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“There is no ... mathematician so expert ... as to place entire confidence in his proof immedi-
ately on his discovery of it... Every time he runs over his proofs his confidence encreases; but
still more by the approbation of his friends.” David Hume, 1739
“Computers can ... create abstract social machines on the Web: processes in which the people
do the creative work and the machine does the administration...The stage is set for an evolu-
tionary growth of new social engines.” Tim Berners-Lee, 1999
“... and sometimes I realized that nothing that had ever been done before was any use at all.
Then I just had to find something completely new; it’s a mystery where that comes from.”
Andrew Wiles, 2000, on proving Fermat’s theorem
“Who would have guessed that the working record of a mathematical project would read like
a thriller?” Tim Gowers/Michael Nielson, on collaborative online mathematics, Nature, 2009
“This is really the End.” Georges Gonthier, 2012 completes his 6 year formal verification of a
major 255 page result in algebra, the odd-order-theorem

For centuries, the highest level of mathematics has
been seen as an isolated creative activity, to produce
a proof for review and acceptance by research peers.
Mathematics is now at a remarkable inflexion point,
with new technology radically extending the power
and limits of individuals. “Crowdsourcing” pulls to-
gether diverse experts to solve problems; symbolic
computation tackles huge routine calculations; and
computers, using programs designed to verify hard-
ware, check proofs that are just too long and com-
plicated for any human to comprehend.
Yet these techniques are currently used in stand-
alone fashion, lacking integration with each other or
with human creativity or fallibility. �Social machines�
are new paradigm, identified by Berners-Lee [21], for
viewing a combination of people and computers as
a single problem-solving entity.
What if we developed a new vision, changing the way
people do mathematics, and transforming the reach,
pace, and impact of mathematics research, through
creating a mathematics social machine — a combi-
nation of people, computers, and archives to create
and apply mathematics?
Thus, for example, an industry researcher wanting
to design a network with specific properties could
quickly access diverse research skills and research;
explore hypotheses; discuss possible solutions; obtain
surety of correctness to a desired level; and create
new mathematics that individual effort might never
imagine or verify. Seamlessly integrated “under the
hood” might be a mixture of diverse people and ma-
chines, formal and informal approaches, old and new
mathematics, experiment and proof.
Much is known about the relevant ICT technolo-
gies:
• Collaborating: crowdsourced and open innovation

• Creating: AI for creativity, analogy and discovery
• Calculating: numeric and symbolic computation
• Verifying: formalization, reasoning and proof
• Sharing: knowledge management and interfaces
The obstacles to realising the vision seem to be not
advances in any one of these domains, but rather:
• We do not have a high level understanding of the
production of mathematics by people and machines,
integrating the current diverse research approaches
• There is no shared view among the diverse re-
search and user communities of what is and might
be possible or desirable
In this note we sketch what we might do to address
these challenges.

Background
Mathematics reach, pace and impact Mathemat-
ics and theoretical computer science, research un-
derpins modern programming languages, secure sys-
tems, and the Web. Advances depend on hard foun-
dational mathematics, and draw on newer areas such
as statistics and dynamical systems, alongside tra-
ditional combinatorics and logic, supplemented by
simulation and experiment. This potential reach of
mathematics is increasing, thus increasing the chal-
lenge to researchers of deploying the right combi-
nations of techniques within and beyond their own
specialism to solve increasingly hard and broad prob-
lems, which are not stated in isolation but require
an integrated approach. The rapid pace of tech-
nology creates key opportunities, if mathematicians
are able to collaborate with each other, and with
other computing disciplines, both academic and in-
dustry, to produce timely results. Increasing pace
and reach has the potential to increase impact, if
potential users of research can find the researchers
and the research they need. Sometimes it can be eas-
ier to write a new paper than to find old results: the
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past 10 years saw nearly 200K papers of relevance
to theoretical computer science [2].
Social machines Social machines combine people
and computers for emergent and collective problem-
solving. Current examples include Google, Wikipedia
and Galaxy Zoo, providing platforms for innovation,
discovery, and commercial opportunity [34]. Fu-
ture more ambitious social machines will combine
deep social involvement and sophisticated automa-
tion [21], and are now the subject of major research.
This approach builds on e-Science work such as
Goble’s myExperiment [15], a collaborative research
space for scientific workflow management and exper-
iment: however such systems do not address math-
ematics.
Mathematics and social machines The production of
mathematics provides an important, timely and ex-
citing challenge for social machines research — with
a variety of approaches to combining people and ma-
chines. In the past few years, systems for unstruc-
tured collaboration developed by researchers them-
selves have had a powerful impact: we call such sys-
tems social mathematics.
• in the summer of 2010 a paper was released plau-
sibly claiming to prove one of the major challenges
of theoretical computer science, that P ̸= NP. It was
withdrawn after rapid analysis coordinated by senior
scientist-bloggers
• polymath collaborative proofs, a new idea led by
Gowers, use a wiki for collaboration among scientists
from different backgrounds and have led to major
advances [18]
• discussion fora, including new ideas such as user
ratings for finding the right expert, allow rapid infor-
mal interaction and problem solving; in three years
mathoverflow.net has hosted 27,000 conversations
• the widely used “Online Encyclopaedia of Integer
Sequences” (OEIS) invokes subtle pattern matching
against over 200K user-provided sequences on a few
digits of input: so for example (3 1 4 1) returns π
[7]
• the arXiv holds around 750K preprints in com-
puter science, mathematics etc.. By providing open
access ahead of journal submission, it has markedly
increased the speed of refereeing, widely identified
as a bottleneck to the pace of research [31]
• Innocentive [22], a site hosting open innovation
and crowdsourcing challenges, has hosted around
1,500 challenges with a 57% success rate, of which
around 10% were tagged as mathematics or ICT.
All can be viewed as social machines — for exam-
ple OEIS involves users with queries or proposed new
entries; volunteers curating the system; governance

and funding mechanisms; as well as a database,
matching engine and web interface.
The social element The social is crucial in the pro-
duction of mathematics. Mackenzie’s sociological
study of proof [25] confirmed Lakatos’s analysis
of the role of error [23], and Hume’s assessment
nearly 300 years earlier of the social nature of proof
[10]. Williams’s notion of technological “artefacts”
matches the way in which mathematical objects mu-
tate as ideas are developed [41].
The work of cognitive scientists, sociologists,
philosophers and the narrative accounts of mathe-
maticians themselves, highlight the paradoxical na-
ture of mathematical practice — while the goal of
mathematics is to discover mathematical truths jus-
tified by rigorous argument, mathematical discovery
involves “soft” aspects such as creativity, informal
argument, error and analogy.
Collaborative systems such as polymath contribute
to mathematics research, and also provide a rich ev-
idence base for further understanding of mathemat-
ical practice. Our analysis of a polymath proof [35]
found only 47% of the conversational “turns” were
proof steps, with the rest being made up of conjec-
tures, concept formation and the like.
At a recent learned society event organised by the
proposer [1], leading mathematicians flagged the im-
portance of collaborative systems that “think like
a mathematician”, handle unstructured approaches
such as the use of “sloppy” natural language, and
the exchange of informal knowledge and intuition not
recorded in papers, and engage diverse researchers in
creative problem solving.
Yet if the mathematics social machine is to realise
its potential, and scale up to large proofs, it will also
need formal approaches. Verification through for-
malisation and proof, supported by decades of aca-
demic and industry research into theorem provers, is
achieving remarkable breakthroughs, and providing
rich archives of material for possible re-use:
• on 20th September 2012 Georges Gonthier an-
nounced that after six years effort he had completed
a formalisation in the Coq theorem prover of one of
the most important and longest proofs of 20th cen-
tury algebra, the 255 page odd-order theorem [3]
• mathematician Tom Hales has almost completed
a ten-year formalisation of his proof of the Kepler
conjecture, using several theorem provers to confirm
his major 1998 paper [19]
• hardware and software verification to ensure error-
free systems is a major endeavour in companies like
Intel and Microsoft [20], as well as supporting a num-
ber of specialist SMEs.
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Other likely elements of a mathematics social ma-
chine would include the following, all currently major
research activities in their own right:
• a variety of AI and cognitive science inspired ap-
proaches to “soft” aspects such as creativity, analogy
and concept formation [13]. For example, mathe-
maticians often mention the importance of error for
creativity [1]: this has also stimulated Bundy’s re-
cent AI work on ontology repair [26]
• symbolic and numeric computation, and associ-
ated data, provided by commercial systems such as
Matlab and Maple, or research packages such as
GAP: all already engage strongly with e-science
• digitised mathematical archives, using MKM, for
example to support search, re-use and executable pa-
pers [24]. The National Academy of Sciences have
just announced a major initiative [33].
• interfaces: people to machine, natural language
to mathematics, and software to software
Capitalising on the substantial research underlying
these achievements will inform thinking about the
design space for mathematics social machines, for
example:
• precise versus loose queries and knowledge
• human versus machine creativity
• specialist/niche versus general users
• logical validity versus cognitive appeal for output
• formal versus natural language for interaction
• generating versus checking conjectures or proofs
• formal versus informal proof
• “evolution” versus “revolution” for new systems
• governance, funding and longevity
Exploring these in the framework of social machines
will include matters such as:
• Designing social computations Social machine
models [21] view users as “entities” (cf agents or
peers) and allow consideration of social interaction,
enactment across the network, engagement and in-
centivisation, and methods of software composition
that take into account evolving social aggregation.
For mathematics this has far reaching implications
— handling known patterns of practice, and enabling
others as yet unimagined, as well as handling issues
such as error and uncertainty, and variations in user
beliefs.
• Accessing data and information Semantic web
technology enables databases supporting prove-
nance, annotation, citation and sophisticated search.
Mathematics data includes papers, records of math-
ematical objects from systems such as Maple, and
scripts from theorem provers. There has been con-
siderable research in MKM [24], but current social
mathematics systems have little such support. Yet

effective search, mining and data re-use would trans-
form both theoretical computer science research and
commercial verification. Research questions are both
technical, for example how to ensure annotation re-
mains timely and correct, and social, for example
many mathoverflow responses cite published work,
raising the issue of why users prefer asking to search-
ing.
• Accountability, provenance and trust Participants
in social machines need to be able to trust the pro-
cesses and data they engage with and share. Key
concepts are provenance, knowing how data and re-
sults have been obtained, which contributes to ac-
countability, ensuring that the source of any break-
down in trust can be identified and mitigated [40].
Current social mathematics systems are remarkably
open — for example posting drafts on the arXiv
ahead of journal submission is reported as speed-
ing up refereeing and reducing priority disputes [1].
Trusting mathematical results requires considering
provenance of the proof, a major issue in assessing
the balance between formal and informal proofs, and
the basis for research into proof certificates [30]. Pri-
vacy and trust are significant for commercial or gov-
ernment work, where revealing even broad interests
may already be a security concern.
• Interactions among people, machines and data In-
teractions among people, machines and data are core
to social machines, which have the potential to sup-
port novel forms of interaction and workflow which
go beyond current practice, a focus of current social
machine research [21]. Social mathematics shows
a variety of communities, interactions and purposes
— looking for information, solving problems, clarify-
ing information and so on [35] — displaying much
broader interactions than those supported by typical
mathematical software. Lakatos identifies mathe-
matical “moves” (eg responses to counterexamples)
that are examples of mathematical workflow, and ex-
amining both polymath and the production of formal
proofs has potential to reveal more [35]. In particular
such workflows need to take account of informality
and mistakes [12].
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