

The Foundations of Digital Research

5 Stars of Software?

- Do we need a 5 stars for software?
 - Existence there is accurate metadata that defines the software
 - Availability you can access and run the software
 - Openness the software has an open permissible license
 - Linked the related data, dependencies and papers are indicated
 - Assured the software provides

ways of assuringoitsafeconneconnessitute

c.f. 5 Stars of Linked Data (Berners-Lee) 5 Stars of Online Journals (Shotton)

How to Enforce Reproducibility with your Existing Intel[®] Math Kernel Library Code

Noah Clemons Technical Consulting Engineer Intel[®] Developer Products Division

3 Types of Non-Reproducibility in Intel® Math Kernel Library

- Run to Run same processor
- Runs between different Intel processors
- Runs between different IA-compabible processors

Maximum Compatiblity	For consistent results	Function Call mkl_cbwr_set()	Environment Variable MKL_CBWR=
	on Intel [®] or Intel [®] -compatible CPUs supporting SSE2 instructions or later	MKL_CBWR_COMPATIBLE	COMPATIBLE
	on Intel [®] processors supporting SSE2 instructions or later	MKL_CBWR_SSE2	SSE2
	on Intel processors supporting SSE4.2 instructions or later	MKL_CBWR_SSE4_2	SSE4_2
Maximum	on Intel processors supporting Intel® AVX or later	MKL_CBWR_AVX	AVX
Performance	from run to run (but not processor-to-processor)	MKL_CBWR_AUTO	AUTO

Example – Find out the best performing option from a pool of processors

For the best option given a pool of computing resources in a grid setting, you may launch a simple program as follows The full list of

<pre>#include <mkl.h></mkl.h></pre>	options:	
<pre>int main(void) {</pre>	COMPATIBLE	3
int my chwr branch:	SSE2	4
/* Find the available MKL CBWR BRANCH */	SSE3	5
$m_{\rm V}$ chur branch = mkl chur get auto branch().	SSSE3	6
if (Imkl abur act (my abur branch)) (SSE4_1	7
II (:mki_cowi_set(my_cowi_branch)) {	SSE4 2	8
printi("Error in setting branch. Aborting\n");	AVX	9
return; }	AVX2	10
return my_cbwr_branch;		
}		

Examine all results and use mkl cbwr set (<minimum_result>)

For more information on Benchmarks and Optimization Notice go to http://www.intel.com/performance

Lepton : Literate Executable Papers

Lepton is a tool to do research as opposed to publishing reproducible research results. It deals with :

- everyday tasks such as programming and writing technical reports
- reviewing the methods and results by collaborators and in the long term
- re-using source code, input data, research results

Further references :

- Website http://www.math.univ-paris13.fr/~lithiao/ ResearchLepton/Lepton.html with program for download, manual, faq, examples
- 2 conference papers
 - Sébastien Li-Thiao-Té. Literate program execution for reproducible research and executable papers. *Procedia Computer Science*, 9(0):439 – 448, 2012. ICCS 2012.
 - Sébastien Li-Thiao-Té. Literate program execution for teaching computational science. *Procedia Computer Science*, 9(0):1723 – 1732, 2012. ICCS 2012.
- A poster + demonstration at ICERM

Lepton : Reproducible Research

Lepton provides :

- provenance information
 - generated documents contain all the information required to reproduce the results
- executable papers
 - a Lepton file is a program and can be executed on the local machine
- coherence and correctness guarantees
 - · Lepton executes commands and automatically embeds their output
 - no copy-and-paste
- literate programming features
 - everything in the same bundle,
 - related items placed in close proximity
 - meaningful chunks
- generated, up-to-date documentation
 - run benchmarks with scripts in any language
 - format the results into tables

Lepton : In practice

Image analysis

Writing source code Code chunk 1: «header» bp typedef #include <stdio.h> #include <stdlib.h> <<bp_typedef>> Code chunk 2: «bp_typedef» struct bp node qsl_vector * belief; qsl vector * evidence; qsl_vector * m_left; gsl_vector * m_right; gsl vector * m up; gsl_vector * m_down; };

Teaching statistics

Code chunk 3: «R»

```
x = round(runif(5,0,10),1)
cat(x,"\n")
```

Interpret with R

1.7 6.2 4.5 7.3 0.8

Define the sample mean :

$$\bar{x} = \frac{\sum x_i}{n}$$

Example :

$$\bar{x} = \frac{(1.7 + 6.2 + 4.5 + 7.3 + 0.8)}{5}$$

Publishing executable papers

Matthias Troyer and Jan Gukelberger (ETH Zurich) Michael H. Freedman (Microsoft)

with help from the VisTrails team, especially David Koop, Emanuele Santos, and Juliana Freire

PHYSICAL REVIEW B 85, 045414 (2012)

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹ ¹*Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA* ²*Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland*

Numerical experiments + theorem and proof

- Can we build quantum computers based on non-unitary conformal field theories?
- First reproducible numerical experiment, then theorem and proof.

PHYSICAL REVIEW B 85, 045414 (2012)

S

Galois conjugates of topological phases

M. H. Freedman,¹ J. Gukelberger,² M. B. Hastings,¹ S. Trebst,¹ M. Troyer,² and Z. Wang¹

¹Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA ²Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

Theorem IV.5. Fixing the number $n \ge 5$ and particle type $\tau \otimes \tau$ of DFib anyons on S^2 and any vertex normalization f, there can be no continuous uniform Γ family of (g.s. weakly) local normalizer operators $O_{\Gamma}: \mathcal{H} \to \mathcal{H}$, so that $\mathcal{O}_{\Gamma}G_{n,\Gamma,f}^{\mathcal{G}}$ is, for all anyon positions Γ , the ground-state manifold of a uniformly Lieb-Robinson and uniformly gapped family of Hermitian Hamiltonians $H(\Gamma)$ defining a topological phase [see Eq. (1)].

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

arXiv.org > cond-mat > arXiv:1106.3267	Search or Article-id	(Help Advanced search) All papers Go!
Condensed Matter > Strongly Correlated Electrons	Do	wnload:
Galois Conjugates of Topological Ph	iases · PI • O	DF ther formats
Michael H. Freedman, Jan Gukelberger, Matthew B. Hastir Troyer, Zhenghan Wang (Submitted on 16 Jun 2011 (v1), last revised 5 Jul 2011 (this version, v	Igs, Simon Trebst, Matthias (3)) Anc Iad Iad Iad Iad	illary files (details): ney_gap_L.vtl der_E_around_theta0.vtl der_dyl_gap_theta.vtl der_dyl_spectrum_sweep.vtl
Galois conjugation relates unitary conformal field theories (CF quantum field theories (TQFTs) to their non-unitary counterpa	Ts) and topological • lad Ints. Here we investigate (2 a	der_gap_L.vtl additional files not shown)
Galois conjugates of quantum double models, such as the Lev Galois conjugated Hamiltonians are typically non-Hermitian, w state wave functions still obey a generalized version of the use operators do not act on the ground state manifold) and hence topological protection. The key question addressed in this pap unitary topological phases can also appear as the ground state Hamiltonians. Specific attempts at constructing Hermitian Han ground states lead to a loss of the code property and topologi degenerate ground states. Beyond this we rigorously prove the can transform the ground states of the Galois conjugated dou	in-Wen model. While these ve find that their ground ual code property (local enjoy a generalized per is whether such non- es of Hermitian niltonians with these cal protection of the at no local change of basis bled Fibonacci theory into	rent browse context: -mat.str-el ev next > recent 1106 nge to browse by: -mat ond-mat.mes-hall
the ground states of a topological model whose Hermitian Har Robinson bounds. These include all gapped local or quasi-loca statement holds for many other non-unitary TOFTs. One cons	niltonian satisfies Lieb- al Hamiltonians. A similar	erences & Citations ASA ADS
"Gaffnian" wave function cannot be the ground state of a gapp	bed fractional quantum Hall 1 bl	og link (what is this?)
state.	Bool	kmark (what is this?) > 💥 🔀 🛐 📊 📲 🗐 💇
Subjects: Strongly Correlated Electrons (cond-mat.str-el)	; Mesoscale and Nanoscale	
Physics (cond-mat.mes-hall); Mathematical Physics Journal reference: Phys. Rev. B 85, 045414 (2012) DOI: 10.1103/PhysRevB.85.045414	; (math-ph)	
Cite as: arXiv:1106.3267 [cond-mat.str-el]		

arXiv:1106.3267 [cond-mat.str-el] (or arXiv:1106.3267v3 [cond-mat.str-el] for this version)

10.1103/PhysRevB.85.045414

arXiv:1106.3267 [cond-mat.

(or arXiv:1106.3267v3 [cond

DOI:

Cite as:

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

FIG. 6. (color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$).

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

An executable paper: see laptop demo tonight

- The arXiv version has all data and workflow
- Clicking on the figure downloads the VisTrails workflow that reproduces the figure.

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

Publishers were excited!

- This is how it should be!
- Start a trial project to see how it can be made to work!

But they soon gave up

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material
Download: PDF (974 kE	3) Export: BibTeX or Er	ndNote (RIS)	
README.TXT			
 figure6.vtl 			
 figure4b.vtl 			
 dyl_ladder_gap.zip)		
 figure7a.vtl 			
proj_ladder_gap.zi	ip		
 figure7b.vtl 			
 proj_ladder_thetas 	sweep.zip		
 figure8a.vtl 			
 proj_honey_gap_v 	/s_L.zip		
 figure8b.vtl 			
 figure4a.vtl 			
 dyl_ladder_thetasy 	weep.zip		
 proj ladder gap v 	/s L.zip		

- No stable URL or DOI for supplementary material
- No link from the figure, but only a reference
 - reference goes to supplementary material page
 - find the right workflow, then download the workflow

FIG. 6. (Color online) Ground-state degeneracy splitting of the non-Hermitian doubled Yang-Lee model when perturbed by a string tension ($\theta \neq 0$). This figure can be reproduced using the VisTrails³³ workflow Fig. 6 included in the Supplementary Material.³⁷

³⁷See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.85.045414 for full provenance information and workflows to recreate the figures.

Phys. Rev. B 85, 045414 (2012) [15 pages]

Galois conjugates of topological phases

Abstract	References	Citing Articles (2)	Supplemental Material
Download: PDF (974 kB	B) Export: BibTeX or E	ndNote (RIS)	
README.TXT			
• figure6.vtl			
• figure4b.vtl			
 dyl_ladder_gap.zip)		
 figure7a.vtl 			
 proj_ladder_gap.zi 	р		
 figure7b.vtl 			
 proj_ladder_thetas 	weep.zip		
 figure8a.vtl 			
 proj_honey_gap_v 	s_L.zip		
 figure8b.vtl 			
 figure4a.vtl 			
 dyl_ladder_thetasv 	veep.zip		
 proj ladder gap v 	s L.zip		

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch

- The workflow needs to fetch the raw data, but
 - No stable URL or DOI for supplementary material
 - Even unstable URL only know after publication
- How did we solve it?
- Journal of Statistical Mechanics (JSTAT), an IOP journal
 - Production editor started publication process before the lunch break and sent us the URL
 - We had an hour to prepare final workflows and sent them back
 - He finished publication process after returning from lunch
- Physical Review, an APS journal
 - Editors told us to give up
 - Production manager informed us that we can replace the supplementary material anytime after publication without leaving a trace
 - We then just sent the working workflows with the right URLs for data after publication

Our next approach

- Publishers desire reproducible papers but are not yet ready to handle executable papers in the publication process
- Our intermediate solution:
 - Publish raw data and workflows through our institutional library and obtain DOIs
 - Refer to that data from the paper and just include a backup copy with the papers

knitr: Starting From Reproducible Homework

Yihui Xie

Department of Statistics, Iowa State University

ICERM, 12/12/12

・ロト・日本・モト・モート ヨー うへで

knitr = knit + RSweave = S + weave

my homework & solutions in past three years at Iowa State¹

I love ${\it {\rm PT}}_{E\!X}$ more than anyone else, but do not tie users to ${\it {\rm PT}}_{E\!X}$

I love $\[Mathbb{E}X\]$ more than anyone else, but do not tie users to $\[Mathbb{E}X\]$ (but do keep them away from Word)

Markdown ## Markdown ****Markdown**** _*Markdown*_

- markdown
- markdown

The value of π is `r pi`, and a Monte Carlo estimate is:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
```{r}
est_pi = function(n) {
 x = runif(n, -1, 1)
 y = runif(n, -1, 1)
 4 * mean(x^2 + y^2 <= 1)
}
est_pi(10000)
````</pre>
```

The value of π is 3.1416, and a Monte Carlo estimate is:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
est_pi = function(n) {
    x = runif(n, -1, 1)
    y = runif(n, -1, 1)
    4 * mean(x^2 + y^2 <= 1)
}
est_pi(5000)
## [1] 3.128</pre>
```

reproducible homework (happier students, happier professors)

evidence that we underestimated the power and imagination of students: http://www.rpubs.com

written in R, but not for R only (bash scripts, C++, ...)

If reproducible homework comes, can reproducible research be far behind?

IN CODE WE TRUST

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで