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Exercise 9.1 (leapfrog for heat equation)

Consider the following method for solving the heat equation ut = uxx:

Un+2
i = Un

i +
2k

h2
(Un+1

i−1 − 2Un+1
i + Un+1

i+1 ).

(a) Determine the order of accuracy of this method (in both space and time).

(b) Suppose we take k = αh2 for some fixed α > 0 and refine the grid. For what values of α
(if any) will this method be Lax-Richtmyer stable and hence convergent?

Hint: Consider the MOL interpretation and the stability region of the time-discretization
being used.

(c) Is this a useful method?

Exercise 9.2 (codes for heat equation)

(a) The m-file heat_CN.m solves the heat equation ut = κuxx using the Crank-Nicolson
method. Run this code, and by changing the number of grid points, confirm that it is
second-order accurate. (Observe how the error at some fixed time such as T = 1 behaves
as k and h go to zero with a fixed relation between k and h, such as k = 4h.)

You might want to use the function error_table.m to print out this table and estimate
the order of accuracy, and error_loglog.m to produce a log-log plot of the error vs. h.
See bvp_2.m for an example of how these are used.

(b) Modify heat_CN.m to produce a new m-file heat_trbdf2.m that implements the TR-
BDF2 method on the same problem. Test it to confirm that it is also second order
accurate. Explain how you determined the proper boundary conditions in each stage of
this Runge-Kutta method.

(c) Modify heat_CN.m to produce a new m-file heat_FE.m that implements the forward Euler
explicit method on the same problem. Test it to confirm that it is O(h2) accurate as
h → 0 provided when k = 24h2 is used, which is within the stability limit for κ = 0.02.
Note how many more time steps are required than with Crank-Nicolson or TR-BDF2,
especially on finer grids.

(d) Test heat_FE.m with k = 26h2, for which it should be unstable. Note that the instability
does not become apparent until about time 1.6 for the parameter values κ = 0.02, m =
39, β = 150. Explain why the instability takes several hundred time steps to appear,
and why it appears as a sawtooth oscillation.
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Hint: What wave numbers ξ are growing exponentially for these parameter values?
What is the initial magnitude of the most unstable eigenmode in the given initial data?
The expression (16.52) for the Fourier transform of a Gaussian may be useful.

Exercise 9.3 (heat equation with discontinuous data)

(a) Modify heat_CN.m to solve the heat equation for −1 ≤ x ≤ 1 with step function initial
data

u(x, 0) =
{

1 if x < 0
0 if x ≥ 0.

(Ex9.3a)

With appropriate Dirichlet boundary conditions, the exact solution is

u(x, t) =
1
2

erfc
(
x/
√

4κt
)

, (Ex9.3b)

where erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞

x
e−z2

dz.

(i) Test this routine m = 39 and k = 4h. Note that there is an initial rapid transient
decay of the high wave numbers that is not captured well with this size time step.

(ii) How small do you need to take the time step to get reasonable results? For a
suitably small time step, explain why you get much better results by using m = 38
than m = 39. What is the observed order of accuracy as k → 0 when k = αh with
α suitably small and m even?

(b) Modify heat_trbdf2.m (see Exercise 9.2) to solve the heat equation for −1 ≤ x ≤ 1
with step function initial data as above. Test this routine using k = 4h and estimate the
order of accuracy as k → 0 with m even. Why does the TR-BDF2 method work better
than Crank-Nicolson?

Exercise 9.4 (Jacobi iteration as time stepping)

Consider the Jacobi iteration (4.4) for the linear system Au = f arising from a centered dif-
ference approximation of the boundary value problem uxx(x) = f(x). Show that this iteration
can be interpreted as forward Euler time stepping applied to the MOL equations arising from
a centered difference discretization of the heat equation ut(x, t) = uxx(x, t) − f(x) with time
step k = 1

2h2.
Note that if the boundary conditions are held constant then the solution to this heat equation

decays to the steady state solution that solves the boundary value problem. Marching to steady
state with an explicit method is one way to solve the boundary value problem, though as we
saw in Chapter 4 this is a very inefficient way to compute the steady state.

Exercise 9.5 (Diffusion and decay)
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Consider the PDE
ut = κuxx − γu, (Ex9.5a)

which models a diffusion with decay provided κ > 0 and γ > 0. Consider methods of the form
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j ] (Ex9.5b)

where θ is a parameter. In particular, if θ = 1/2 then the decay term is modeled with the same
centered-in-time approach as the diffusion term and the method can be obtained by applying
the Trapezoidal method to the MOL formulation of the PDE. If θ = 0 then the decay term
is handled explicitly. For more general reaction-diffusion equations it may be advantageous
to handle the reaction terms explicitly since these terms are generally nonlinear, so making
them implicit would require solving nonlinear systems in each time step (whereas handling the
diffusion term implicitly only gives a linear system to solve in each time step).

(a) By computing the local truncation error, show that this method is O(kp + h2) accurate,
where p = 2 if θ = 1/2 and p = 1 otherwise.

(b) Using von Neumann analysis, show that this method is unconditionally stable if θ ≥ 1/2.

(c) Show that if θ = 0 then the method is stable provided k ≤ 2/γ, independent of h.
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