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Exercise 7.1 (Convergence of midpoint method)

Consider the midpoint method Un+1 = Un−1+2kf(Un) applied to the test problem u′ = λu.
The method is zero-stable and second order accurate, and hence convergent. If λ < 0 then the
true solution is exponentially decaying.

On the other hand, for λ < 0 and k > 0 the point z = kλ is never in the region of
absolute stability of this method (see Example 7.7), and hence the numerical solution should
be growing exponentially for any nonzero time step. (And yet it converges to a function that
is exponentially decaying.)

Suppose we take U0 = η, use Forward Euler to generate U 1, and then use the midpoint
method for n = 2, 3, . . .. Work out the exact solution Un by solving the linear difference
equation and explain how the apparent paradox described above is resolved.

Exercise 7.2 (Example 7.10)

Perform numerical experiments to confirm the claim made in Example 7.10.

Exercise 7.3 (stability on a kinetics problem)

Consider the kinetics problem (7.8) with K1 = 3 and K2 = 1 and initial data u1(0) =
3, u2(0) = 4, and u3(0) = 2 as shown in Figure 7.4. Write a program to solve this problem
using the forward Euler method.

(a) Choose a time step based on the stability analysis indicated in Example 7.12 and deter-
mine whether the numerical solution remains bounded in this case.

(b) How large can you choose k before you observe instability in your program?

(c) Repeat parts (a) and (b) for K1 = 300 and K2 = 1.

Exercise 7.4 (damped linear pendulum)

The m-file ex7p11.m implements several methods on the damped linear pendulum system
(7.11) of Example 7.11.

(a) Modify the m-file to also implement the 2-step explicit Adams-Bashforth method AB2.

(b) Test the midpoint, trapezoid, and AB2 methods (all of which are second order accurate)
for each of the following case (and perhaps others of your choice) and comment on the
behavior of each method.

(i) a = 100, b = 0 (undamped),

(ii) a = 100, b = 3 (damped),
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(iii) a = 100, b = 10 (more damped).

Exercise 7.5 (fixed point iteration of implicit methods)

Let g(x) = 0 represent a system of s nonlinear equations in s unknowns, so x ∈ lRs and
g : lRs → lRs. A vector x̄ ∈ lRs is a fixed point of g(x) if

x̄ = g(x̄). (E7.5a)

One way to attempt to compute x̄ is with fixed point iteration: from some starting guess x0,
compute

xj+1 = g(xj) (E7.5b)

for j = 0, 1, . . ..

(a) Show that if there exists a norm ‖ ·‖ such that g(x) is Lipschitz continuous with constant
L < 1 in a neighborhood of x̄, then fixed point iteration converges from any starting
value in this neighborhood. Hint: Subtract equation (E7.5a) from (E7.5b).

(b) Suppose g(x) is differentiable and let g′(x) be the s × s Jacobian matrix. Show that if
the condition of part (a) holds then ρ(g′(x̄)) < 1, where ρ(A) denotes the spectral radius
of a matrix.

(c) Consider a predictor-corrector method (see Section 5.9.4) consisting of forward Euler as
the predictor and backward Euler as the corrector, and suppose we make N correction
iterations, i.e., we set

Û0 = Un + kf(Un)
for j = 0, 1, . . . , N − 1

Û j+1 = Un + kf(Û j)
end

Un+1 = ÛN .

Note that this can be interpreted as a fixed point iteration for solving the nonlinear
equation

Un+1 = Un + kf(Un+1)

of the backward Euler method. Since the backward Euler method is implicit and has a
stability region that includes the entire left half plane, as shown in Figure 7.1(b), one
might hope that this predictor-corrector method also has a large stability region.

Plot the stability region SN of this method for N = 2, 5, 10, 20 (perhaps using plotS.m

from the webpage) and observe that in fact the stability region does not grow much in
size.

(d) Using the result of part (b), show that the fixed point iteration being used in the predictor-
corrector method of part (c) can only be expected to converge if |kλ| < 1 for all eigen-
values λ of the Jacobian matrix f ′(u).

(e) Based on the result of part (d) and the shape of the stability region of Backward Euler,
what do you expect the stability region SN of part (c) to converge to as N → ∞?
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