure deterministic parallelism on a variable number of threads, to
remove the input/output alignment restrictions, and to use automated
analysis tools to validate that the code generated produces the same
results regardless of the underlying operating system or processor.

Bibliography
1. The Limits of Reproducibility in Numerical Simulation, Kai Diethelm,

Computing in Science & Engineering, 2012.

2. IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Standard
No. 754, American National Standards Institute, Washington, DC, 1988.

3. What Every Computer Scientist Should Know about Floating-Point
Arithmetic, David Goldberg, ACM Computing Surveys 23, 5-48, 1991.

4. Is Parallel Programming Hard, Stephen Lewin-Berlin, Intel® Software
Network, http://software.intel.com/en-us/articles/is-parallel-program-
ming-hard-1/, 2009.

5. The Flagship High-Performance Computing Math Library for Windows*,
Linux*, and Mac OS* X. Intel® Math Kernel Library (Intel® MKL) 10.3,
Intel Software Network, http://software.intel.com/en-us/articles/
intel-mkl/.

6. Getting Reproducible Results with Intel® MKL, Todd Rosenquist, Intel®
Software Network, http://software.intel.com/en-us/articles/getting-
reproducible-results-with-intel-mkl/, 2010.

7. Consistency of Floating-Point Results using the Intel® Compiler,
Martyn Corden, Intel® Software Network, http://software.intel.com/
en-us/articles/consistency-of-floating-point-results-using-the-intel-
compiler/, 2010.

“The application-related factors that affect the order in
which floating-point operations are computed within a single
executable program include code path selection based on
runtime processor dispatching, data array alignment, variation
in number of threads, threaded algorithms, and internal
floating-point control settings."

5

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

6

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Atom,Cilk, Intel Core, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

