
Literate Research versus Reproducible Research
Li-Thiao-Té Sébastien

LAGA, CNRS UMR 7539
Université Paris 13

lithiao@math.univ-paris13.fr
December 5, 2012

Dear colleagues,
Like many I have struggled with research and source code that I have now forgotten how

to use. Or not quite. When I started doing research, I was wise enough to make it simple to
run my programs and I can still get results out of them. What I fail to perform are the tiny
adjustments to the code that are required to re-use the programs in my current line of research,
for writing papers, slides, posters or basically anything else.

My previous research is still reproducible, but no longer usable.
Of course I did not write enough documentation. Of course I did not write enough

comments inside the source code. I fully take the blame. Unfortunately, I believe that this is
the majority case in software engineering, in scientific research but also in general.

So last year, I decided that I needed to upgrade my methods and procedures and I wrote
the Lepton software[2] to do just that. Let me stress the following point. Lepton is a tool to
make it easy to create work — scientific research, teaching activities, software engineering or
whatever — that hopefully I can re-use and modify in the long term. I called this “literate
papers” in [3]. Lepton documents are reproducible research papers merely as a side effect of
the way they are designed.

Do not get me wrong. Reproducible research is a must-have feature. Being able to
reproduce exactly the results that were obtained by fellow researchers is a guarantee of the
scientific quality and the reality of the phenomenon under scrutiny. For instance, the laws of
physics are completely reproducible. (I am referring to apples falling from a tree). And we
do research to unearth explanations for the exceptions to the well-established rules.

However, I get the feeling that we miss the point when we attempt to craft systems to
provide perfect reproducibility to research results.

First of all, software are the tools by which we enslave computers to do our bidding. Let us
not forget that tools should be practical. Reproducible research frameworks should not hinder
researchers. On the contrary, such systems should provide additional functionality with as little
a cost as possible. My opinion is that the current frameworks are not designed for the researcher.
Some are designed for archiving research results. Some systems are designed for datamining with
semantic tags. Some systems are designed for interactive web demonstrations. Some systems are
designed for a specific architecture or software environment. In some sense, current proposals
are computer-readable by design which is often the opposite of human-readable.

In fact, this is certainly the consequence of taking reproducibility mainly for the purpose
of publishing research results. When submitting a manuscript, it is natural to follow guidelines,
and these may include recommendations about how to provide input data, source code and

1



intermediate results. Frankly, this is often a hassle. Can we not provide the properties of a
reproducible research paper beyond the limited scope of “publish or perish” ?

I designed Lepton for me to work with. In particular, I designed it to be
• trivial to learn and use,
• compatible with existing research methods, including current paper submission pipelines,
• universal, i.e. not dependent on a particular environment, programming language, publication
format, etc.

• fit for collaborative work with colleagues without Lepton.
So far I have written two conference papers with this software as well as a few manuscripts in
preparation. What I am most pleased with is that I use Lepton for almost every computer related
task, from implementing research methods and writing test subjects down to the miscellaneous
software projects that occupy my spare time. I will gladly demonstrate Lepton during the
ICERM workshop.

But Lepton is no more than a means to an end. We need no tools for our research to be
re-usable in the long term. What we need is to do research that humans can understand. There
will come a time in the future when our work becomes obsolete, because no one bothers to
maintain backward compatibility, emulators for legacy hardware, or when it is just faster and
more computationaly efficient to reimplement than to use the source code from the archives.
At that point in time, what is critical is not the source code but rather its documentation.

Literate papers are to research papers what literate programs are to source code. I believe
that Knuth’s ideas[1] did not get the long term adoption that they deserved. In literate
programming, “source code” is a work of literature; consequently we should write a report on
the implementation details, and embed the source code inside it. This provides a full-fledged
publishing system such as LATEX to writing code documentation. Likewise, Lepton makes it
easy to embed all the elements of a research paper in the same literate paper, and makes it
easy to document everything: the input data, the source code, the methods but also the scripts
and commands that glue all these elements together and contain the nifty parameters used
to produce the results, i.e. the figures and tables.

In the end, it all comes down to this: I hope that my research results in mathematics will
be useful to others and that they can re-use my work. With or without Lepton.

Sincerely,
References
[1] D.E. Knuth and Stanford University. Computer Science Dept. Literate programming. Center for

the Study of Language and Information, 1992.
[2] S. Li-Thiao-Té. Lepton User Manual.
[3] Sébastien Li-Thiao-Té. Literate program execution for reproducible research and executable papers.

Procedia Computer Science, 9(0):439 – 448, 2012. Proceedings of the International Conference on
Computational Science, ICCS 2012.

[4] Sébastien Li-Thiao-Té. Literate program execution for teaching computational science. Procedia
Computer Science, 9(0):1723 – 1732, 2012. Proceedings of the International Conference on
Computational Science, ICCS 2012.

2


