
The role of reproducibility in number theory,
from my perspective

Michael Rubinstein

University of Waterloo

ICERM, Dec 13, 2012



Computation in number theory can:
• contribute to rigorous mathematical proof.
• help verify conjectures experimentally.
• stimulate mathematical discovery, theorems, relationships,

conjectures, and uncover phenomena.
• motivate work on algorithms and complexity (exs:

factoring, primality testing, Ghaith Hiary’s algorithm for
computing the zeta function).

• involve automated theorem proving and proof verification.



What does it mean for a computation to be rigorous? Even
assuming that the algorithms/methods are correct in principle,
how does one certify, potentially, thousands of lines of code as
being correct when there are many places where things can go
wrong:
• mathematical coding errors (ex: signs, branches of log).
• programming errors (ex: wrong loop or array bounds,

memory issues, confusing types),
• loss of precision (accumulated round-off, cancellation),

wrong error analysis/inequalities.
• reliance on black boxes: computer chips (Intel division

bug), compilers and optimizers (constantly releasing new
versions with bug fixes), computer memory (can get
corrupted), closed source software (Mathematica), other
people’s packages, and using them in ways that were not
originally intended or foreseen.



At present we usually declare a program to be bug free once it
produces output that is consistent with our expectations. We
tend to give more trust to computational results that are
reproducible using separate code and hardware, or for which
there is more than method that gives the same output, or for
which the correctness of the result can be easily tested
(examples: factorization of an integer, explicit formula for zeros
of an L-function).



Excerpt from Tao’s paper:



Rigour and bugs in computation
Once upon a time I had a very frustrating bug that took me 3
days to find. It had to do with my project, in 1994 (published
1998), with Bjorn Poonen on determining the number of
intersection points formed by the diagonals of a regular n-gon.



(Poonen, R. 1994)

Theorem
For n ≥ 3, the number of interior intersection points formed by
the diagonals of a regular n-gon, I(n), is given by

I(n) =

(
n
4

)
+ (−5n3 + 45n2 − 70n + 24)/24 · δ2(n)− (3n/2) · δ4(n)

+ (−45n2 + 262n)/6 · δ6(n) + 42n · δ12(n) + 60n · δ18(n)

+ 35n · δ24(n)− 38n · δ30(n)− 82n · δ42(n)− 330n · δ60(n)

− 144n · δ84(n)− 96n · δ90(n)− 144n · δ120(n)− 96n · δ210(n).

The form of I(n) was obtained by studying an equation involving
a dozen roots of unity. The specific coefficients were found by
fitting I(n) to actual intersection counts for various n ≤ 420. Our
derivation was, thus, reduced to a finite computation.
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6 2 2 216 392564 4848 119 49 397580

12 19 5 1 25 222 426836 5166 126 54 432182

18 84 12 3 3 102 228 463303 5441 127 54 468925

24 256 36 11 1 304 234 501762 5718 129 57 507666

30 460 75 14 6 4 1 560 240 541612 6121 165 61 5 547964

36 1179 109 11 6 1305 246 584782 6340 140 60 591322

42 1786 194 27 13 2020 252 629399 6693 137 70 636299

48 3168 220 25 7 3420 258 676580 6972 147 63 683762

54 4722 288 24 12 5046 264 725976 7276 151 61 733464

60 6251 422 63 12 5 6753 270 777420 7643 150 66 4 1 785284

66 9172 460 35 15 9682 276 831575 7969 155 66 839765

72 12428 504 35 13 12980 282 887986 8326 161 69 896542

78 15920 642 42 18 16622 288 947132 8640 161 67 956000

84 20007 805 43 28 20883 294 1008358 9056 174 76 1017664

90 25230 863 45 21 4 1 26164 300 1072171 9462 203 72 5 1081913

96 31240 948 53 19 32260 306 1139436 9780 171 75 1149462

102 37786 1096 56 24 38962 312 1208944 10164 179 73 1219360

108 45447 1201 53 24 46725 318 1281100 10582 182 78 1291942

114 53768 1368 63 27 55226 324 1356315 10957 179 78 1367529

120 62652 1601 95 31 5 64384 330 1434110 11375 189 81 4 1 1445760

126 73676 1658 72 34 75440 336 1514816 11856 193 89 1526954

132 85319 1825 71 30 87245 342 1598970 12216 192 84 1611462

138 97990 2002 77 33 100102 348 1685843 12661 197 84 1698785

144 112100 2136 77 31 114344 354 1775788 13108 203 87 1789186

150 127070 2345 84 36 4 1 129540 360 1868312 13669 231 91 5 1882308

156 143635 2549 85 36 146305 366 1965272 14010 210 90 1979582

162 161520 2736 87 39 164382 372 2064919 14465 211 90 2079685

168 180504 3008 95 47 183654 378 2167754 14930 219 97 2183000

174 201448 3178 98 42 204766 384 2274136 15396 221 91 2289844

180 223251 3470 129 42 5 226897 390 2383690 15885 224 96 4 1 2399900

186 247562 3630 105 45 251342 396 2496999 16369 221 96 2513685

192 273144 3844 109 43 277140 402 2613536 16896 231 99 2630762

198 300294 4092 108 48 304542 408 2733888 17380 235 97 2751600

204 329171 4357 113 48 333689 414 2857752 17898 234 102 2875986

210 359556 4661 125 55 4 1 364402 420 2984383 18598 273 112 5 3003371

Table: The number of intersection points for one piece of the pie (i.e.
2π/n radians), n = 6,12, . . . ,420.



Initially we formed this table by computing floating point
approximations to the intersection points and, experimentally,
declaring points equal if they agreed to 12, and then 40 decimal
places.
The patterns in our table broke down around n ≈ 150, when we
first ran our computation. It took me 3 days to track down the
bug to the value of

π = 3.14159265389793238462643383279502884197 . . .

Later, we redid the computation rigorously, by also checking
that the intersection points of multiplicity > 1 fell into our
classification of possible intersection points (Theorem 4 of our
paper). That boiled down to comparing integers and we could
do it exactly. Not only did it provide a rigorous count of the
intersection points, but it also served as an extra check that our
classification was complete.



Another anecdote
Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:

For positive integer k , and any ε > 0,∫ T

0
|ζ(1/2 + it)|2kdt ∼

∫ T

0
Pk
(
log t

2π

)
dt ,

where Pk is the polynomial of degree k2 given implicitly by
a complicated 2k -fold residue.



From the residue, we developed elaborate formulas for the
coefficients of Pk (x) and found, for example, (coefficients are
rounded):

P3(x) = 0.000005708527034652788398376841445252313 x9

+ 0.00040502133088411440331215332025984 x8

+ 0.011072455215246998350410400826667 x7

+ 0.14840073080150272680851401518774 x6

+ 1.0459251779054883439385323798059 x5

+ 3.984385094823534724747964073429 x4

+ 8.60731914578120675614834763629 x3

+ 10.274330830703446134183009522 x2

+ 6.59391302064975810465713392 x
+ 0.9165155076378930590178543.

A completely different method was then developed, using
another approach/formula and very high precision (thousands
of digits) to see our way through high order poles that
cancelled, to obtain the same coefficients to about 20-25 digits.
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R T

0 |ζ(1/2+it)|6dtR T
0 P3(log(t)/(2π))dt

− 1, for 0 < T < 8× 107.

(R.-Yamagishi) Agreement is to about 4-5 decimal places out of
15.
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