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Computation in number theory can:
e contribute to rigorous mathematical proof.
¢ help verify conjectures experimentally.

e stimulate mathematical discovery, theorems, relationships,
conjectures, and uncover phenomena.

e motivate work on algorithms and complexity (exs:
factoring, primality testing, Ghaith Hiary’s algorithm for
computing the zeta function).

¢ involve automated theorem proving and proof verification.



What does it mean for a computation to be rigorous? Even
assuming that the algorithms/methods are correct in principle,
how does one certify, potentially, thousands of lines of code as
being correct when there are many places where things can go
wrong:

e mathematical coding errors (ex: signs, branches of log).

e programming errors (ex: wrong loop or array bounds,
memory issues, confusing types),

¢ loss of precision (accumulated round-off, cancellation),
wrong error analysis/inequalities.

e reliance on black boxes: computer chips (Intel division
bug), compilers and optimizers (constantly releasing new
versions with bug fixes), computer memory (can get
corrupted), closed source software (Mathematica), other
people’s packages, and using them in ways that were not
originally intended or foreseen.



At present we usually declare a program to be bug free once it
produces output that is consistent with our expectations. We
tend to give more trust to computational results that are
reproducible using separate code and hardware, or for which
there is more than method that gives the same output, or for
which the correctness of the result can be easily tested
(examples: factorization of an integer, explicit formula for zeros
of an L-function).



Excerpt from Tao’s paper:
EVERY ODD NUMBER GREATER THAN 1 IS THE SUM OF AT MOST FIVE PRIMES 7

To prove Theorem we will also need to rely on two numerically verified results in
addition to Theorem

Theorem 1.5 (Numerical verification of Riemann hypothesis). Let Ty := 3.29 x 10°.
Then all the zerves of the Riemann zeta function ¢ in the strip {s : 0 < R(s) < 1,0 <
Q(s) € To} lie on the line R(s) = 1/2. Purthermore, there are at most 10'° zerces in
this strip.

Proof. This was achieved independently by van de Lune (unpublished), by Wedeniwski
[50], by Gourdon [14], and by Platt [34]. Indeed, the results of Wedeniwski allow one
to take Ty as large as 5.72 x 100, and the results of Gourdon allow one to take Tj
as large as 2.44 x 10'%; using interval arithmetic, Platt also obtained this result with
Ty as large as 3.06 x 100, (Of course, in these latter results there will be more than
10° zeroes.) However, we will use the more conservative value of Ty = 3.29 x 10° in
this paper as it suffices for our purposes, and has been verified by four independent
numerical computations. O

Theorem 1.6 (Numerical verification of even Goldbach conjecture). Let Ny := 4x 10,
Then every even number between 4 and Ny is the sum of two primes.

Proof. This is the main result of Richstein [41]. A subsequent (unpublished) verification
of this conjecture by the distributed computing project of Oliveira e Silva [32] allows one
to take N, as large as 2.6 x 10'® (with the value N = 10'7 being double-checked), but
again we shall use the more conservative value of Ny = 4 x 10'* in this paper as it suffices
for our purposes, and has been verified by three independent numerical computations.
O



Rigour and bugs in computation

Once upon a time | had a very frustrating bug that took me 3
days to find. It had to do with my project, in 1994 (published
1998), with Bjorn Poonen on determining the number of
intersection points formed by the diagonals of a regular n-gon.
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(Poonen, R. 1994)

Theorem
For n > 3, the number of interior intersection points formed by
the diagonals of a regular n-gon, I(n), is given by

I(n) = (2) + (=5n% 44517 — 70N + 24) /24 - 55(n) — (3n/2) - §4(n)

+ (—45n? +262n)/6 - 56(n) + 42n - 512(n) 4 60N - 51g(n)
+35n- d24(n) — 38n - d30(n) — 82n - 642(n) — 330N - deo(N)
—144n- (584(l7) —96n- 690([7) —144n- 5120(/’)) —96n- (5210(/7).

The form of /(n) was obtained by studying an equation involving
a dozen roots of unity. The specific coefficients were found by
fitting /(n) to actual intersection counts for various n < 420. Our
derivation was, thus, reduced to a finite computation.
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Initially we formed this table by computing floating point
approximations to the intersection points and, experimentally,
declaring points equal if they agreed to 12, and then 40 decimal
places.

The patterns in our table broke down around n =~ 150, when we
first ran our computation. It took me 3 days to track down the
bug to the value of

m = 3.14159265389793238462643383279502884197 . ..

Later, we redid the computation rigorously, by also checking
that the intersection points of multiplicity > 1 fell into our
classification of possible intersection points (Theorem 4 of our
paper). That boiled down to comparing integers and we could
do it exactly. Not only did it provide a rigorous count of the
intersection points, but it also served as an extra check that our
classification was complete.



Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:

For positive integer k, and any ¢ > 0,

T T
/0 g(1/2+it)|2kdt~/o Py (log 5-) dt,

where Py is the polynomial of degree k? given implicitly by
a complicated 2k-fold residue.



From the residue, we developed elaborate formulas for the
coefficients of Px(x) and found, for example, (coefficients are
rounded):

0.000005708527034652788398376841445252313 x°
0.00040502133088411440331215332025984 x®
0.011072455215246998350410400826667 x’
0.14840073080150272680851401518774 x®
1.0459251779054883439385323798059 x°
3.984385094823534724747964073429 x*
8.60731914578120675614834763629 x*
10.274330830703446134183009522 x2
6.59391302064975810465713392 x
0.9165155076378930590178543.

P3(x)
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A completely different method was then developed, using
another approach/formula and very high precision (thousands
of digits) to see our way through high order poles that
cancelled, to obtain the same coefficients to about 20-25 digits.
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