Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2011

Randall J. LeVeque **Applied Mathematics** University of Washington

January 19, 2011

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011

Outline

Today:

- · Finite volume methods
- · Conservation form
- · Godunov's method
- · Upwind method for advection, linear system
- CFL condition

Next:

· High resolution methods

Reading: Chapters 5 and 6

R.J. LeVeque, University of Washington AMath 574, January 19, 2011

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011

Finite differences vs. finite volumes

Finite difference Methods

- Pointwise values $Q_i^n \approx q(x_i, t_n)$
- Approximate derivatives by finite differences
- · Assumes smoothness

Finite volume Methods

- Approximate cell averages: $Q_i^n pprox rac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t_n) \, dx$
- Integral form of conservation law,

$$\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t) \, dx = f(q(x_{i-1/2},t)) - f(q(x_{i+1/2},t))$$

leads to conservation law $q_t + f_x = 0$ but also directly to numerical method.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Chap. 4]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Chap. 4]

Finite volume method

Based on cell averages:

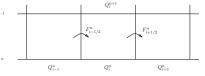
$$Q_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t_n) dx$$

Update cell average by flux into and out of cell:

Ex: Upwind methods for advection equation $q_t + uq_x = 0$:

$$\begin{array}{lcl} Q_i^{n+1} & = & Q_i^n - \frac{\Delta t (uQ_{i-1}^n - uQ_i^n)}{\Delta x} \\ \\ & = & Q_i^n - \frac{\Delta t u}{\Delta x} (Q_i^n - Q_{i-1}^n) \end{array}$$

Stencil: (x-t plane)



R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.1]

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.1]

Nonlinear scalar conservation laws

Burgers' equation: $u_t + \left(\frac{1}{2}u^2\right)_x = 0$.

Quasilinear form: $u_t + uu_x = 0$.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative: $U_i^{n+1}=U_i^n-\frac{\Delta t}{\Delta x}\left(\frac{1}{2}((U_i^n)^2-(U_{i-1}^n)^2)\right)$

Quasilinear: $U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} U_i^n (U_i^n - U_{i-1}^n)$.

Ok for smooth solutions, not for shocks!

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.9]

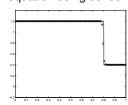
Notes:

Notes:

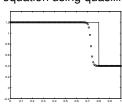
R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.9]

Importance of conservation form

Solution to Burgers' equation using conservative upwind:



Solution to Burgers' equation using quasilinear upwind:



R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.9]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.9]

Conservation form

The method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

$$\Delta x \sum_{i} Q_{i}^{n+1} = \Delta x \sum_{i} Q_{i}^{n} - \frac{\Delta t}{\Delta x} (F_{+\infty} - F_{-\infty}).$$

Note: an isolated shock must travel at the right speed!

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.1]

Lax-Wendroff Theorem

Suppose the method is conservative and consistent with $q_t + f(q)_x = 0,$

$$F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i)$$
 with $\mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$

and Lipschitz continuity of \mathcal{F} .

If a sequence of discrete approximations converge to a function q(x,t) as the grid is refined, then this function is a weak solution of the conservation law.

Note:

Does not guarantee a sequence converges

Two sequences might converge to different weak solutions.

Also need stability and entropy condition.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.10]

Finite volume method

Based on cell averages:

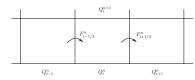
$$Q_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x, t_n) dx$$

Update cell average by flux into and out of cell:

Ex: Upwind methods for advection equation $q_t + uq_x = 0$:

$$\begin{array}{lcl} Q_i^{n+1} & = & Q_i^n - \frac{\Delta t(uQ_{i-1}^n - uQ_i^n)}{\Delta x} \\ \\ & = & Q_i^n - \frac{\Delta tu}{\Delta x}(Q_i^n - Q_{i-1}^n) \end{array}$$

Stencil: (x-t plane)



R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.1]

Notes:

R.J. LeVeque, University of Washington

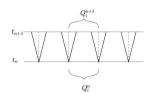
AMath 574, January 19, 2011 [FVMHP Sec. 4.1]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.10]

Notes:

Godunov's Method for $q_t + f(q)_x = 0$



1. Solve Riemann problems at all interfaces, yielding waves $\mathcal{W}_{i-1/2}^p$ and speeds $s_{i-1/2}^p$, for $p=1,\ 2,\ \ldots,\ m$.

Riemann problem: Original equation with piecewise constant data.

R.J. LeVeque, University of Washington

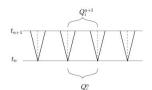
AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

Godunov's Method for $q_t + f(q)_x = 0$



Then either:

- 1. Compute new cell averages by integrating over cell at t_{n+1} ,
- 2. Compute fluxes at interfaces and flux-difference:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} [F_{i+1/2}^n - F_{i-1/2}^n]$$

3. Update cell averages by contributions from all waves entering cell:

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{\Delta x} [A^{+} \Delta Q_{i-1/2} + A^{-} \Delta Q_{i+1/2}]$$

where $\mathcal{A}^\pm \Delta Q_{i-1/2} = \sum_{i=1}^m (s_{i-1/2}^p)^\pm \mathcal{W}_{i-1/2}^p.$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

Notes:

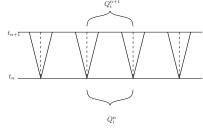
R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

Godunov's method

 Q_i^n defines a piecewise constant function

$$\tilde{q}^n(x, t_n) = Q_i^n \text{ for } x_{i-1/2} < x < x_{i+1/2}$$

Discontinuities at cell interfaces $\Longrightarrow_{\mathcal{Q}^{n+1}}$ Riemann problems.



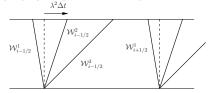
$$\tilde{q}^n(x_{i-1/2},t) \equiv q^{\psi}(Q_{i-1},Q_i) \quad \text{for } t > t_n.$$

$$F_{i-1/2}^n = \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f(q^{\psi}(Q_{i-1}^n,Q_i^n)) \, dt = f(q^{\psi}(Q_{i-1}^n,Q_i^n)).$$

Notes:

Wave-propagation viewpoint

For linear system $q_t + Aq_x = 0$, the Riemann solution consists of waves \mathcal{W}^p propagating at constant speed λ^p .



$$Q_i - Q_{i-1} = \sum_{p=1}^m \alpha_{i-1/2}^p r^p \equiv \sum_{p=1}^m \mathcal{W}_{i-1/2}^p.$$

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \big[\lambda^2 \mathcal{W}_{i-1/2}^2 + \lambda^3 \mathcal{W}_{i-1/2}^3 + \lambda^1 \mathcal{W}_{i+1/2}^1 \big].$$

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011

First-order REA Algorithm

1 Reconstruct a piecewise constant function $\tilde{q}^n(x,t_n)$ defined for all x, from the cell averages Q_i^n .

$$\tilde{q}^n(x,t_n) = Q_i^n$$
 for all $x \in \mathcal{C}_i$.

- 2 Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x,t_{n+1})$ a time Δt later.
- 3 Average this function over each grid cell to obtain new cell averages

$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) \, dx.$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011

Notes:

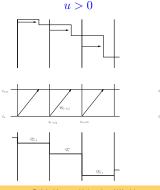
R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.10]

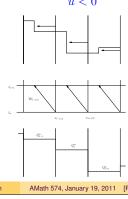
Godunov's method for advection

 Q_i^n defines a piecewise constant function

$$\tilde{q}^n(x, t_n) = Q_i^n \text{ for } x_{i-1/2} < x < x_{i+1/2}$$

Discontinuities at cell interfaces ⇒ Riemann problems.





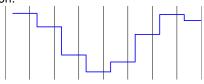
Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]

First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:



R.J. LeVeque, University of Washington

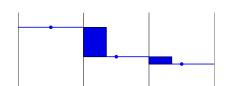
AMath 574, January 19, 2011 [FVMHP Sec. 4.11]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.11]

Cell update



The cell average is modified by

$$\frac{u\Delta t\cdot (Q_{i-1}^n-Q_i^n)}{\Delta x}$$

So we obtain the upwind method

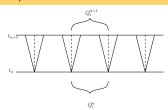
$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{u\Delta t}{\Delta x}(Q_{i}^{n} - Q_{i-1}^{n}).$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]

Godunov (upwind) on acoustics



Data at time $t_n: \ \ \tilde{q}^n(x,t_n) = Q_i^n \ \ \text{for} \ x_{i-1/2} < x < x_{i+1/2}$ Solving Riemann problems for small Δt gives solution:

$$\tilde{q}^n(x,t_{n+1}) = \left\{ \begin{array}{ll} Q_{i-1/2}^* & \text{ if } x_{i-1/2} - c\Delta t < x < x_{i-1/2} + c\Delta t, \\ Q_i^n & \text{ if } x_{i-1/2} + c\Delta t < x < x_{i+1/2} - c\Delta t, \\ Q_{i+1/2}^* & \text{ if } x_{i+1/2} - c\Delta t < x < x_{i+1/2} + c\Delta t, \end{array} \right.$$

So computing cell average gives:

$$Q_{i}^{n+1} = \frac{1}{\Delta x} \left[c \Delta t Q_{i-1/2}^* + (\Delta x - 2c \Delta t) Q_{i}^n + c \Delta t Q_{i+1/2}^* \right].$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 3.8, 4.12]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 3.8, 4.12]

Godunov (upwind) on acoustics

$$Q_{i}^{n+1} = \frac{1}{\Delta x} \left[c \Delta t Q_{i-1/2}^* + (\Delta x - 2c \Delta t) Q_{i}^n + c \Delta t Q_{i+1/2}^* \right].$$

Solve Riemann problems:

$$Q_{i-1}^{n} - Q_{i-1}^{n} = \Delta Q_{i-1/2} = \mathcal{W}_{i-1/2}^{1} + \mathcal{W}_{i-1/2}^{2} = \alpha_{i-1/2}^{1} r^{1} + \alpha_{i-1/2}^{2} r^{2},$$

$$Q_{i+1}^{n} - Q_{i}^{n} = \Delta Q_{i+1/2} = \mathcal{W}_{i+1/2}^{1} + \mathcal{W}_{i+1/2}^{2} = \alpha_{i+1/2}^{1} r^{1} + \alpha_{i+1/2}^{2} r^{2}.$$

The intermediate states are:

$$Q_{i-1/2}^* = Q_i^n - W_{i-1/2}^2, \qquad Q_{i+1/2}^* = Q_i^n + W_{i+1/2}^1,$$

$$\begin{split} Q_i^{n+1} &= \frac{1}{\Delta x} \left[c\Delta t (Q_i^n - \mathcal{W}_{i-1/2}^2) + (\Delta x - 2c\Delta t) Q_i^n + c\Delta t (Q_i^n + \mathcal{W}_{i+1/2}^1) \right] \\ &= Q_i^n - \frac{c\Delta t}{\Delta x} \mathcal{W}_{i-1/2}^2 + \frac{c\Delta t}{\Delta x} \mathcal{W}_{i+1/2}^1. \end{split}$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 3.8, 4.12]

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 3.8, 4.12]

Godunov (upwind) on acoustics

$$\begin{split} Q_i^{n+1} &= \frac{1}{\Delta x} \left[c \Delta t Q_{i-1/2}^* + (\Delta x - 2c \Delta t) Q_i^n + c \Delta t Q_{i+1/2}^* \right] \\ &= \frac{1}{\Delta x} \left[c \Delta t (Q_i^n - \mathcal{W}_{i-1/2}^2) + (\Delta x - 2c \Delta t) Q_i^n + c \Delta t (Q_i^n + \mathcal{W}_{i+1/2}^1) \right] \\ &= Q_i^n - \frac{c \Delta t}{\Delta x} \mathcal{W}_{i-1/2}^2 + \frac{c \Delta t}{\Delta x} \mathcal{W}_{i+1/2}^1 \\ &= Q_i^n - \frac{\Delta t}{\Delta x} (c \mathcal{W}_{i-1/2}^2 + (-c) \mathcal{W}_{i+1/2}^1). \end{split}$$

General form for linear system with m equations:

$$Q_{i}^{n+1} = Q_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\sum_{p:\lambda^{p}>0} \lambda^{p} \mathcal{W}_{i-1/2}^{p} + \sum_{p:\lambda^{p}<0} \lambda^{p} \mathcal{W}_{i+1/2}^{p} \right]$$
$$= Q_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\sum_{m=1}^{p} (\lambda^{p})^{+} \mathcal{W}_{i-1/2}^{p} + \sum_{m=1}^{p} (\lambda^{p})^{-} \mathcal{W}_{i+1/2}^{p} \right]$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Notes:

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Godunov (upwind) on acoustics

Solve Riemann problems:

$$\begin{split} Q_i^n - Q_{i-1}^n &= \Delta Q_{i-1/2} = \mathcal{W}_{i-1/2}^1 + \mathcal{W}_{i-1/2}^2 = \alpha_{i-1/2}^1 r^1 + \alpha_{i-1/2}^2 r^2, \\ Q_{i+1}^n - Q_i^n &= \Delta Q_{i+1/2} = \mathcal{W}_{i+1/2}^1 + \mathcal{W}_{i+1/2}^2 = \alpha_{i+1/2}^1 r^1 + \alpha_{i+1/2}^2 r^2, \end{split}$$

The waves are determined by solving for α from $R\alpha = \Delta Q$:

$$A = \left[\begin{array}{cc} 0 & K \\ 1/\rho & 0 \end{array} \right], \qquad R = \left[\begin{array}{cc} -Z & Z \\ 1 & 1 \end{array} \right], \qquad R^{-1} = \frac{1}{2Z} \left[\begin{array}{cc} -1 & Z \\ 1 & Z \end{array} \right].$$

$$\Delta Q = \begin{bmatrix} \Delta p \\ \Delta u \end{bmatrix} = \alpha^1 \begin{bmatrix} -Z \\ 1 \end{bmatrix} + \alpha^2 \begin{bmatrix} Z \\ 1 \end{bmatrix}$$

with

$$\alpha^1 = \frac{1}{2Z}(-\Delta p + Z\Delta u), \qquad \alpha^2 = \frac{1}{2Z}(\Delta p + Z\Delta u).$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Matrix splitting

Recall $A = R\Lambda R^{-1}$ with $\Lambda = \begin{bmatrix} -c & 0 \\ 0 & c \end{bmatrix}$.

$$\Lambda^+ = \left[\begin{array}{cc} 0 & 0 \\ 0 & c \end{array} \right], \qquad \Lambda^- = \left[\begin{array}{cc} -c & 0 \\ 0 & 0 \end{array} \right].$$

and

$$A^{+} = R\Lambda^{+}R^{-1}, \qquad A^{-} = R\Lambda^{-}R^{-1}.$$

Then
$$A^+ + A^- = R(\Lambda^+ + \Lambda^-)R^{-1} = R\Lambda R^{-1} = A$$
.

$$A^{+}\Delta Q = R\Lambda^{+}R^{-1}\Delta Q = R\Lambda^{+}\alpha$$
$$= \sum_{p=1}^{m} (\lambda^{p})^{+}\alpha^{p}r^{p}$$

and similarly,
$$A^-\Delta Q=\sum_{p=1}^m (\lambda^p)^-\alpha^p r^p$$

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Matrix splitting for upwind method

For $q_t + Aq_x = 0$, the upwind method (Godunov) is:

$$\begin{aligned} Q_i^{n+1} &= Q_i^n + \frac{\Delta t}{\Delta x} \left[\sum_{p=1}^m (\lambda^p)^+ \alpha_{i-1/2}^p r^p + \sum_{p=1}^m (\lambda^p)^- \alpha_{i+1/2}^p r^p \right] \\ &= Q_i^n + \frac{\Delta t}{\Delta x} \left[A^+ \Delta Q_{i-1/2} + A^- \Delta Q_{i+1/2} \right] \\ &= Q_i^n + \frac{\Delta t}{\Delta x} \left[A^+ (Q_i^n - Q_{i-1}^n) + A^- (Q_{i+1}^n - Q_i^n) \right] \end{aligned}$$

Natural generalization of upwind to a system.

If all eigenvalues are positive, then $A^+ = A$ and $A^- = 0$,

If all eigenvalues are negative, then $A^+ = 0$ and $A^- = A$.

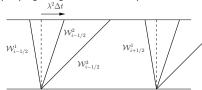
R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]

Wave-propagation viewpoint

For linear system $q_t + Aq_x = 0$, the Riemann solution consists of waves \mathcal{W}^p propagating at constant speed λ^p .



$$Q_i - Q_{i-1} = \sum_{p=1}^m \alpha_{i-1/2}^p r^p \equiv \sum_{p=1}^m \mathcal{W}_{i-1/2}^p.$$
$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\lambda^2 \mathcal{W}_{i-1/2}^2 + \lambda^3 \mathcal{W}_{i-1/2}^3 + \lambda^1 \mathcal{W}_{i+1/2}^1 \right].$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011

The CFL Condition

Domain of dependence: The solution q(X,T) depends on the data q(x,0) over some set of x values, $x \in \mathcal{D}(X,T)$.

Advection: q(X,T) = q(X - uT, 0) and so $\mathcal{D}(X,T) = \{X - uT\}$.

The CFL Condition: A numerical method can be convergent only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least in the limit as Δt and Δx go to zero.

Note: Necessary but not sufficient for stability!

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

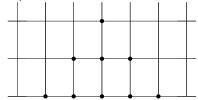
Notes:

R.J. LeVeque, University of Washington

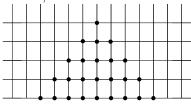
AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Numerical domain of dependence

With a 3-point explicit method:



On a finer grid with $\Delta t/\Delta x$ fixed:



R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

The CFL Condition

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

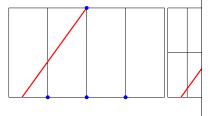
For advection, the solution is constant along characteristics,

$$q(x,t) = q(x - ut, 0)$$

For a 3-point method, CFL condition requires $\left|\frac{u\Delta t}{\Delta x}\right| \leq 1$.

If this is violated:

True solution is determined by data at a point x - ut that is ignored by the numerical method, even as the grid is refined.



R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Stencil

CFL Condition

$$0 \le \frac{u\Delta t}{\Delta x} \le 1$$

$$-1 \le \frac{u\Delta t}{\Delta x} \le 0$$

$$-1 \le \frac{u\Delta t}{\Delta x} \le 1$$

$$0 \le \frac{u\Delta t}{\Delta x} \le 2$$

$$-\infty < \frac{u\Delta t}{\Delta x} < \infty$$

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Linear hyperbolic systems

Linear system of m equations: $q(x,t) \in \mathbb{R}^m$ for each (x,t) and

$$q_t + Aq_x = 0, \quad -\infty < x, \infty, \ t \ge 0.$$

A is $m \times m$ with eigenvalues λ^p and eigenvectors r^p , for p = 1, 2, ..., m:

$$Ar^p = \lambda^p r^p$$
.

Combining these for $p = 1, 2, \ldots, m$ gives

$$AR = R\Lambda$$

where

$$R = [r^1 \ r^2 \ \cdots \ r^m], \qquad \Lambda = \operatorname{diag}(\lambda^1, \ \lambda^2, \ \ldots, \ \lambda^m).$$

The system is hyperbolic if the eigenvalues are real and R is invertible. Then A can be diagonalized:

$$R^{-1}AR = \Lambda$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Chap. 3]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Chap. 3]

Stencil

CFL Condition

$$0 \le \frac{\lambda_p \Delta t}{\Delta x} \le 1, \quad \forall p$$

$$-1 \le \frac{\lambda_p \Delta t}{\Delta x} \le 0, \quad \forall p$$

$$-1 \le \frac{\lambda_p \Delta t}{\Delta x} \le 1, \quad \forall p$$

$$0 \le \frac{\lambda_p \Delta t}{\Delta x} \le 2, \quad \forall p$$

$$-\infty < \frac{\lambda_p \Delta t}{\Delta x} < \infty, \quad \forall p$$

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.4]