rpn2_geo.f.html | ![]() |
Source file: rpn2_geo.f | |
Directory: /home/rjl/git/rjleveque/clawpack-4.x/geoclaw/2d/lib | |
Converted: Sun May 15 2011 at 19:15:41 using clawcode2html | |
This documentation file will not reflect any later changes in the source file. |
c====================================================================== subroutine rpn2(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr, & fwave,s,amdq,apdq) c====================================================================== c Solves normal Riemann problems for the 2D SHALLOW WATER equations c with topography: c # h_t + (hu)_x + (hv)_y = 0 # c # (hu)_t + (hu^2 + 0.5gh^2)_x + (huv)_y = -ghb_x # c # (hv)_t + (huv)_x + (hv^2 + 0.5gh^2)_y = -ghb_y # c On input, ql contains the state vector at the left edge of each cell c qr contains the state vector at the right edge of each cell c c This data is along a slice in the x-direction if ixy=1 c or the y-direction if ixy=2. c Note that the i'th Riemann problem has left state qr(i-1,:) c and right state ql(i,:) c From the basic clawpack routines, this routine is called with c ql = qr c c # This Riemann solver performs and approximate augmented decomposition c # of a homogeneous overdertmined system c # The details are described in my PhD thesis: c #"Finite Volume Methods and Adaptive Refinement for Tsunami Propagation c # and Inundation." University of Washington, July 2006. c # David L George c====================================================================== c last modified 07/28/06 c====================================================================== use geoclaw_module implicit double precision (a-h,o-z) integer i,ixy,mx,m,mw,mbc,meqn,mwaves,maxm,mu,nv integer k,maxiter,mcapa double precision fwave(1-mbc:maxm+mbc, meqn, mwaves) double precision s(1-mbc:maxm+mbc, mwaves) double precision ql(1-mbc:maxm+mbc, meqn) double precision qr(1-mbc:maxm+mbc, meqn) double precision apdq(1-mbc:maxm+mbc, meqn) double precision amdq(1-mbc:maxm+mbc, meqn) double precision auxl(1-mbc:maxm+mbc, *) double precision auxr(1-mbc:maxm+mbc, *) double precision r(4,4) double precision lambda(4) double precision beta(4) double precision del(4) double precision delp(4) double precision A(3,3) double precision abs_zero,abs_tol,g double precision hL,hR,uL,uR,huR,huL,hvR,hvL,vR,vL double precision dfdh,f1L,f2L,f1R,f2R,bR,bL double precision delq1,delq2,delf1,delf2,delphi,delnorm double precision hm,hum,um,u1m,u2m,s1m,s2m double precision uhat,chat,roe1,roe2,sR,sL double precision tw,dxdc double precision hMax,hMin,se1,se2,heinf,ubar,hbar double precision r41Lbound,r41Ubound,barlam12,tildelam12 double precision rare1st,rare2st,alpha1,alpha2 double precision det1,det2,det3,determinant double precision Sint,dhdb double precision rescheck1,rescheck2 logical solidwallL,solidwallR,rare1,rare2 logical sonic,rarecorrector logical debug,singular common /cmcapa/ mcapa common /comxyt/ dtcom,dxcom,dycom,tcom,icom,jcom g=grav abs_tol=drytolerance abs_zero=1.d-12 c====================================================================== c loop through Riemann problems at each grid cell c====================================================================== c #reinitialize do i=1-mbc,mx+mbc do mw=1,mwaves s(i,mw)=0.d0 do m=1,meqn fwave(i,m,mw)=0.d0 enddo enddo enddo c #set normal direction if (ixy.eq.1) then mu=2 nv=3 else mu=3 nv=2 endif do 31 i = 2-mbc, mx+mbc c #reinitialize do mw=1,4 lambda(mw)=0.d0 beta(mw)=0.d0 do m=1,4 r(m,mw)=0.d0 enddo enddo c #notify if a bad riemann problem from the start if (qr(i-1,1).lt.0.d0 .or. ql(i,1).lt.0.d0) then if (qr(i-1,1).lt.-abs_tol.or. ql(i,1).lt.-abs_tol) then write(*,*) 'RPN2: Bad beginning value: i,hl,hr=' & ,i,qr(i-1,1),ql(i,1) endif if (qr(i-1,1).lt.0.d0) then do m=1,meqn qr(i-1,m)=0.d0 c # commented out by rjl/mjb on 4/26/09 c # since the ql state may not be dry. c # does not matter except in qad! c ql(i-1,m)=0.d0 enddo endif if (ql(i,1).lt.0.d0) then do m=1,meqn c # commented out by rjl/mjb on 4/26/09 c qr(i,m)=0.d0 ql(i,m)=0.d0 enddo endif endif hL=qr(i-1,1) hR=ql(i,1) huL=qr(i-1,mu) huR=ql(i,mu) hvL=qr(i-1,nv) hvR=ql(i,nv) bL=auxr(i-1,1) bR=auxl(i,1) if ((hL.le.abs_tol).and.(hR.le.abs_tol)) then go to 30 endif if (hL.le.abs_tol) then bL=hL+bL hL=0.d0 huL=0.d0 hvL=0.d0 uL=0.d0 vL=0.d0 else uL=huL/hL vL=hvL/hL endif if (hR.le.abs_tol) then bR=hR+bR hR=0.d0 huR=0.d0 hvR=0.d0 uR=0.d0 vR=0.d0 else uR=huR/hR vR=hvR/hR endif c======================================================================= c Initialize solid-wall problem for a wet/dry interface if necessary c======================================================================= solidwallL=.false. solidwallR=.false. if (hL.le.abs_tol) then if (bL.gt.bR+hR) then call riemann(hR,hR,-uR,uR,hm,s1m,s2m,rare1,rare2,10) if (bL.gt.bR+hm) then solidwallL=.true. hL=hR uL=-uR huL=-huR bL=bR vL=vR hvL=hvR endif endif endif if (hR.le.abs_tol) then if (bR.gt.bL+hL) then call riemann(hL,hL,uL,-uL,hm,s1m,s2m,rare1,rare2,10) if (bR.gt.bL+hm) then solidwallR=.true. hR=hL huR=-huL uR=-uL bR=bL vR=vL hvR=hvL endif endif endif c======================================================================= c set-differences to be decomposed into eigenvectors c======================================================================= f1L=huL f2L=0.5d0*g*hL**2 + hL*uL**2 f1R=huR f2R=0.5d0*g*hR**2 + hR*uR**2 delq1=hR-hL delq2=f1R-f1L delf1=f1R-f1L delf2=f2R-f2L delphi=bR-bL del(1)=delq1 del(2)=delq2 del(3)=delf2 del(4)=delphi c===================================================================== c Determine Riemann structure and set-up eigenvectors c===================================================================== hMax=max(hR,hL) hMin=min(hR,hL) maxiter=1 if ((.not.solidwallL).and.(.not.solidwallR)) then call riemann(hL,hR,uL,uR,hm,s1m,s2m,rare1,rare2,maxiter) endif sL=uL-sqrt(g*hL) sR=uR+sqrt(g*hR) uhat=sqrt(g*hL)*uL + sqrt(g*hR)*uR uhat=uhat/(sqrt(g*hR)+sqrt(g*hL)) chat=sqrt(g*0.5d0*(hR+hL)) roe1=uhat-chat roe2=uhat+chat lambda(1)=min(sL,roe1) !Einfeldt speed lambda(1)=min(lambda(1),s2m) !Modified Eindfeldt speed lambda(3)=max(sR,roe2) !Einfeldt speed lambda(3)=max(lambda(3),s1m) !Modified Eindfeldt speed lambda(2)=.5d0*(lambda(1)+lambda(3)) lambda(4)=0.d0 se1=lambda(1) se2=lambda(3) c===========determine the corrector wave==== rarecorrector=.false. alpha1=0.5d0 alpha2=0.9d0 if (rare1.or.rare2) then rare1st=3.d0*(sqrt(g*hL)-sqrt(g*hm)) rare2st=3.d0*(sqrt(g*hR)-sqrt(g*hm)) if (rare1.and.se1*s1m.lt.0.d0) alpha1=0.2d0 if (rare2.and.se2*s2m.lt.0.d0) alpha1=0.2d0 if (max(rare1st,rare2st).gt.alpha1*(se2-se1)) then if (rare1st.gt.rare2st) then lambda(2)=s1m else lambda(2)=s2m endif if (max(rare1st,rare2st).lt.alpha2*(se2-se1)) then rarecorrector=.true. endif endif endif c============================================= do mw=1,mwaves r(1,mw)=1.d0 r(2,mw)=lambda(mw) r(3,mw)=(lambda(mw))**2 r(4,mw)=0 enddo if (.not.rarecorrector) then r(1,2)=0.d0 r(2,2)=0.d0 r(3,2)=1.d0 r(4,2)=0.d0 endif c=====Determin the steady state eigenvector r(m,4)================== c=================================================================== hbar=0.5d0*(hR+hL) ubar=0.5d0*(uR+uL) tildelam12= max(0.d0,uL*uR)- g*hbar barlam12= ubar**2 - g*hbar c ===Source term r(3,4) S^+_-================================= if (dabs(barlam12).le.0.d0) then Sint=-g*hbar else Sint=-g*hbar*(tildelam12/barlam12) endif Sint=max(Sint,-g*hMax) Sint=min(Sint,-g*hMin) c ============================================================ c =====Positive preserving bounds for r(1,4)================== heinf= (huL-huR+se2*hR-se1*hL)/(se2-se1) if (se1.lt.-abs_zero.and.se2.gt.abs_zero) then if (delphi.gt.0.d0) then r41Lbound=min((se2-se1)*heinf/(se1*delphi),-1.d0) r41Ubound= -1.d0 elseif (delphi.lt.0.d0) then r41Lbound=min((se2-se1)*heinf/(se2*delphi),-1.d0) r41Ubound= -1.d0 else r41Lbound=0.d0 r41Ubound=0.d0 endif elseif (se1.ge.abs_zero) then if (delphi.gt.0.d0) then r41Ubound=(se2-se1)*heinf/(se1*delphi) r41Lbound=0.d0 elseif (delphi.lt.0.d0) then r41Ubound=-hL/delphi r41Lbound=0.d0 else r41Lbound=0.d0 r41Ubound=0.d0 endif elseif (se2.le.-abs_zero) then if (delphi.gt.0.d0) then r41Ubound=hR/delphi r41Lbound=0.d0 elseif (delphi.lt.0.d0) then r41Ubound=heinf*(se2-se1)/(se2*delphi) r41Lbound=0.d0 else r41Lbound=0.d0 r41Ubound=0.d0 endif else r41Lbound=0.d0 r41Ubound=0.d0 endif c Resonant (near sonic) check for r(1,4)============= sonic=.false. rescheck1=tildelam12*barlam12 rescheck2= se1*se2 if ((uL+sqrt(g*hL))*(uR+sqrt(g*hR)).lt.abs_zero) sonic=.true. if ((uL-sqrt(g*hL))*(uR-sqrt(g*hR)).lt.abs_zero) sonic=.true. if (rescheck1.le.abs_zero) sonic=.true. if (rescheck2*barlam12.le.abs_zero) sonic=.true. if (rescheck2*tildelam12.le.abs_zero) sonic=.true. if (sonic) then dhdb=0.d0 else dhdb=-Sint/tildelam12 endif dhdb=max(dhdb,r41Lbound) dhdb=min(dhdb,r41Ubound) c ==================================================== r(1,4)=dhdb r(2,4)=0.d0 r(3,4)=Sint r(4,4)=1.d0 c================================================================ c================================================================ c=======Determine determinant of eigenvector matrix======== do mw=1,3 do m=1,3 A(m,mw)=r(m,mw) enddo enddo det1=A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2)) det2=A(1,2)*(A(2,1)*A(3,3)-A(2,3)*A(3,1)) det3=A(1,3)*(A(2,1)*A(3,2)-A(2,2)*A(3,1)) determinant=det1-det2+det3 singular=.false. if (determinant.eq.0.d0) then singular=.true. write(*,*) 'RPN2: **ERROR** Degenerate eigenspace' stop elseif (dabs(determinant).lt.1.d-99) then write(*,*) 'RPN2:**WARNING** system is poorly conditioned' endif c========Subtract off known 4th eigenvector projection======== beta(4)=delphi do m=1,3 delp(m)=del(m)-beta(4)*r(m,4) enddo c============================================================= c========solve for beta(k) using Cramers Rule================= do k=1,3 do mw=1,3 do m=1,3 A(m,mw)=r(m,mw) A(m,k)=delp(m) enddo enddo det1=A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2)) det2=A(1,2)*(A(2,1)*A(3,3)-A(2,3)*A(3,1)) det3=A(1,3)*(A(2,1)*A(3,2)-A(2,2)*A(3,1)) beta(k)=(det1-det2+det3)/determinant enddo c==================determine speeds and fwaves ====================== tw=1.d0 if (solidwallL) then do mw=1,2 beta(mw)=0.d0 lambda(mw)=0.d0 enddo tw=0.d0 elseif (solidwallR) then do mw=2,3 beta(mw)=0.d0 lambda(mw)=0.d0 enddo tw=0.d0 endif beta(4)=0.d0 do mw=1,mwaves s(i,mw)=lambda(mw) fwave(i,1,mw)=beta(mw)*r(2,mw) fwave(i,mu,mw)=beta(mw)*r(3,mw) enddo fwave(i,nv,1)=beta(1)*r(2,1)*vL fwave(i,nv,3)=beta(3)*r(2,3)*vR fwave(i,nv,2)=tw*(hR*uR*vR-hL*uL*vL) & -fwave(i,nv,1)-fwave(i,nv,3) 30 continue 31 continue c=============End: loop through cell interfaces============================== c==========Capacity for mapping from latitude longitude to physical space==== if (mcapa.gt.0) then do i=2-mbc,mx+mbc if (ixy.eq.1) then dxdc=(Rearth*pi/180.d0) else dxdc=auxl(i,3) endif do mw=1,mwaves c if (s(i,mw) .gt. 316.d0) then c # shouldn't happen unless h > 10 km! c write(6,*) 'speed > 316: i,mw,s(i,mw): ',i,mw,s(i,mw) c endif s(i,mw)=dxdc*s(i,mw) do m=1,meqn fwave(i,m,mw)=dxdc*fwave(i,m,mw) enddo enddo enddo endif c=============================================================================== c============= compute fluctuations============================================= do i=1-mbc,mx+mbc do m=1,meqn amdq(i,m)=0.0d0 apdq(i,m)=0.0d0 do mw=1,mwaves if (s(i,mw).lt.0.d0) then amdq(i,m)=amdq(i,m) + fwave(i,m,mw) elseif (s(i,mw).gt.0.d0) then apdq(i,m)=apdq(i,m) + fwave(i,m,mw) endif enddo enddo enddo return end c============================================================================= subroutine riemann(hL,hR,uL,uR,hm,s1m,s2m,rare1,rare2,maxiter) c============================================================================= use geoclaw_module implicit double precision (a-h,o-z) integer iter,maxiter double precision abs_tol,g double precision hL,hR,uL,uR,hm,s1m,s2m,u1m,u2m,um,delu double precision h_max,h_min,h0,F_max,F_min,dfdh,F0,slope,gL,gR logical rare1,rare2 g=grav c===================================================================== c Test for Riemann structure c===================================================================== h_min=min(hR,hL) h_max=max(hR,hL) delu=uR-uL if (h_min.le.0.d0) then hm=0.d0 um=0.d0 s1m=uR+uL-2.d0*sqrt(g*hR)+2.d0*sqrt(g*hL) s2m=uR+uL-2.d0*sqrt(g*hR)+2.d0*sqrt(g*hL) if (hL.le.0.d0) then rare2=.true. rare1=.false. else rare1=.true. rare2=.false. endif else F_min= delu+2.d0*(sqrt(g*h_min)-sqrt(g*h_max)) F_max= delu + & (h_max-h_min)*(sqrt(.5d0*g*(h_max+h_min)/(h_max*h_min))) if (F_min.gt.0.d0) then !2-rarefactions hm=(1.d0/(16.d0*g))* & max(0.d0,-delu+2.d0*(sqrt(g*hL)+sqrt(g*hR)))**2 um=sign(1.d0,hm)*(uL+2.d0*(sqrt(g*hL)-sqrt(g*hm))) s1m=uL+2.d0*sqrt(g*hL)-3.d0*sqrt(g*hm) s2m=uR-2.d0*sqrt(g*hR)+3.d0*sqrt(g*hm) rare1=.true. rare2=.true. elseif (F_max.le.0.d0) then !2 shocks c ===root finding using a Newton iteration on sqrt(h)=== h0=h_max do iter=1,maxiter gL=sqrt(.5d0*g*(1/h0 + 1/hL)) gR=sqrt(.5d0*g*(1/h0 + 1/hR)) F0=delu+(h0-hL)*gL + (h0-hR)*gR dfdh=gL-g*(h0-hL)/(4.d0*(h0**2)*gL)+ & gR-g*(h0-hR)/(4.d0*(h0**2)*gR) slope=2.d0*sqrt(h0)*dfdh h0=(sqrt(h0)-F0/slope)**2 enddo c ====================================================== hm=h0 u1m=uL-(hm-hL)*sqrt((.5d0*g)*(1/hm + 1/hL)) u2m=uR+(hm-hR)*sqrt((.5d0*g)*(1/hm + 1/hR)) um=.5d0*(u1m+u2m) s1m=u1m-sqrt(g*hm) s2m=u2m+sqrt(g*hm) rare1=.false. rare2=.false. else !one shock one rarefaction h0=h_min do iter=1,maxiter F0=delu + 2.d0*(sqrt(g*h0)-sqrt(g*h_max)) & + (h0-h_min)*sqrt(.5d0*g*(1/h0+1/h_min)) slope=(F_max-F0)/(h_max-h_min) h0=h0-F0/slope enddo c ===================================================== hm=h0 if (hL.gt.hR) then um=uL+2.d0*sqrt(g*hL)-2.d0*sqrt(g*hm) s1m=uL+2.d0*sqrt(g*hL)-3.d0*sqrt(g*hm) s2m=uL+2.d0*sqrt(g*hL)-sqrt(g*hm) rare1=.true. rare2=.false. else s2m=uR-2.d0*sqrt(g*hR)+3.d0*sqrt(g*hm) s1m=uR-2.d0*sqrt(g*hR)+sqrt(g*hm) um=uR-2.d0*sqrt(g*hR)+2.d0*sqrt(g*hm) rare2=.true. rare1=.false. endif endif endif c===================================================================== c RIEMANN STRUCTURE KNOWN c===================================================================== return end