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Outline

Today:
• Finite volume methods
• Conservation form
• Godunov’s method
• Upwind method for advection, linear system
• CFL condition

Next:
• High resolution methods

Reading: Chapters 5 and 6
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Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Finite volume method

Based on cell averages:

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

Update cell average by flux into and out of cell:

Ex: Upwind methods for advection equation qt + uqx = 0:

Qn+1
i = Qni −

∆t(uQni−1 − uQni )
∆x

= Qni −
∆tu
∆x

(Qni −Qni−1)

Stencil:
(x-t plane)

Qn
i−1 Qn

i

Qn+1
i

Qn
i+1

Fn
i−1/2 Fn

i+1/2

tn

+1
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Nonlinear scalar conservation laws

Burgers’ equation: ut +
(

1
2u

2
)
x

= 0.

Quasilinear form: ut + uux = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative: Un+1
i = Un

i − ∆t
∆x

(
1
2((Un

i )2 − (Un
i−1)2)

)
Quasilinear: Un+1

i = Un
i − ∆t

∆xU
n
i (Un

i − Un
i−1).

Ok for smooth solutions, not for shocks!
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Importance of conservation form

Solution to Burgers’ equation using conservative upwind:
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Solution to Burgers’ equation using quasilinear upwind:
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Conservation form

The method

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

∆x
∑

i

Qn+1
i = ∆x

∑
i

Qn
i −

∆t
∆x

(F+∞ − F−∞).

Note: an isolated shock must travel at the right speed!

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.1]



Lax-Wendroff Theorem
Suppose the method is conservative and consistent with
qt + f(q)x = 0,

Fi−1/2 = F(Qi−1, Qi) with F(q̄, q̄) = f(q̄)

and Lipschitz continuity of F .

If a sequence of discrete approximations converge to a function
q(x, t) as the grid is refined, then this function is a weak
solution of the conservation law.

Note:

Does not guarantee a sequence converges

Two sequences might converge to different weak solutions.

Also need stability and entropy condition.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 12.10]



Finite volume method
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds sp
i−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.10]



Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at tn+1,

2. Compute fluxes at interfaces and flux-difference:

Qn+1
i = Qni −

∆t
∆x

[Fni+1/2 − Fni−1/2]

3. Update cell averages by contributions from all waves entering cell:

Qn+1
i = Qni −

∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =
m∑
i=1

(spi−1/2)±Wp
i−1/2.
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Godunov’s method

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.

tn

tn+1

Qn
i

Qn+1
i

q̃n(xi−1/2, t) ≡ q∨
|
(Qi−1, Qi) for t > tn.

Fn
i−1/2 =

1
∆t

∫ tn+1

tn

f(q∨
|
(Qn

i−1, Q
n
i )) dt = f(q∨

|
(Qn

i−1, Q
n
i )).

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]



Wave-propagation viewpoint

For linear system qt +Aqx = 0, the Riemann solution consists of

wavesWp propagating at constant speed λp.
λ2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =
m∑

p=1

αp
i−1/2r

p ≡
m∑

p=1

Wp
i−1/2.

Qn+1
i = Qn

i −
∆t
∆x
[
λ2W2

i−1/2 + λ3W3
i−1/2 + λ1W1

i+1/2

]
.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011



First-order REA Algorithm

1 Reconstruct a piecewise constant function q̃n(x, tn)
defined for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫
Ci
q̃n(x, tn+1) dx.
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Godunov’s method for advection

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.
u > 0 u < 0

xi−1/2 xi+1/2

Qn
i

Qn
i−1

Qn
i+1

tn

tn+1

Wi−1/2

xi−1/2 xi+1/2

Qn
i

Qn
i−1

Qn
i+1

tn

tn+1

Wi−1/2
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]



Cell update

The cell average is modified by

u∆t · (Qn
i−1 −Qn

i )
∆x

So we obtain the upwind method

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1).

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.11]



Godunov (upwind) on acoustics

tn

tn+1

Qn
i

Qn+1
i

Data at time tn : q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Solving Riemann problems for small ∆t gives solution:

q̃n(x, tn+1) =


Q∗i−1/2 if xi−1/2 − c∆t < x < xi−1/2 + c∆t,
Qn

i if xi−1/2 + c∆t < x < xi+1/2 − c∆t,
Q∗i+1/2 if xi+1/2 − c∆t < x < xi+1/2 + c∆t,

So computing cell average gives:

Qn+1
i =

1
∆x

[
c∆tQ∗i−1/2 + (∆x− 2c∆t)Qn

i + c∆tQ∗i+1/2

]
.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 3.8, 4.12]
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Godunov (upwind) on acoustics

Qn+1
i =

1
∆x

[
c∆tQ∗i−1/2 + (∆x− 2c∆t)Qn

i + c∆tQ∗i+1/2

]
.

Solve Riemann problems:

Qn
i −Qn

i−1 = ∆Qi−1/2 =W1
i−1/2 +W2

i−1/2 = α1
i−1/2r

1 + α2
i−1/2r

2,

Qn
i+1 −Qn

i = ∆Qi+1/2 =W1
i+1/2 +W2

i+1/2 = α1
i+1/2r

1 + α2
i+1/2r

2,

The intermediate states are:

Q∗i−1/2 = Qn
i −W2

i−1/2, Q∗i+1/2 = Qn
i +W1

i+1/2,

So,

Qn+1
i =

1
∆x

[
c∆t(Qni −W2

i−1/2) + (∆x− 2c∆t)Qni + c∆t(Qni +W1
i+1/2)

]
= Qni −

c∆t
∆x
W2
i−1/2 +

c∆t
∆x
W1
i+1/2.
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Godunov (upwind) on acoustics

Qn+1
i =

1
∆x

[
c∆tQ∗i−1/2 + (∆x− 2c∆t)Qni + c∆tQ∗i+1/2

]
=

1
∆x

[
c∆t(Qni −W2

i−1/2) + (∆x− 2c∆t)Qni + c∆t(Qni +W1
i+1/2)

]
= Qni −

c∆t
∆x
W2
i−1/2 +

c∆t
∆x
W1
i+1/2

= Qni −
∆t
∆x

(cW2
i−1/2 + (−c)W1

i+1/2).

General form for linear system with m equations:

Qn+1
i = Qni −

∆t
∆x

 ∑
p:λp>0

λpWp
i−1/2 +

∑
p:λp<0

λpWp
i+1/2


= Qni −

∆t
∆x

[
p∑

m=1

(λp)+Wp
i−1/2 +

p∑
m=1

(λp)−Wp
i+1/2

]
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Godunov (upwind) on acoustics

Solve Riemann problems:

Qn
i −Qn

i−1 = ∆Qi−1/2 =W1
i−1/2 +W2

i−1/2 = α1
i−1/2r

1 + α2
i−1/2r

2,

Qn
i+1 −Qn

i = ∆Qi+1/2 =W1
i+1/2 +W2

i+1/2 = α1
i+1/2r

1 + α2
i+1/2r

2,

The waves are determined by solving for α from Rα = ∆Q:

A =
[

0 K
1/ρ 0

]
, R =

[
−Z Z

1 1

]
, R−1 =

1
2Z

[
−1 Z

1 Z

]
.

So

∆Q =
[

∆p
∆u

]
= α1

[
−Z

1

]
+ α2

[
Z
1

]
with

α1 =
1

2Z
(−∆p+ Z∆u), α2 =

1
2Z

(∆p+ Z∆u).

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Sec. 4.12]



Matrix splitting

Recall A = RΛR−1 with Λ =
[
−c 0

0 c

]
.

Let

Λ+ =
[

0 0
0 c

]
, Λ− =

[
−c 0

0 0

]
.

and
A+ = RΛ+R−1, A− = RΛ−R−1.

Then A+ +A− = R(Λ+ + Λ−)R−1 = RΛR−1 = A.

A+∆Q = RΛ+R−1∆Q = RΛ+α

=
m∑

p=1

(λp)+αprp

and similarly, A−∆Q =
m∑

p=1

(λp)−αprp
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Matrix splitting for upwind method

For qt +Aqx = 0, the upwind method (Godunov) is:

Qn+1
i = Qn

i +
∆t
∆x

 m∑
p=1

(λp)+αp
i−1/2r

p +
m∑

p=1

(λp)−αp
i+1/2r

p


= Qn

i +
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
= Qn

i +
∆t
∆x

[
A+(Qn

i −Qn
i−1) +A−(Qn

i+1 −Qn
i )
]

Natural generalization of upwind to a system.

If all eigenvalues are positive, then A+ = A and A− = 0,

If all eigenvalues are negative, then A+ = 0 and A− = A.
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Wave-propagation viewpoint

For linear system qt +Aqx = 0, the Riemann solution consists of

wavesWp propagating at constant speed λp.
λ2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =
m∑

p=1

αp
i−1/2r

p ≡
m∑

p=1

Wp
i−1/2.

Qn+1
i = Qn

i −
∆t
∆x
[
λ2W2

i−1/2 + λ3W3
i−1/2 + λ1W1

i+1/2

]
.

R.J. LeVeque, University of Washington AMath 574, January 19, 2011



The CFL Condition

Domain of dependence: The solution q(X,T ) depends on the
data q(x, 0) over some set of x values, x ∈ D(X,T ).

Advection: q(X,T ) = q(X −uT, 0) and so D(X,T ) = {X −uT}.

The CFL Condition: A numerical method can be convergent
only if its numerical domain of dependence contains the true
domain of dependence of the PDE, at least in the limit as ∆t
and ∆x go to zero.

Note: Necessary but not sufficient for stability!
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Numerical domain of dependence

With a 3-point explicit method:

On a finer grid with ∆t/∆x fixed:
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The CFL Condition

For the method to be stable, the numerical domain of
dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

q(x, t) = q(x− ut, 0)

For a 3-point method, CFL condition requires
∣∣u∆t

∆x

∣∣ ≤ 1.

If this is violated:
True solution is determined
by data at a point x − ut that
is ignored by the numerical
method, even as the grid is
refined.
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Stencil CFL Condition

0 ≤ u∆t
∆x
≤ 1

−1 ≤ u∆t
∆x
≤ 0

−1 ≤ u∆t
∆x
≤ 1

0 ≤ u∆t
∆x
≤ 2

−∞ <
u∆t
∆x

<∞
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Linear hyperbolic systems

Linear system of m equations: q(x, t) ∈ lRm for each (x, t) and

qt +Aqx = 0, −∞ < x,∞, t ≥ 0.

A is m×m with eigenvalues λp and eigenvectors rp,
for p = 1, 2, , . . . , m:

Arp = λprp.

Combining these for p = 1, 2, , . . . , m gives

AR = RΛ

where

R = [r1 r2 · · · rm], Λ = diag(λ1, λ2, . . . , λm).

The system is hyperbolic if the eigenvalues are real and
R is invertible. Then A can be diagonalized:

R−1AR = Λ

R.J. LeVeque, University of Washington AMath 574, January 19, 2011 [FVMHP Chap. 3]



Stencil CFL Condition

0 ≤ λp∆t
∆x

≤ 1, ∀p

−1 ≤ λp∆t
∆x

≤ 0, ∀p

−1 ≤ λp∆t
∆x

≤ 1, ∀p

0 ≤ λp∆t
∆x

≤ 2, ∀p

−∞ <
λp∆t
∆x

<∞, ∀p
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