

Publishing executable papers

Matthias Troyer and Jan Gukelberger (ETH Zurich) Michael H. Freedman (Microsoft)

with help from the VisTrails team, especially David Koop, Emanuele Santos, and Juliana Freire

PHYSICAL REVIEW B 85, 045414 (2012)

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹ ¹*Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA* ²*Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland*

Numerical experiments + theorem and proof

- Can we build quantum computers based on non-unitary conformal field theories?
- First reproducible numerical experiment, then theorem and proof.

PHYSICAL REVIEW B 85, 045414 (2012)

S

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹

¹Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA ²Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

Theorem IV.5. Fixing the number $n \ge 5$ and particle type $\tau \otimes \tau$ of DFib anyons on S^2 and any vertex normalization f, there can be no continuous uniform Γ family of (g.s. weakly) local normalizer operators $O_{\Gamma}: \mathcal{H} \to \mathcal{H}$, so that $\mathcal{O}_{\Gamma}G_{n,\Gamma,f}^{\mathcal{G}}$ is, for all anyon positions Γ , the ground-state manifold of a uniformly Lieb-Robinson and uniformly gapped family of Hermitian Hamiltonians $H(\Gamma)$ defining a topological phase [see Eq. (1)].

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

arXiv.org > cond-mat > arXiv:1106.3267	Search or Article-id	(Help Advanced search) All papers Go!	
Condensed Matter > Strongly Correlated Electrons	Do	wnload:	
Galois Conjugates of Topological Ph	iases · PI • O	DF ther formats	
Michael H. Freedman, Jan Gukelberger, Matthew B. Hastir Troyer, Zhenghan Wang (Submitted on 16 Jun 2011 (v1), last revised 5 Jul 2011 (this version, v	Igs, Simon Trebst, Matthias (3)) Anc Iad Iad Iad Iad	ias Ancillary files (details): • honey_gap_L.vtl • ladder_E_around_theta0.vtl • ladder_dyl_gap_theta.vtl • ladder_dyl_spectrum_sweep.vtl • ladder_gap_L.vtl (2 additional files not shown)	
Galois conjugation relates unitary conformal field theories (CF quantum field theories (TQFTs) to their non-unitary counterpa	Ts) and topological • lad Ints. Here we investigate (2 a		
Galois conjugates of quantum double models, such as the Lev Galois conjugated Hamiltonians are typically non-Hermitian, w state wave functions still obey a generalized version of the use operators do not act on the ground state manifold) and hence topological protection. The key question addressed in this pap unitary topological phases can also appear as the ground state Hamiltonians. Specific attempts at constructing Hermitian Han ground states lead to a loss of the code property and topologi degenerate ground states. Beyond this we rigorously prove the can transform the ground states of the Galois conjugated dou	in-Wen model. While these ve find that their ground ual code property (local enjoy a generalized per is whether such non- es of Hermitian niltonians with these cal protection of the at no local change of basis bled Fibonacci theory into	rent browse context: -mat.str-el ev next > recent 1106 nge to browse by: -mat ond-mat.mes-hall	
the ground states of a topological model whose Hermitian Hamiltonian satisfies Lieb- Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds for many other non-unitary TQFTs. One consequence is that the "Gaffnian" wave function cannot be the ground state of a gapped fractional quantum Hall		erences & Citations ASA ADS	
		og link (what is this?)	
state.	Bool	kmark (what is this?) > 💥 🔀 🛐 📊 📲 🗐 💇	
Subjects: Strongly Correlated Electrons (cond-mat.str-el)	; Mesoscale and Nanoscale		
Physics (cond-mat.mes-hall); Mathematical Physics Journal reference: Phys. Rev. B 85, 045414 (2012) DOI: 10.1103/PhysRevB.85.045414	; (math-ph)		
Cite as: arXiv:1106.3267 [cond-mat.str-el]			

arXiv:1106.3267 [cond-mat.str-el] (or arXiv:1106.3267v3 [cond-mat.str-el] for this version)

10.1103/PhysRevB.85.045414

arXiv:1106.3267 [cond-mat.

(or arXiv:1106.3267v3 [cond

DOI:

Cite as:

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

FIG. 6. (color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$).

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

But they soon gave up

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material	
Download: PDF (974 kB) Export: BibTeX or EndNote (RIS)				
README.TXT				
• figure6.vtl				
 figure4b.vtl 				
 dyl_ladder_gap.zip)			
 figure7a.vtl 				
proj_ladder_gap.zi	ip			
 figure7b.vtl 				
 proj_ladder_thetas 	sweep.zip			
 figure8a.vtl 				
 proj_honey_gap_v 	/s_L.zip			
 figure8b.vtl 				
 figure4a.vtl 				
 dyl_ladder_thetasy 	weep.zip			
 proj ladder gap v 	/s L.zip			

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material
Download: PDF (974 kB	B) Export: BibTeX or E	ndNote (RIS)	
README.TXT			
• figure6.vtl			
• figure4b.vtl			
 dyl_ladder_gap.zip)		
 figure7a.vtl 			
 proj_ladder_gap.zi 	р		
 figure7b.vtl 			
 proj_ladder_thetas 	weep.zip		
 figure8a.vtl 			
 proj_honey_gap_v 	s_L.zip		
 figure8b.vtl 			
 figure4a.vtl 			
 dyl_ladder_thetasv 	veep.zip		
 proj ladder gap v 	s L.zip		

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch
- Physical Review, an APS journal
 - Editors told us to give up
 - Production manager informed us that we can replace the supplementary material anytime after publication without leaving a trace
 - We then just sent the working workflows with the right URLs for data after publication

Our next approach

- Publishers desire reproducible papers but are not yet ready to handle executable papers in the publication process
- Our intermediate solution:
 - Publish raw data and workflows through our institutional library and obtain DOIs
 - Refer to that data from the paper and just include a backup copy with the papers