Chapter 11 Exercises

From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/~rjl/fdmbook

Exercise 11.1 (two-dimensional Lax-Wendroff)

(a) Derive the two-dimensional Lax-Wendroff method from (11.6) by using standard centered approximations to u_x , u_y , u_{xx} and u_{yy} and the approximation

$$u_{xy}(x_i, y_j) \approx \frac{1}{4h^2} \left[(U_{i+1,j+1} - U_{i-1,j+1}) - (U_{i+1,j-1} - U_{i-1,j-1}) \right].$$
 (E11.1a)

(b) Compute the leading term of the truncation error to show that this method is second order accurate.

Exercise 11.2 (Strang splitting)

(a) Show that the Strang splitting is second order accurate on the problem (11.18) by comparing

$$\exp\left(\frac{1}{2}Ak\right)\exp(Bk)\exp\left(\frac{1}{2}Ak\right)$$
 (E11.2a)

with (11.22).

(b) Show that second order accuracy on (11.18) can also be achieved by alternating the splitting (11.17) in even numbered time steps with

$$U^* = \mathcal{N}_B(U^n, k),$$

$$U^{n+1} = \mathcal{N}_A(U^*, k)$$
(E11.2b)

in odd numbered times steps.

Exercise 11.3 (accuracy of IMEX method)

Compute the truncation error of the method (11.26) and confirm that it is second order accurate.