Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2011
Randall J. LeVeque Applied Mathematics
University of Washington

January 12, 2011

Outline

Today:

- Review acoustics
- Solving Riemann problem for linear systems
- Coupled acoustics-advection
- Acoustics in heterogeneous medium
- Finite volume methods
- Conservation form
- Godunov's method

Next:

- More about finite volumes

Reading: Chapter 4

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0}
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0}
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Note: Eigenvectors are independent of u_{0}.
Let $Z_{0}=\rho_{0} c_{0}=\sqrt{K_{0} \rho_{0}}=$ impedance.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.
Similarly, in a simple 2-wave $\left(\lambda^{2}=c_{0}\right)$,

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is Z_{0} times the velocity variation.

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\left.\left.\begin{array}{rl}
q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right] & =\begin{array}{|}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
\end{array}+\begin{array}{|}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right] \begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
q(x, t)=w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2}
$$

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

Riemann Problem for acoustics

In $x-t$ plane:

$$
q(x, t)=w^{1}(x+c t, 0) r^{1}+w^{2}(x-c t, 0) r^{2}
$$

Decompose q_{l} and q_{r} into eigenvectors:

$$
\begin{aligned}
q_{l} & =w_{l}^{1} r^{1}+w_{l}^{2} r^{2} \\
q_{r} & =w_{r}^{1} r^{1}+w_{r}^{2} r^{2}
\end{aligned}
$$

Then

$$
q_{m}=w_{r}^{1} r^{1}+w_{l}^{2} r^{2}
$$

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

\qquad

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

Riemann Problem for acoustics

$$
\begin{aligned}
q_{l} & =w_{l}^{1} r^{1}+w_{l}^{2} r^{2} \\
q_{r} & =w_{r}^{1} r^{1}+w_{r}^{2} r^{2}
\end{aligned}
$$

Then

$$
q_{m}=w_{r}^{1} r^{1}+w_{l}^{2} r^{2}
$$

So the waves \mathcal{W}^{1} and \mathcal{W}^{2} are eigenvectors of A :

$$
\begin{aligned}
& \mathcal{W}^{1}=q_{m}-q_{l}=\left(w_{r}^{1}-w_{l}^{1}\right) r^{1} \\
& \mathcal{W}^{2}=q_{r}-q_{m}=\left(w_{r}^{2}-w_{l}^{2}\right) r^{2}
\end{aligned}
$$

Riemann solution for a linear system

Linear hyperbolic system: $q_{t}+A q_{x}=0$ with $A=R \Lambda R^{-1}$.
General Riemann problem data $q_{l}, q_{r} \in \mathbb{R}^{m}$.
Decompose jump in q into eigenvectors:

$$
q_{r}-q_{l}=\sum_{p=1}^{m} \alpha^{p} r^{p}
$$

Note: the vector α of eigen-coefficients is

$$
\alpha=R^{-1}\left(q_{r}-q_{l}\right)=R^{-1} q_{r}-R^{-1} q_{l}=w_{r}-w_{l} .
$$

Riemann solution consists of m waves $\mathcal{W}^{p} \in \mathbb{R}^{m}$:

$$
\mathcal{W}^{p}=\alpha^{p} r^{p}, \quad \text { propagating with speed } s^{p}=\lambda^{p}
$$

Coupled advection-acoustics

Flow in pipe with constant background velocity \bar{u}.
$\phi(x, t)=$ concentration of advected tracer
$u(x, t), p(x, t)=$ acoustic velocity / pressure perturbation
Equations include advection at velocity \bar{u} :

$$
\left.\begin{array}{rlll}
p_{t}+\bar{u} p_{x} & +K u_{x} & & =0 \\
u_{t}+(1 / \rho) p_{x}+\bar{u} u_{x} & & =0 \\
\phi_{t} & & & +\bar{u} \phi_{x}
\end{array}\right)=0
$$

This is a linear system $q_{t}+A q_{x}=0$ with

$$
q=\left[\begin{array}{l}
p \\
u \\
\phi
\end{array}\right], \quad A=\left[\begin{array}{ccc}
\bar{u} & K & 0 \\
1 / \rho & \bar{u} & 0 \\
0 & 0 & \bar{u}
\end{array}\right] .
$$

Coupled advection-acoustics

$$
q=\left[\begin{array}{l}
p \\
u \\
\phi
\end{array}\right], \quad A=\left[\begin{array}{ccc}
\bar{u} & K & 0 \\
1 / \rho & \bar{u} & 0 \\
0 & 0 & \bar{u}
\end{array}\right] .
$$

eigenvalues: $\quad \lambda^{1}=u-c, \quad \lambda^{2}=u \quad \lambda^{3}=u+c$,
eigenvectors: $\quad r^{1}=\left[\begin{array}{c}-Z \\ 1 \\ 0\end{array}\right], \quad r^{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad r^{3}=\left[\begin{array}{c}Z \\ 1 \\ 0\end{array}\right]$,
where $c=\sqrt{\kappa / \rho}, \quad Z=\rho c=\sqrt{\rho \kappa}$.

$$
R=\left[\begin{array}{ccc}
-Z & 0 & Z \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad R^{-1}=\frac{1}{2 Z}\left[\begin{array}{ccc}
-1 & Z & 0 \\
0 & 0 & 1 \\
1 & Z & 0
\end{array}\right]
$$

Coupled advection-acoustics

Wave structure of solution in the $x-t$ plane With no advection:

Coupled advection-acoustics

Wave structure of solution in the $x-t$ plane
Subsonic case ($\left|u_{0}\right|<c$):

Coupled advection-acoustics

Wave structure of solution in the $x-t$ plane
Supersonic case ($\left|u_{0}\right|>c$):

Wave propagation in heterogeneous medium

Linear system $q_{t}+A(x) q_{x}=0$. For acoustics:

$$
A=\left[\begin{array}{cc}
0 & K(x) \\
1 / \rho(x) & 0
\end{array}\right]
$$

eigenvalues: $\quad \lambda^{1}=-c(x), \quad \lambda^{2}=+c(x)$,
where $c(x)=\sqrt{\kappa(x) / \rho(x)}=$ local speed of sound.

$$
\text { eigenvectors: } \quad r^{1}(x)=\left[\begin{array}{c}
-Z(x) \\
1
\end{array}\right], \quad r^{2}(x)=\left[\begin{array}{c}
Z(x) \\
1
\end{array}\right]
$$

where $Z(x)=\rho c=\sqrt{\rho \kappa}=$ impedance.

$$
R(x)=\left[\begin{array}{cc}
-Z(x) & Z(x) \\
1 & 1
\end{array}\right], \quad R^{-1}(x)=\frac{1}{2 Z(x)}\left[\begin{array}{cc}
-1 & Z(x) \\
1 & Z(x)
\end{array}\right]
$$

Cannot diagonalize unless $Z(x)$ is constant.

Wave propagation in heterogeneous medium

Multiply system

$$
q_{t}+A(x) q_{x}=0
$$

by $R^{-1}(x)$ on left to obtain

$$
R^{-1}(x) q_{t}+R^{-1}(x) A(x) R(x) R^{-1}(x) q_{x}=0
$$

or

$$
\left(R^{-1}(x) q\right)_{t}+\Lambda(x)\left[\left(R^{-1}(x) q\right)_{x}-R_{x}^{-1}(x) q\right]=0
$$

Let $w(x, t)=R^{-1}(x) q(x, t)$ (characteristic variable).
There is a coupling term on the right:

$$
w_{t}+\Lambda(x) w_{x}=\Lambda(x) R_{x}^{-1}(x) R(x) w
$$

\Longrightarrow reflections (unless $R_{x}^{-1}(x) \equiv 0$).

Wave propagation in heterogeneous medium

Generalized Riemann problem: single jump discontinuity in $q(x, 0)$ and in $K(x)$ and $\rho(x)$.

Decompose jump in q as linear combination of eigenvectors, with

- left-going waves: eigenvectors for material on left,
- right-going waves: eigenvectors for material on right.

$$
R(x)=\left[\begin{array}{cc}
-Z(x) & Z(x) \\
1 & 1
\end{array}\right], \quad R^{-1}(x)=\frac{1}{2 Z(x)}\left[\begin{array}{cc}
-1 & Z(x) \\
1 & Z(x)
\end{array}\right]
$$

Riemann solution: decompose

$$
q_{r}-q_{l}=\alpha^{1}\left[\begin{array}{c}
-Z_{l} \\
1
\end{array}\right]+\alpha^{2}\left[\begin{array}{c}
Z_{r} \\
1
\end{array}\right]=\mathcal{W}^{1}+\mathcal{W}^{2}
$$

The waves propagate with speeds $s^{1}=-c_{l}$ and $s^{2}=c_{r}$.

Wave propagation in heterogeneous medium

Riemann solution: decompose

$$
q_{r}-q_{l}=\alpha^{1}\left[\begin{array}{c}
-Z_{l} \\
1
\end{array}\right]+\alpha^{2}\left[\begin{array}{c}
Z_{r} \\
1
\end{array}\right]=\mathcal{W}^{1}+\mathcal{W}^{2}
$$

The waves propagate with speeds $s^{1}=-c_{l}$ and $s^{2}=c_{r}$.

