

Publishing executable papers

Matthias Troyer and Jan Gukelberger (ETH Zurich) Michael H. Freedman (Microsoft)

with help from the VisTrails team, especially David Koop, Emanuele Santos, and Juliana Freire

PHYSICAL REVIEW B 85, 045414 (2012)

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹ ¹*Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA* ²*Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland*

Numerical experiments + theorem and proof

- Can we build quantum computers based on non-unitary conformal field theories?
- First reproducible numerical experiment, then theorem and proof.

PHYSICAL REVIEW B 85, 045414 (2012)

S

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹

¹Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA ²Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

Theorem IV.5. Fixing the number $n \ge 5$ and particle type $\tau \otimes \tau$ of DFib anyons on S^2 and any vertex normalization f, there can be no continuous uniform Γ family of (g.s. weakly) local normalizer operators $O_{\Gamma}: \mathcal{H} \to \mathcal{H}$, so that $\mathcal{O}_{\Gamma}G_{n,\Gamma,f}^{\mathcal{G}}$ is, for all anyon positions Γ , the ground-state manifold of a uniformly Lieb-Robinson and uniformly gapped family of Hermitian Hamiltonians $H(\Gamma)$ defining a topological phase [see Eq. (1)].

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

arXiv.org >	cond-mat > arXiv:1106.3267	ch or Article-id	(Help Advanced search) All papers Go!	
Condensed	Matter > Strongly Correlated Electrons	Do	wnload:	
Galois C	Conjugates of Topological Phases		 PDF Other formats	
Troyer, Zher	reedman, Jan Gukelberger, Matthew B. Hastings, Simon Trebst, Matth nghan Wang 16 Jun 2011 (v1), last revised 5 Jul 2011 (this version, v3))	 hor lad 	Ancillary files (details): • honey_gap_L.vtl • ladder_E_around_theta0.vtl • ladder_dyl_gap_theta.vtl • ladder_dyl_spectrum_sweep.vtl • ladder_gap_L.vtl (2 additional files not shown)	
Galois conj quantum fi	jugation relates unitary conformal field theories (CFTs) and topological ield theories (TQFTs) to their non-unitary counterparts. Here we investigate	• lad • lad		
Galois conj state wave operators o topological unitary top Hamiltonia ground sta degenerate	jugates of quantum double models, such as the Levin-Wen model. While these jugated Hamiltonians are typically non-Hermitian, we find that their ground functions still obey a generalized version of the usual code property (local do not act on the ground state manifold) and hence enjoy a generalized I protection. The key question addressed in this paper is whether such non- pological phases can also appear as the ground states of Hermitian ans. Specific attempts at constructing Hermitian Hamiltonians with these ates lead to a loss of the code property and topological protection of the e ground states. Beyond this we rigorously prove that no local change of basis form the ground states of the Galois conjugated doubled Fibonacci theory into	cond < pro new Chai cond	nd-mat.mes-hall	
Robinson b	d states of a topological model whose Hermitian Hamiltonian satisfies Lieb- bounds. These include all gapped local or quasi-local Hamiltonians. A similar holds for many other non-unitary TQFTs. One consequence is that the		rences & Citations	
	wave function cannot be the ground state of a gapped fractional quantum Hall	1 bl	og link (what is this?)	
state.			kmark (what is this?) 🔆 🔀 🛃 🖬 📲 😭 🧟	
Comments: Subjects:	16 pages, 8 figures Strongly Correlated Electrons (cond-mat.str-el) ; Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Mathematical Physics (math-ph)	Science WISE		
Journal referen	nce: Phys. Rev. B 85, 045414 (2012)			
DOI: Cite as:	10.1103/PhysRevB.85.045414 arXiv:1106.3267 [cond-mat.str-el]			
cite as.				

arXiv:1106.3267 [cond-mat.str-el] (or arXiv:1106.3267v3 [cond-mat.str-el] for this version)

10.1103/PhysRevB.85.045414

arXiv:1106.3267 [cond-mat.

(or arXiv:1106.3267v3 [cond

DOI:

Cite as:

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

FIG. 6. (color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$).

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

But they soon gave up

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material
Download: PDF (974 kB	B) Export: BibTeX or E	ndNote (RIS)	
• README.TXT			
 figure6.vtl 			
• figure4b.vtl			
 dyl_ladder_gap.zip)		
• figure7a.vtl			
proj_ladder_gap.zi	p		
• figure7b.vtl			
proj_ladder_thetas	weep.zip		
 figure8a.vtl 			
 proj_honey_gap_v 	s_L.zip		
 figure8b.vtl 			
• figure4a.vtl			
 dyl_ladder_thetasw 	veep.zip		
proj_ladder_gap_v	s I zin		

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material
Download: PDF (974 kB) Export: BibTeX or E	ndNote (RIS)	
README.TXT			
• figure6.vtl			
• figure4b.vtl			
 dyl_ladder_gap.zip 			
 figure7a.vtl 			
proj_ladder_gap.zi	p		
 figure7b.vtl 			
 proj_ladder_thetas 	weep.zip		
 figure8a.vtl 			
 proj_honey_gap_v 	s_L.zip		
 figure8b.vtl 			
 figure4a.vtl 			
 dyl_ladder_thetasw 	/eep.zip		
proj_ladder_gap_v	s I zin		

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch
- Physical Review, an APS journal
 - Editors told us to give up
 - Production manager informed us that we can replace the supplementary material anytime after publication without leaving a trace
 - We then just sent the working workflows with the right URLs for data after publication

Our next approach

- Publishers desire reproducible papers but are not yet ready to handle executable papers in the publication process
- Our intermediate solution:
 - Publish raw data and workflows through our institutional library and obtain DOIs
 - Refer to that data from the paper and just include a backup copy with the papers