Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2011
Randall J. LeVeque Applied Mathematics
University of Washington

January 26, 2011

Outline

Today:

- Lax-Wendroff, dispersion
- High resolution methods

Friday:

- Clawpack Plotting

Monday:

- Boundary conditions
- Multi-dimensional

Reading: Chapters 7, 18, 19
Plotting documentation:
http://www.clawpack.org/users/plotting.html

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.
Note: No diffusion if $\frac{u \Delta t}{\Delta x}=1 \quad\left(Q_{i}^{n+1}=Q_{i-1}^{n}\right.$ exactly $)$.

Lax-Wendroff

Second-order accuracy?

Taylor series:

$$
q(x, t+\Delta t)=q(x, t)+\Delta t q_{t}(x, t)+\frac{1}{2} \Delta t^{2} q_{t t}(x, t)+\cdots
$$

From $q_{t}=-A q_{x}$ we find $q_{t t}=A^{2} q_{x x}$.

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by centered differences:
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$

Modified Equation for Lax-Wendroff

The Lax-Wendroff method
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$
gives a second-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a third-order approximation to

$$
q_{t}+u q_{x}=-\frac{u h^{2}}{6}\left(1-\left(\frac{u \Delta t}{\Delta x}\right)^{2}\right) q_{x x x}
$$

This has a dispersive term with $O\left(\Delta x^{2}\right)$ coefficient.
Indicates that the numerical solution will become oscillatory.

Beam-Warming method

Taylor series for second order accuracy:

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by one-sided differences:

$$
\begin{aligned}
Q_{i}^{n+1}= & Q_{i}^{n}
\end{aligned} \begin{aligned}
& \frac{\Delta t}{2 \Delta x} A\left(3 Q_{i}^{n}-4 Q_{i-1}^{n}+Q_{i-2}^{n}\right) \\
& +\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i}^{n}-2 Q_{i-1}^{n}+Q_{i-2}^{n}\right)
\end{aligned}
$$

Beam-Warming method

Taylor series for second order accuracy:

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by one-sided differences:

$$
\begin{aligned}
Q_{i}^{n+1}= & Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(3 Q_{i}^{n}-4 Q_{i-1}^{n}+Q_{i-2}^{n}\right) \\
& +\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i}^{n}-2 Q_{i-1}^{n}+Q_{i-2}^{n}\right)
\end{aligned}
$$

CFL condition: $0 \leq \lambda^{p} \leq 2$ for all eigenvalues.
This is also the stability limit (von Neumann analysis).

First-order REA Algorithm

(1) Reconstruct a piecewise constant function $\tilde{q}^{n}\left(x, t_{n}\right)$ defined for all x, from the cell averages Q_{i}^{n}.

$$
\tilde{q}^{n}\left(x, t_{n}\right)=Q_{i}^{n} \quad \text { for all } x \in \mathcal{C}_{i} .
$$

(2) Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^{n}\left(x, t_{n+1}\right)$ a time Δt later.
(3) Average this function over each grid cell to obtain new cell averages

$$
Q_{i}^{n+1}=\frac{1}{\Delta x} \int_{\mathcal{C}_{i}} \tilde{q}^{n}\left(x, t_{n+1}\right) d x
$$

First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

Second-order REA Algorithm

(1) Reconstruct a piecewise linear function $\tilde{q}^{n}\left(x, t_{n}\right)$ defined for all x, from the cell averages Q_{i}^{n}.

$$
\tilde{q}^{n}\left(x, t_{n}\right)=Q_{i}^{n}+\sigma_{i}^{n}\left(x-x_{i}\right) \quad \text { for all } x \in \mathcal{C}_{i} .
$$

(2) Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^{n}\left(x, t_{n+1}\right)$ a time k later.
(3) Average this function over each grid cell to obtain new cell averages

$$
Q_{i}^{n+1}=\frac{1}{\Delta x} \int_{\mathcal{C}_{i}} \tilde{q}^{n}\left(x, t_{n+1}\right) d x
$$

Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:

Choice of slopes

$$
\tilde{Q}^{n}\left(x, t_{n}\right)=Q_{i}^{n}+\sigma_{i}^{n}\left(x-x_{i}\right) \quad \text { for } x_{i-1 / 2} \leq x<x_{i+1 / 2}
$$

Applying REA algorithm gives:
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{1}{2} \frac{u \Delta t}{\Delta x}(\Delta x-\bar{u} \Delta t)\left(\sigma_{i}^{n}-\sigma_{i-1}^{n}\right)$
Choice of slopes:
Centered slope: $\quad \sigma_{i}^{n}=\frac{Q_{i+1}^{n}-Q_{i-1}^{n}}{2 \Delta x} \quad$ (Fromm)
Upwind slope: $\quad \sigma_{i}^{n}=\frac{Q_{i}^{n}-Q_{i-1}^{n}}{\Delta x} \quad$ (Beam-Warming)
Downwind slope: $\quad \sigma_{i}^{n}=\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x} \quad$ (Lax-Wendroff)

Oscillations

Any of these slope choices will give oscillations near discontinuities.

Ex: Lax-Wendroff:

High-resolution methods

Want to use slope where solution is smooth for "second-order" accuracy.
Where solution is not smooth, adding slope corrections gives oscillations.

Limit the slope based on the behavior of the solution.

$$
\sigma_{i}^{n}=\left(\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}\right) \Phi_{i}^{n} .
$$

$\Phi=1 \Longrightarrow$ Lax-Wendroff,
$\Phi=0 \Longrightarrow$ upwind.

High-resolution methods

Want to use slope where solution is smooth for "second-order" accuracy.
Where solution is not smooth, adding slope corrections gives oscillations.

Limit the slope based on the behavior of the solution.

$$
\sigma_{i}^{n}=\left(\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}\right) \Phi_{i}^{n} .
$$

$\Phi=1 \Longrightarrow$ Lax-Wendroff,
$\Phi=0 \Longrightarrow$ upwind.
Might also take $1<\Phi \leq 2$ to sharpen discontinuities.

Minmod slope

$$
\operatorname{minmod}(a, b)= \begin{cases}a & \text { if }|a|<|b| \text { and } a b>0 \\ b & \text { if }|b|<|a| \text { and } a b>0 \\ 0 & \text { if } a b \leq 0\end{cases}
$$

Slope:

$$
\begin{aligned}
\sigma_{i}^{n} & =\operatorname{minmod}\left(\left(Q_{i}^{n}-Q_{i-1}^{n}\right) / \Delta x, \quad\left(Q_{i+1}^{n}-Q_{i}^{n}\right) / \Delta x\right) \\
& =\left(\frac{Q_{i+1}^{n}-Q_{i}^{n}}{\Delta x}\right) \Phi\left(\theta_{i}^{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\theta_{i}^{n} & =\frac{Q_{i}^{n}-Q_{i-1}^{n}}{Q_{i+1}^{n}-Q_{i}^{n}} \\
\Phi(\theta) & =\operatorname{minmod}(\theta, 1) \quad 0 \leq \Phi \leq 1
\end{aligned}
$$

Piecewise linear reconstructions

Lax-Wendroff reconstruction:

Minmod reconstruction:

TVD Methods

Total variation:

$$
T V(Q)=\sum_{i}\left|Q_{i}-Q_{i-1}\right|
$$

For a function, $T V(q)=\int\left|q_{x}(x)\right| d x$.
A method is Total Variation Diminishing (TVD) if

$$
T V\left(Q^{n+1}\right) \leq T V\left(Q^{n}\right)
$$

If Q^{n} is monotone, then so is Q^{n+1}.
No spurious oscillations generated.
Gives a form of stability useful for proving convergence, also for nonlinear scalar conservation laws.

TVD REA Algorithm

(1) Reconstruct a piecewise linear function $\tilde{q}^{n}\left(x, t_{n}\right)$ defined for all x, from the cell averages Q_{i}^{n}.

$$
\tilde{q}^{n}\left(x, t_{n}\right)=Q_{i}^{n}+\sigma_{i}^{n}\left(x-x_{i}\right) \quad \text { for all } x \in \mathcal{C}_{i}
$$

with the property that $T V\left(\tilde{q}^{n}\right) \leq T V\left(Q^{n}\right)$.
(2) Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^{n}\left(x, t_{n+1}\right)$ a time k later.
(3) Average this function over each grid cell to obtain new cell averages

$$
Q_{i}^{n+1}=\frac{1}{\Delta x} \int_{\mathcal{C}_{i}} \tilde{q}^{n}\left(x, t_{n+1}\right) d x
$$

Note: Steps 2 and 3 are always TVD.

Choosing $1<\Phi \leq 2$ to sharpen jumps

Minmod reconstruction:

Doubling the slopes is possible without loss of TVD:

Some popular limiters

Linear methods:
upwind: $\quad \phi(\theta)=0$
Lax-Wendroff : $\quad \phi(\theta)=1$
Beam-Warming : $\quad \phi(\theta)=\theta$
Fromm : $\quad \phi(\theta)=\frac{1}{2}(1+\theta)$
High-resolution limiters:
$\operatorname{minmod}: \quad \phi(\theta)=\operatorname{minmod}(1, \theta)$
superbee : $\quad \phi(\theta)=\max (0, \min (1,2 \theta), \min (2, \theta))$
MC : $\quad \phi(\theta)=\max (0, \min ((1+\theta) / 2,2,2 \theta))$
van Leer : $\quad \phi(\theta)=\frac{\theta+|\theta|}{1+|\theta|}$

Sweby diagram

Order of accuracy isn't everything

Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth data.

The high-resolution method is not formally second-order accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.

Numerical Experiments

Experiment with the codes available from
\$CLAW/book/chap6/compareadv
\$CLAW/book/chap6/wavepacket
Use clawdata. order $=2$ and one of the following:

- clawdata.mthlim = [0]: Lax-Wendroff
- clawdata.mthlim = [1]: minmod
- clawdata.mthlim = [2]: superbee
- clawdata.mthlim = [3]: van Leer
- clawdata.mthlim $=$ [4]: Monotonized Centered (MC)
- clawdata.mthlim = [5]: Beam-Warming

See Figures 6.2 and 6.3 for sample results.

Slope limiters and flux limiters

Slope limiter formulation for advection:

$$
\tilde{Q}^{n}\left(x, t_{n}\right)=Q_{i}^{n}+\sigma_{i}^{n}\left(x-x_{i}\right) \quad \text { for } x_{i-1 / 2} \leq x<x_{i+1 / 2}
$$

Applying REA algorithm gives:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{1}{2} \frac{u \Delta t}{\Delta x}(\Delta x-\bar{u} \Delta t)\left(\sigma_{i}^{n}-\sigma_{i-1}^{n}\right)
$$

Flux limiter formulation:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

with flux

$$
F_{i-1 / 2}^{n}=u Q_{i-1}^{n}+\frac{1}{2} u(\Delta x-u \Delta t) \sigma_{i-1}^{n}
$$

Wave limiters

Let $\mathcal{W}_{i-1 / 2}=Q_{i}^{n}-Q_{i-1}^{n}$.
Upwind: $Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x} \mathcal{W}_{i-1 / 2}$.
Lax-Wendroff:

$$
\begin{gathered}
Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x} \mathcal{W}_{i-1 / 2}-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2}-\tilde{F}_{i-1 / 2}\right) \\
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{u \Delta t}{\Delta x}\right|\right)|u| \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

High-resolution method:

$$
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{u \Delta t}{\Delta x}\right|\right)|u| \widetilde{\mathcal{W}}_{i-1 / 2}
$$

where $\widetilde{\mathcal{W}}_{i-1 / 2}=\Phi_{i-1 / 2} \mathcal{W}_{i-1 / 2}$.

Extension to linear systems

Approach 1: Diagonalize the system to

$$
v_{t}+\Lambda v_{x}=0
$$

Apply scalar algorithm to each component.

Extension to linear systems

Approach 1: Diagonalize the system to

$$
v_{t}+\Lambda v_{x}=0
$$

Apply scalar algorithm to each component.
Approach 2:
Solve the linear Riemann problem to decompose $Q_{i}^{n}-Q_{i-1}^{n}$ into waves.

Apply a wave limiter to each wave.

Extension to linear systems

Approach 1: Diagonalize the system to

$$
v_{t}+\Lambda v_{x}=0
$$

Apply scalar algorithm to each component.
Approach 2:
Solve the linear Riemann problem to decompose $Q_{i}^{n}-Q_{i-1}^{n}$ into waves.

Apply a wave limiter to each wave.
For constant-coefficient linear problems these are equivalent.
For nonlinear problems Approach 2 generalizes!

Extension to linear systems

Approach 1: Diagonalize the system to

$$
v_{t}+\Lambda v_{x}=0
$$

Apply scalar algorithm to each component.
Approach 2:
Solve the linear Riemann problem to decompose $Q_{i}^{n}-Q_{i-1}^{n}$ into waves.

Apply a wave limiter to each wave.
For constant-coefficient linear problems these are equivalent.
For nonlinear problems Approach 2 generalizes!
Note: Limiters are applied to waves or characteristic components, not to original variables.

