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• Boundary conditions
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Boundary conditions and ghost cells

In each time step, the data in cells 1 to N is used to define
ghost cell values in cells outside the physical domain.

The wave-propagation algorithm is then applied on the
expanded computational domain, solving Riemann problems at
all interfaces.

....Q−1 Q0 Q1 Q2 QN QN+1 QN+2

x1/2

x = a

xN+1/2

x = b

The data is extended depending on the physical boundary
conditons.
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Initial–boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:

qt + uqx = 0 a < x < b, t ≥ 0,

with initial data

q(x, 0) = η(x) a < x < b.

and boundary data at the inflow boundary:

If u > 0, need data at x = a:

q(a, t) = g(t), t ≥ 0,

If u < 0, need data at x = b:

q(b, t) = g(t), t ≥ 0,
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Characteristics for IBVP

In x–t plane for the case u > 0:

Solution:

q(x, t) =
{
η(x− ut) if a ≤ x− ut ≤ b,
g((x− a)/u) otherwise .

R.J. LeVeque, University of Washington AMath 574, January 31, 2011 [FVMHP Sec. 2.1]



Periodic boundary conditions

q(a, t) = q(b, t), t ≥ 0.

In x–t plane for the case u > 0:

Solution:
q(x, t) = η(X0(x, t)),

where X0(x, t) = a+ mod(x− ut− a, b− a).
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Boundary conditions

....Q−1 Q0 Q1 Q2 QN QN+1 QN+2

x1/2

x = a

xN+1/2

x = b

Periodic:

Qn−1 = QnN−1, Qn0 = QnN , QnN+1 = Qn1 , QnN+2 = Qn2

Extrapolation (outflow):

Qn−1 = Qn1 , Qn0 = Qn1 , QnN+1 = QnN , QnN+2 = QnN

Solid wall:
For Q0 : p0 = p1, u0 = −u1,

For Q−1 : p−1 = p2, u−1 = −u2.
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Extrapolation boundary conditions

If we set Q0 = Q1 then the Riemann problem at x1/2 has zero
strength waves:

Q1 −Q0 =W1
1/2 +W2

1/2

So in particular the incoming waveW2 has strength 0.

The outgoing wave perhaps should have nonzero magnitude,
but it doesn’t matter since it would only update ghost cell.

Ghost cell value is reset at the start of each time step by
extrapolation.

In 2D or 3D, extrapolation in normal direction is not perfect but
works quite well, e.g. Figure 21.7.
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

q(x, t)

w2(x− λ2t, 0)

= `2q(x− λ2t, 0)

w1(x− λ1t, 0)

= `1q(x− λ1t, 0)

w2 constant w1 constant
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Linear acoustics — characteristics

q(x, t) = w1(x+ ct, 0)r1 + w2(x− ct, 0)r2

=
−p0(x+ ct)

2Z

[
−Z

1

]
+
p0(x− ct)

2Z

[
Z
1

]
.

For IBVP on a < x < b, must specify one incoming boundary
condition at each side: w2(a, t) and w1(b, t)
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Acoustics boundary conditions

Non-reflecting boundary conditions:

w2(a, t) = 0, w1(b, t) = 0.

Periodic boundary conditions:

w2(a, t) = w2(b, t), w1(b, t) = w1(a, t),

or simply
q(a, t) = q(b, t).

Solid wall (reflecting) boundary conditions:

u(a, t) = 0, u(b, t) = 0.

which can be written in terms of characteristic variables as:

w2(a, t) = −w1(a, t), w1(b, t) = −w2(a, t)

since u = w1 + w2.
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Zero velocity (solid wall) boundary condition

For acoustics q = (p, u) or Euler with q = (ρ, ρu, E).

To obtain u(0, t) = 0, set

u0 = −u1, and extrapolate other values, e.g. p0 = p1

Then Riemann solution is a similarity solution q(x, t) = Q∗(x/t)
and u(0) = 0 (i.e., middle state has um = 0 for acoustics).
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Incoming wave train

Acoustics with right-going wave train coming from x = −∞.

p(0, t) = p̄ sin(kt), u(0, t) = (p̄/Z) sin(kt)

If wave reflects in domain then there will also be an outgoing
wave.

We want the BC to give this incoming BC and be non-reflecting.

We need to specify

Qn0 =
[
p(−∆x/2, tn)
u(−∆x/2, tn)

]
= w1

[
−Z
1

]
+ w2(−∆x/2, tn)

[
Z
1

]
= w1

[
−Z
1

]
+ w2(0, tn + ∆x/(2c))

[
Z
1

]
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Incoming wave train

Qn0 =
[
p(−∆x/2, tn)
u(−∆x/2, tn)

]
= w1

[
−Z
1

]
+ w2(0, tn + ∆x/(2c))

[
Z
1

]
The first term is eliminated by setting w1 = 0
(doesn’t matter what it is since ghost cell reset).

Since w2 = 1
2Z (p+ Zu) we are left with

Q0 = p̄ sin(k(tn + ∆x/(2c))
[

1
1/Z

]
.

Similarly,

Q−1 = p̄ sin(k(tn + 3∆x/(2c))
[

1
1/Z

]
.
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First order hyperbolic PDE in 2 space dimensions

Advection equation: qt + uqx + vqy = 0

First-order system: qt +Aqx +Bqy = 0

where q ∈ lRm and A,B ∈ lRm×m.

Hyperbolic if cos(θ)A+ sin(θ)B is diagonalizable with real
eigenvalues, for all angles θ.

This is required so that plane-wave data gives a 1d hyperbolic
problem:

q(x, y, 0) = q̆(x cos θ + y sin θ) (\breve q)

implies contours of q in x–y plane are orthogonal to θ–direction.

R.J. LeVeque, University of Washington AMath 574, January 31, 2011 [FVMHP Chap. 18]
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Plane wave solutions

Suppose

q(x, y, t) = q̆(x cos θ + y sin θ, t)
= q̆(ξ, t).

Then:

qx(x, y, t) = cos θ q̆ξ(ξ, t)
qy(x, y, t) = sin θ q̆ξ(ξ, t)

so
qt +Aqx +Bqy = q̆t + (A cos θ +B sin θ)q̆ξ

and the 2d problem reduces to the 1d hyperbolic equation

q̆t(ξ, t) + (A cos θ +B sin θ)q̆ξ(ξ, t) = 0.
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Advection in 2 dimensions

Constant coefficient: qt + uqx + vqy = 0

In this case solution for arbitrary initial data is easy:

q(x, y, t) = q(x− ut, y − vt, 0).

Data simply shifts at constant velocity (u, v) in x-y plane.

Variable coefficient:

Conservation form: qt + (u(x, y, t)q)x + (v(x, y, t)q)y = 0

Advective form (color eqn): qt + u(x, y, t)qx + v(x, y, t)qy = 0

Equivalent only if flow is divergence-free (incompressible):

∇ · ~u = ux(x, y, t) + vy(x, y, t) = 0 ∀t ≥ 0.
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Advection in 2 dimensions: characteristics

The characteristic curve (X(t), Y (t)) starting at some (x0, y0) is
determined by solving the ODEs

X ′(t) = u(X(t), Y (t), t), X(0) = x0

Y ′(t) = v(X(t), Y (t), t), Y (0) = y0.

How does q vary along this curve?

∂

∂t
q(X(t), Y (t), t) = X ′(t)qx(· · · ) + Y ′(t)qy(· · · ) + qt(· · · )

For color equation: qt + u(x, y, t)qx + v(x, y, t)qy = 0

q is constant along characterisitic (color is advected).
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Advection in 2 dimensions: characteristics

For conservative equation: qt + (u(x, y, t)q)x + (v(x, y, t)q)y = 0

Can rewrite as qt + u(x, y, t)qx + v(x, y, t)qy = (ux + vy)q

Along characteristic q varies because of source term:

∂

∂t
q(X(t), Y (t), t) = X ′(t)qx(· · · ) + Y ′(t)qy(· · · ) + qt(· · · )

= (∇ · ~u)q.

Conservative form models density of conserved quantity.

Mass in region advecting with the flow varies stays constant
but density increases if volume of region decreases,

or density decreases if volume of region increases.
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Acoustics in 2 dimensions

pt +K(ux + vy) = 0
ρut + px = 0
ρvt + py = 0

Note: pressure responds to compression or expansion and so
pt is proportional to divergence of velocity.

Second and third equations are F = ma.

Gives hyperbolic system qt +Aqx +Bqy = 0 with

q =

 p
u
v

 , A =

 0 K 0
1/ρ 0 0
0 0 0

 , B =

 0 0 K
0 0 0

1/ρ 0 0

 .
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Acoustics in 2 dimensions

q =

 p
u
v

 , A =

 0 K 0
1/ρ 0 0
0 0 0

 , B =

 0 0 K
0 0 0

1/ρ 0 0

 .
Plane waves:

A cos θ +B sin θ =

 0 K cos θ K sin θ
cos θ/ρ 0 0
sin θ/ρ 0 0

 .

Eigenvalues: λ1 = −c, λ2 = 0, λ3 = +c where c =
√
K/ρ

Independent of angle θ.

Isotropic: sound propagates at same speed in any direction.

Note: Zero wave speed for “shear wave” with variation only in
velocity in direction (− sin θ, cos θ). (Fig 18.1)
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Diagonalization 2 dimensions

Can we diagonalize system qt +Aqx +Bqy = 0?

Only if A and B have the same eigenvectors!

If A = RΛR−1 and B = RMR−1, then let w = R−1q and

wt + Λwx +Mwy = 0

This decouples into scalar advection equations for each
component of w:

wpt +λpwpx+µpwpy = 0 =⇒ wp(x, y, t) = wp(x−λpt, y−µpt, 0).

Note: In this case information propagates only in a finite
number of directions (λp, µp) for p = 1, . . . , m.

This is not true for most coupled systems, e.g. acoustics.
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