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Exercise 2.1 (inverse matrix and Green’s functions)

(a) Write out the 5 × 5 matrix A from (2.43) for the boundary value problem u′′(x) = f(x)
with u(0) = u(1) = 0 for h = 0.25.

(b) Write out the 5 × 5 inverse matrix A−1 explicitly for this problem.

(c) If f(x) = x, determine the discrete approximation to the solution of the boundary value
problem on this grid and sketch this solution and the five Green’s functions whose sum
gives this solution.

Exercise 2.2 (Green’s function with Neumann boundary conditions)

(a) Determine the Green’s functions for the two-point boundary value problem u′′(x) = f(x)
on 0 < x < 1 with a Neumann boundary condition at x = 0 and a Dirichlet condition at
x = 1, i.e, find the function G(x, x̄) solving

u′′(x) = δ(x − x̄), u′(0) = 0, u(1) = 0

and the functions G0(x) solving

u′′(x) = 0, u′(0) = 1, u(1) = 0

and G1(x) solving
u′′(x) = 0, u′(0) = 0, u(1) = 1.

(b) Using this as guidance, find the general formulas for the elements of the inverse of the
matrix in equation (2.54). Write out the 5×5 matrices A and A−1 for the case h = 0.25.

Exercise 2.3 (solvability condition for Neumann problem)

Determine the null space of the matrix AT , where A is given in equation (2.58), and verify
that the condition (2.62) must hold for the linear system to have solutions.

Exercise 2.4 (boundary conditions in bvp codes)

(a) Modify the m-file bvp2.m so that it implements a Dirichlet boundary condition at x = a
and a Neumann condition at x = b and test the modified program.

(b) Make the same modification to the m-file bvp4.m, which implements a fourth order
accurate method. Again test the modified program.
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Exercise 2.5 (accuracy on nonuniform grids)

In Example 1.4 a 3-point approximation to u′′(xi) is determined based on u(xi−1), u(xi), and
u(xi+1) (by translating from x1, x2, x3 to general xi−1, xi, and xi+1). It is also determined that
the truncation error of this approximation is 1

3
(hi−1−hi)u

′′′(xi)+O(h2), where hi−1 = xi−xi−1

and hi = xi+1 − xi, so the approximation is only first order accurate in h if hi−1 and hi are
O(h) but hi−1 6= hi.

The program bvp2.m is based on using this approximation at each grid point, as described
in Example 2.3. Hence on a nonuniform grid the local truncation error is O(h) at each point,
where h is some measure of the grid spacing (e.g., the average spacing on the grid). If we
assume the method is stable, then we expect the global error to be O(h) as well as we refine
the grid.

(a) However, if you run bvp2.m you should observe second-order accuracy, at least provided
you take a smoothly varying grid (e.g., set gridchoice = ’rtlayer’ in bvp2.m). Verify
this.

(b) Suppose that the grid is defined by xi = X(zi) where zi = ih for i = 0, 1, . . . , m + 1
with h = 1/(m + 1) is a uniform grid and X(z) is some smooth mapping of the interval
[0, 1] to the interval [a, b]. Show that if X(z) is smooth enough, then the local truncation
error is in fact O(h2). Hint: xi − xi−1 ≈ hX ′(xi).

(c) What average order of accuracy is observed on a random grid? To test this, set gridchoice
= ’random’ in bvp2.m and increase the number of tests done, e.g., by setting mvals =

round(logspace(1,3,50)); to do 50 tests for values of m between 10 and 1000.

Exercise 2.6 (ill-posed boundary value problem)

Consider the following linear boundary value problem with Dirichlet boundary conditions:

u′′(x) + u(x) = 0 for a < x < b

u(a) = α, u(b) = β.

Note that this equation arises from a linearized pendulum, for example.

(a) Modify the m-file bvp2.m to solve this problem. Test your modified routine on the
problem with

a = 0, b = 1, α = 2, β = 3.

Determine the exact solution for comparison.

(b) Let a = 0 and b = π. For what values of α and β does this boundary value problem
have solutions? Sketch a family of solutions in a case where there are infinitely many
solutions.

(c) Solve the problem with

a = 0, b = π, α = 1, β = −1.

using your modified bvp2.m. Which solution to the boundary value problem does this
appear to converge to as h → 0? Change the boundary value at b = π to β = 1. Now
how does the numerical solution behave as h → 0?
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(d) You might expect the linear system in part (c) to be singular since the boundary value
problem is not well posed. It is not, because of discretization error. Compute the
eigenvalues of the matrix A for this problem and show that an eigenvalue approaches
0 as h → 0. Also show that ‖A−1‖2 blows up as h → 0 so that the discretization is
unstable.

Exercise 2.7 (nonlinear pendulum)

(a) Write a program to solve the boundary value problem for the nonlinear pendulum as
discussed in the text. See if you can find yet another solution for the boundary conditions
illustrated in Figures 2.4 and 2.5.

(b) Find a numerical solution to this BVP with the same general behavior as seen in Figure
2.5 for the case of a longer time interval, say T = 20, again with α = β = 0.7. Try larger
values of T . What does maxi θi approach as T is increased? Note that for large T this
solution exhibits “boundary layers”.
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