rp1sw.f.html | |
Source file: rp1sw.f | |
Directory: /home/rjl/git/rjleveque/clawpack-4.x/book/chap21/radialdam/1drad | |
Converted: Tue Jul 26 2011 at 12:59:05 using clawcode2html | |
This documentation file will not reflect any later changes in the source file. |
c ========================================================= subroutine rp1(maxmx,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr, & wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 1D shallow water equations c # (h)_t + (u h)_x = 0 c # (uh)_t + ( uuh + .5*gh^2 )_x = 0 c # using Roe's approximate Riemann solver with entropy fix for c # transonic rarefractions. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, c # s the speeds, c # amdq the left-going flux difference A^- \Delta q c # apdq the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routine step1, rp is called with ql = qr = q. c c Here meqn=mwaves=2 should be passed from the calling routine c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension s(1-mbc:maxmx+mbc, mwaves) dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension amdq(1-mbc:maxmx+mbc, meqn) dimension apdq(1-mbc:maxmx+mbc, meqn) dimension auxl(1-mbc:maxmx+mbc, *) dimension auxr(1-mbc:maxmx+mbc, *) c c # local storage c --------------- dimension delta(2) logical efix common /comrp/ grav data efix /.true./ !# use entropy fix for transonic rarefactions c do 30 i=2-mbc,mx+mbc c c c # compute Roe-averaged quantities: ubar = (qr(i-1,2)/dsqrt(qr(i-1,1)) + ql(i,2)/dsqrt(ql(i,1)))/ . ( dsqrt(qr(i-1,1)) + dsqrt(ql(i,1)) ) cbar=dsqrt(0.5d0*grav*(qr(i-1,1) + ql(i,1))) c # delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1) delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,2) - qr(i-1,2) c # compute coeffs in the evector expansion of delta(1),delta(2) a1 = 0.5d0*(-delta(2) + (ubar + cbar) * delta(1))/cbar a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(1))/cbar c # finally, compute the waves. wave(i,1,1) = a1 wave(i,2,1) = a1*(ubar - cbar) s(i,1) = ubar - cbar wave(i,1,2) = a2 wave(i,2,2) = a2*(ubar + cbar) s(i,2) = ubar + cbar 30 continue c # compute Godunov flux f0: c -------------------------- if (efix) go to 110 c # no entropy fix c ---------------------------------------------- c # amdq = SUM s*wave over left-going waves c # apdq = SUM s*wave over right-going waves do 100 m=1,2 do 100 i=2-mbc, mx+mbc amdq(i,m) = 0.d0 apdq(i,m) = 0.d0 do 90 mw=1,mwaves if (s(i,mw) .lt. 0.d0) then amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw) else apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw) endif 90 continue 100 continue go to 900 c c ----------------------------------------------- c 110 continue c # With entropy fix c ------------------ c c # compute flux differences amdq and apdq. c # First compute amdq as sum of s*wave for left going waves. c # Incorporate entropy fix by adding a modified fraction of wave c # if s should change sign. c do 200 i=2-mbc,mx+mbc c ------------------------------------------------------ c # check 1-wave: c --------------- c c # u-c in left state (cell i-1) s0 = qr(i-1,2)/qr(i-1,1) - dsqrt(grav*qr(i-1,1)) c # check for fully supersonic case: if (s0.ge.0.d0 .and. s(i,1).gt.0.d0) then c # everything is right-going do 60 m=1,2 amdq(i,m) = 0.d0 60 continue go to 200 endif c c # u-c to right of 1-wave hr1 = qr(i-1,1) + wave(i,1,1) uhr1 = qr(i-1,2) + wave(i,2,1) s1 = uhr1/hr1 - dsqrt(grav*hr1) if (s0.lt.0.d0 .and. s1.gt.0.d0) then c # transonic rarefaction in the 1-wave sfract = s0 * (s1-s(i,1)) / (s1-s0) else if (s(i,1) .lt. 0.d0) then c # 1-wave is leftgoing sfract = s(i,1) else c # 1-wave is rightgoing sfract = 0.d0 !# this shouldn't happen since s0 < 0 endif do 120 m=1,2 amdq(i,m) = sfract*wave(i,m,1) 120 continue c ------------------------------------------------------- c # check 2-wave: c --------------- c # u+c in right state (cell i) s3 = ql(i,2)/ql(i,1) + dsqrt(grav*ql(i,1)) c # u+c to left of 2-wave hl2 = ql(i,1) - wave(i,1,2) uhl2 = ql(i,2) - wave(i,2,2) s2 = uhl2/hl2 + dsqrt(grav*hl2) if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then c # transonic rarefaction in the 2-wave sfract = s2 * (s3-s(i,2)) / (s3-s2) else if (s(i,2) .lt. 0.d0) then c # 2-wave is leftgoing sfract = s(i,2) else c # 2-wave is rightgoing go to 200 endif c do 160 m=1,2 amdq(i,m) = amdq(i,m) + sfract*wave(i,m,2) 160 continue 200 continue c c c # compute the rightgoing flux differences: c # df = SUM s*wave is the total flux difference and apdq = df - amdq c do 220 m=1,2 do 220 i = 2-mbc, mx+mbc df = 0.d0 do 210 mw=1,mwaves df = df + s(i,mw)*wave(i,m,mw) 210 continue apdq(i,m) = df - amdq(i,m) 220 continue 900 continue return end