|
step2.f.html |
|
|
Source file: step2.f
|
|
Directory: /home/rjl/git/rjleveque/clawpack-4.x/amrclaw/2d/lib
|
|
Converted: Sun May 15 2011 at 19:16:16
using clawcode2html
|
|
This documentation file will
not reflect any later changes in the source file.
|
c
c
c ==========================================================
subroutine step2(maxm,maxmx,maxmy,meqn,maux,mbc,mx,my,
& qold,aux,dx,dy,dt,cflgrid,
& fm,fp,gm,gp,
& faddm,faddp,gaddm,gaddp,q1d,dtdx1d,dtdy1d,
& aux1,aux2,aux3,work,mwork,rpn2,rpt2)
c ==========================================================
c
c # clawpack routine ... modified for AMRCLAW
c
c # Take one time step, updating q.
c # On entry, qold gives
c # initial data for this step
c # and is unchanged in this version.
c
c # fm, fp are fluxes to left and right of single cell edge
c # See the flux2 documentation for more information.
c
c
implicit double precision (a-h,o-z)
external rpn2, rpt2
include "call.i"
dimension qold(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, meqn)
dimension fm(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, meqn)
dimension fp(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, meqn)
dimension gm(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, meqn)
dimension gp(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, meqn)
dimension q1d(1-mbc:maxm+mbc, meqn)
dimension faddm(1-mbc:maxm+mbc, meqn)
dimension faddp(1-mbc:maxm+mbc, meqn)
dimension gaddm(1-mbc:maxm+mbc, meqn, 2)
dimension gaddp(1-mbc:maxm+mbc, meqn, 2)
dimension aux(1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc, maux)
dimension aux1(1-mbc:maxm+mbc, maux)
dimension aux2(1-mbc:maxm+mbc, maux)
dimension aux3(1-mbc:maxm+mbc, maux)
dimension dtdx1d(1-mbc:maxm+mbc)
dimension dtdy1d(1-mbc:maxm+mbc)
dimension work(mwork)
common /comxyt/ dtcom,dxcom,dycom,tcom,icom,jcom
c
c # store mesh parameters that may be needed in Riemann solver but not
c # passed in...
dxcom = dx
dycom = dy
dtcom = dt
c
c
c # partition work array into pieces needed for local storage in
c # flux2 routine. Find starting index of each piece:
c
i0wave = 1
i0s = i0wave + (maxm+2*mbc)*meqn*mwaves
i0amdq = i0s + (maxm+2*mbc)*mwaves
i0apdq = i0amdq + (maxm+2*mbc)*meqn
i0cqxx = i0apdq + (maxm+2*mbc)*meqn
i0bmadq = i0cqxx + (maxm+2*mbc)*meqn
i0bpadq = i0bmadq + (maxm+2*mbc)*meqn
iused = i0bpadq + (maxm+2*mbc)*meqn - 1
c
if (iused.gt.mwork) then
c # This shouldn't happen due to checks in claw2
write(outunit,*) 'not enough work space in step2'
write(* ,*) 'not enough work space in step2'
stop
endif
c
c
cflgrid = 0.d0
dtdx = dt/dx
dtdy = dt/dy
c
do 10 m=1,meqn
do 10 i=1-mbc,mx+mbc
do 10 j=1-mbc,my+mbc
fm(i,j,m) = 0.d0
fp(i,j,m) = 0.d0
gm(i,j,m) = 0.d0
gp(i,j,m) = 0.d0
10 continue
c
if (mcapa.eq.0) then
c # no capa array:
do 5 i=1-mbc,maxm+mbc
dtdx1d(i) = dtdx
dtdy1d(i) = dtdy
5 continue
endif
c
c
c # perform x-sweeps
c ==================
c
do 50 j = 0,my+1
if (my.eq.1 .and. j.ne.1) go to 50 !# for 1d AMR
c
c # copy data along a slice into 1d arrays:
do 20 m=1,meqn
do 20 i = 1-mbc, mx+mbc
q1d(i,m) = qold(i,j,m)
20 continue
c
if (mcapa.gt.0) then
do 21 i = 1-mbc, mx+mbc
dtdx1d(i) = dtdx / aux(i,j,mcapa)
21 continue
endif
c
if (maux .gt. 0) then
do 22 ma=1,maux
do 22 i = 1-mbc, mx+mbc
aux1(i,ma) = aux(i,j-1,ma)
aux2(i,ma) = aux(i,j ,ma)
aux3(i,ma) = aux(i,j+1,ma)
22 continue
endif
c
c
c # Store the value of j along this slice in the common block
c # comxyt in case it is needed in the Riemann solver (for
c # variable coefficient problems)
jcom = j
c
c # compute modifications fadd and gadd to fluxes along this slice:
call flux2(1,maxm,meqn,maux,mbc,mx,
& q1d,dtdx1d,aux1,aux2,aux3,
& faddm,faddp,gaddm,gaddp,cfl1d,
& work(i0wave),work(i0s),work(i0amdq),work(i0apdq),
& work(i0cqxx),work(i0bmadq),work(i0bpadq),rpn2,rpt2)
cflgrid = dmax1(cflgrid,cfl1d)
c
c # update fluxes for use in AMR:
c
do 25 m=1,meqn
do 25 i=1,mx+1
fm(i,j,m) = fm(i,j,m) + faddm(i,m)
fp(i,j,m) = fp(i,j,m) + faddp(i,m)
gm(i,j,m) = gm(i,j,m) + gaddm(i,m,1)
gp(i,j,m) = gp(i,j,m) + gaddp(i,m,1)
gm(i,j+1,m) = gm(i,j+1,m) + gaddm(i,m,2)
gp(i,j+1,m) = gp(i,j+1,m) + gaddp(i,m,2)
25 continue
50 continue
c
c
c
c # perform y sweeps
c ==================
c
c
if (my.eq.1) go to 101 !# for 1d AMR
do 100 i = 0, mx+1
c
c # copy data along a slice into 1d arrays:
do 70 m=1,meqn
do 70 j = 1-mbc, my+mbc
q1d(j,m) = qold(i,j,m)
70 continue
c
if (mcapa.gt.0) then
do 71 j = 1-mbc, my+mbc
dtdy1d(j) = dtdy / aux(i,j,mcapa)
71 continue
endif
c
if (maux .gt. 0) then
do 72 ma=1,maux
do 72 j = 1-mbc, my+mbc
aux1(j,ma) = aux(i-1,j,ma)
aux2(j,ma) = aux(i, j,ma)
aux3(j,ma) = aux(i+1,j,ma)
72 continue
endif
c
c
c # Store the value of i along this slice in the common block
c # comxyt in case it is needed in the Riemann solver (for
c # variable coefficient problems)
icom = i
c
c # compute modifications fadd and gadd to fluxes along this slice:
call flux2(2,maxm,meqn,maux,mbc,my,
& q1d,dtdy1d,aux1,aux2,aux3,
& faddm,faddp,gaddm,gaddp,cfl1d,
& work(i0wave),work(i0s),work(i0amdq),work(i0apdq),
& work(i0cqxx),work(i0bmadq),work(i0bpadq),rpn2,rpt2)
c
cflgrid = dmax1(cflgrid,cfl1d)
c
c #
c # update fluxes for use in AMR:
c
do 75 m=1,meqn
do 75 j=1,my+1
gm(i,j,m) = gm(i,j,m) + faddm(j,m)
gp(i,j,m) = gp(i,j,m) + faddp(j,m)
fm(i,j,m) = fm(i,j,m) + gaddm(j,m,1)
fp(i,j,m) = fp(i,j,m) + gaddp(j,m,1)
fm(i+1,j,m) = fm(i+1,j,m) + gaddm(j,m,2)
fp(i+1,j,m) = fp(i+1,j,m) + gaddp(j,m,2)
75 continue
100 continue
c
101 continue
c
return
end