Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2011
Randall J. LeVeque Applied Mathematics
University of Washington

January 10, 2011

Outline

Today:

- Gas dynamics
- Linearization of gas dynamics
- Linear acoustics
- Diagonalization of linear systems
- Meaning of eigenvectors
- Characteristic solution for acoustics

Next:

- Riemann problem for acoustics
- Finite volume methods

Reading: Chapter 3 and start Chapter 4

Compressible gas dynamics

In one space dimension (e.g. in a pipe).
$\rho(x, t)=$ density, $\quad u(x, t)=$ velocity,
$p(x, t)=$ pressure,$\quad \rho(x, t) u(x, t)=$ momentum .
Conservation of:

mass:	ρ	flux:	ρu
momentum:	ρu	flux:	$(\rho u) u+p$
(energy)			

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Equation of state:

$$
p=P(\rho)
$$

(Later: p may also depend on internal energy / temperature)

Compressible gas dynamics

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Momentum flux:
$\rho u^{2}=(\rho u) u=$ advective flux
p term in flux?

- $-p_{x}=$ force in Newton's second law,
- as momentum flux: microscopic motion of gas molecules.

Momentum flux arising from pressure

Note that:

- molecules with positive x-velocity crossing x_{1} to right increase the momentum in $\left[x_{1}, x_{2}\right]$
- molecules with negative x-velocity crossing x_{1} to left also increase the momentum in $\left[x_{1}, x_{2}\right]$
Hence momentum flux increases with pressure $p\left(x_{1}, t\right)$ even if macroscopic (average) velocity is zero.

Compressible gas dynamics

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Equation of state:

$$
p=P(\rho)
$$

Same as shallow water if $P(\rho)=\frac{1}{2} g \rho^{2}$ (with $\rho \equiv h$). Isothermal: $P(\rho)=a^{2} \rho \quad$ (since T proportional to p / ρ). Isentropic: $P(\rho)=\hat{\kappa} \rho^{\gamma} \quad(\gamma \approx 1.4$ for air $)$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
0 & 1 \\
P^{\prime}(\rho)-u^{2} & 2 u
\end{array}\right], \quad \lambda=u \pm \sqrt{P^{\prime}(\rho)}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

Riemann solution for the SW equations in $x-t$ plane

Similarity solution:
Solution is constant on any ray: $q(x, t)=Q(x / t)$
Riemann solution can be calculated for many problems. Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice "approximate Riemann solvers" used numerically.

Compressible gas dynamics

Conservation laws:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}+p\right)_{x} & =0
\end{aligned}
$$

Equation of state:

$$
p=P(\rho)
$$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
0 & 1 \\
P^{\prime}(\rho)-u^{2} & 2 u
\end{array}\right], \quad \lambda=u \pm \sqrt{P^{\prime}(\rho)} .
$$

Sound speed: $c=\sqrt{P^{\prime}(\rho)}$ varies with ρ.
System is hyperbolic if $P^{\prime}(\rho)>0$.

Linearization of gas dynamics

Suppose $\rho(x, t) \approx \rho_{0}$ and $u(x, t) \approx u_{0}$.
Model small perturbations to this steady state (sound waves).

$$
\begin{aligned}
& {\left[\begin{array}{c}
\rho(x, t) \\
(\rho u)(x, t)
\end{array}\right]=\left[\begin{array}{c}
\rho_{0} \\
\rho_{0} u_{0}
\end{array}\right]+\left[\begin{array}{c}
\widetilde{\rho}(x, t) \\
(\widetilde{\rho u})(x, t)
\end{array}\right]} \\
& \text { or } q(x, t)=q_{0}+\tilde{q}(x, t) \text { where }\|\tilde{q}(x, t)\|=\epsilon \text { is small. }
\end{aligned}
$$

Linearization of gas dynamics

Suppose $\rho(x, t) \approx \rho_{0}$ and $u(x, t) \approx u_{0}$.
Model small perturbations to this steady state (sound waves).

$$
\left[\begin{array}{c}
\rho(x, t) \\
(\rho u)(x, t)
\end{array}\right]=\left[\begin{array}{c}
\rho_{0} \\
\rho_{0} u_{0}
\end{array}\right]+\left[\begin{array}{c}
\widetilde{\rho}(x, t) \\
(\widetilde{\rho u})(x, t)
\end{array}\right]
$$

or $q(x, t)=q_{0}+\tilde{q}(x, t)$ where $\|\tilde{q}(x, t)\|=\epsilon$ is small.
Then nonlinear equation $q_{t}+f(q)_{x}=0$ leads to

$$
\begin{aligned}
\tilde{q}_{t} & =q_{t} \\
& =-f(q)_{x} \\
& =-f^{\prime}(q) q_{x} \\
& =-f^{\prime}\left(q_{0}+\tilde{q}\right) \tilde{q}_{x} \\
& =-f^{\prime}\left(q_{0}\right) \tilde{q}_{x}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Linearization of gas dynamics

Suppose $\rho(x, t) \approx \rho_{0}$ and $u(x, t) \approx u_{0}$.
Model small perturbations to this steady state (sound waves).

$$
\left[\begin{array}{c}
\rho(x, t) \\
(\rho u)(x, t)
\end{array}\right]=\left[\begin{array}{c}
\rho_{0} \\
\rho_{0} u_{0}
\end{array}\right]+\left[\begin{array}{c}
\widetilde{\rho}(x, t) \\
(\widetilde{\rho u})(x, t)
\end{array}\right]
$$

or $q(x, t)=q_{0}+\tilde{q}(x, t)$ where $\|\tilde{q}(x, t)\|=\epsilon$ is small.
Then nonlinear equation $q_{t}+f(q)_{x}=0$ leads to

$$
\begin{aligned}
\tilde{q}_{t} & =q_{t} \\
& =-f(q)_{x} \\
& =-f^{\prime}(q) q_{x} \\
& =-f^{\prime}\left(q_{0}+\tilde{q}\right) \tilde{q}_{x} \\
& =-f^{\prime}\left(q_{0}\right) \tilde{q}_{x}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

Linearization: $\tilde{q}_{t}+A \tilde{q}_{x}=0$ where $A=f^{\prime}\left(q_{0}\right)$.

Linearization of gas dynamics

Linearization: $\tilde{q}_{t}+A \tilde{q}_{x}=0$ where $A=f^{\prime}\left(q_{0}\right)$.

$$
A=f^{\prime}\left(q_{0}\right)=\left[\begin{array}{cc}
0 & 1 \\
-u_{0}^{2}+P^{\prime}\left(\rho_{0}\right) & 2 u_{0}
\end{array}\right] .
$$

This can be written out as (2.47):

$$
\begin{aligned}
\tilde{\rho}_{t}+(\widetilde{\rho u})_{x} & =0 \\
(\widetilde{\rho u})_{t}+\left(-u_{0}^{2}+P^{\prime}\left(\rho_{0}\right)\right) \tilde{\rho}_{x}+2 u_{0}(\widetilde{\rho u})_{x} & =0 .
\end{aligned}
$$

Linearization of gas dynamics

Linearization: $\tilde{q}_{t}+A \tilde{q}_{x}=0$ where $A=f^{\prime}\left(q_{0}\right)$.

$$
A=f^{\prime}\left(q_{0}\right)=\left[\begin{array}{cc}
0 & 1 \\
-u_{0}^{2}+P^{\prime}\left(\rho_{0}\right) & 2 u_{0}
\end{array}\right] .
$$

This can be written out as (2.47):

$$
\begin{aligned}
\tilde{\rho}_{t}+(\widetilde{\rho u})_{x} & =0 \\
(\widetilde{\rho u})_{t}+\left(-u_{0}^{2}+P^{\prime}\left(\rho_{0}\right)\right) \tilde{\rho}_{x}+2 u_{0}(\widetilde{\rho u})_{x} & =0 .
\end{aligned}
$$

Rewrite in terms of p and u perturbations (Exer. 2.1):

$$
\begin{array}{r}
\tilde{p}_{t}+u_{0} \tilde{p}_{x}+K_{0} \tilde{u}_{x}=0, \\
\rho_{0} \tilde{u}_{t}+\tilde{p}_{x}+\rho_{0} u_{0} \tilde{u}_{x}=0,
\end{array}
$$

where $K_{0}=\rho_{0} P^{\prime}\left(\rho_{0}\right)$ is the bulk modulus.

Linearization of gas dynamics

$$
\begin{array}{r}
\tilde{p}_{t}+u_{0} \tilde{p}_{x}+K_{0} \tilde{u}_{x}=0, \\
\rho_{0} \tilde{u}_{t}+\tilde{p}_{x}+\rho_{0} u_{0} \tilde{u}_{x}=0,
\end{array}
$$

gives the system $q_{t}+A q_{x}=0 \quad$ (Drop tildes)

$$
q(x, t)=\left[\begin{array}{l}
p(x, t) \\
u(x, t)
\end{array}\right], \quad A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Linearization of gas dynamics

$$
\begin{array}{r}
\tilde{p}_{t}+u_{0} \tilde{p}_{x}+K_{0} \tilde{u}_{x}=0, \\
\rho_{0} \tilde{u}_{t}+\tilde{p}_{x}+\rho_{0} u_{0} \tilde{u}_{x}=0,
\end{array}
$$

gives the system $q_{t}+A q_{x}=0 \quad$ (Drop tildes)

$$
q(x, t)=\left[\begin{array}{l}
p(x, t) \\
u(x, t)
\end{array}\right], \quad A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvalues: $\lambda=u_{0} \pm c_{0}$
where $c_{0}=\sqrt{K_{0} / \rho_{0}}=\sqrt{P^{\prime}\left(\rho_{0}\right)}$ is the linearized sound speed.

Linearization of gas dynamics

$$
\begin{array}{r}
\tilde{p}_{t}+u_{0} \tilde{p}_{x}+K_{0} \tilde{u}_{x}=0, \\
\rho_{0} \tilde{u}_{t}+\tilde{p}_{x}+\rho_{0} u_{0} \tilde{u}_{x}=0,
\end{array}
$$

gives the system $q_{t}+A q_{x}=0 \quad$ (Drop tildes)

$$
q(x, t)=\left[\begin{array}{l}
p(x, t) \\
u(x, t)
\end{array}\right], \quad A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvalues: $\lambda=u_{0} \pm c_{0}$
where $c_{0}=\sqrt{K_{0} / \rho_{0}}=\sqrt{P^{\prime}\left(\rho_{0}\right)}$ is the linearized sound speed.

Usually $u_{0}=0$ for linear acoustics. Then $\lambda^{1}=-c_{0}, \lambda^{2}=+c_{0}$.

Example: Linear acoustics in a 1d tube

$$
q=\left[\begin{array}{l}
p \\
u
\end{array}\right] \quad \begin{aligned}
& p(x, t)=\text { pressure perturbation } \\
& u(x, t)=\text { velocity }
\end{aligned}
$$

Equations:

$$
\begin{array}{rlrl}
p_{t}+\kappa u_{x} & =0 & \kappa=\text { bulk modulus } \\
\rho u_{t}+p_{x} & =0 & \rho & =\text { density }
\end{array}
$$

or

$$
\left[\begin{array}{l}
p \\
u
\end{array}\right]_{t}+\left[\begin{array}{cc}
0 & \kappa \\
1 / \rho & 0
\end{array}\right]\left[\begin{array}{l}
p \\
u
\end{array}\right]_{x}=0 .
$$

Eigenvalues: $\lambda= \pm c$, where $c=\sqrt{\kappa / \rho}=$ sound speed

Second order form: Can combine equations to obtain

$$
p_{t t}=c^{2} p_{x x}
$$

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0}
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.

Eigenvectors for acoustics

$$
A=\left[\begin{array}{cc}
u_{0} & K_{0} \\
1 / \rho_{0} & u_{0}
\end{array}\right]
$$

Eigenvectors:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]
$$

Check that $A r^{p}=\lambda^{p} r^{p}$, where

$$
\lambda^{1}=u_{0}-c_{0}, \quad \lambda^{2}=u_{0}+c_{0}
$$

with $c_{0}=\sqrt{K_{0} / \rho_{0}} \Longrightarrow K_{0}=\rho_{0} c_{0}^{2}$.
Note: Eigenvectors are independent of u_{0}.
Let $Z_{0}=\rho_{0} c_{0}=\sqrt{K_{0} \rho_{0}}=$ impedance.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvalues $r^{1}, r^{2}, \ldots, r^{m}$.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvalues $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{llll}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Suppose hyperbolic:

- Real eigenvalues $\lambda^{1} \leq \lambda^{2} \leq \cdots \leq \lambda^{m}$,
- Linearly independent eigenvalues $r^{1}, r^{2}, \ldots, r^{m}$.

Let $R=\left[r^{1}\left|r^{2}\right| \cdots \mid r^{m}\right] \quad m \times m$ matrix of eigenvectors.
Then $A r^{p}=\lambda^{p} r^{p}$ means that $A R=R \Lambda$ where

$$
\Lambda=\left[\begin{array}{cccc}
\lambda^{1} & & & \\
& \lambda^{2} & & \\
& & \ddots & \\
& & & \lambda^{m}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right)
$$

$A R=R \Lambda \Longrightarrow A=R \Lambda R^{-1}$ and $R^{-1} A R=\Lambda$.
Similarity transformation with R diagonalizes A.

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$. Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0 .
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant! }
$$

Diagonalization of linear system

Consider constant coefficient linear system $q_{t}+A q_{x}=0$.
Multiply system by R^{-1} :

$$
R^{-1} q_{t}(x, t)+R^{-1} A q_{x}(x, t)=0
$$

Introduce $R R^{-1}=I$:

$$
R^{-1} q_{t}(x, t)+R^{-1} A R R^{-1} q_{x}(x, t)=0
$$

Use $R^{-1} A R=\Lambda$ and define $w(x, t)=R^{-1} q(x, t)$:

$$
w_{t}(x, t)+\Lambda w_{x}(x, t)=0 . \quad \text { Since } R \text { is constant! }
$$

This decouples to m independent scalar advection equations:

$$
w_{t}^{p}(x, t)+\lambda^{p} w_{x}^{p}(x, t)=0 . \quad p=1,2, \ldots, m
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x) \quad$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right) .
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

Solution to Cauchy problem

Suppose $q(x, 0)=\stackrel{\circ}{q}(x)$ for $-\infty<x<\infty$.
From this initial data we can compute data

$$
\stackrel{\circ}{w}(x) \equiv R^{-1}{ }_{q}^{\circ}(x)
$$

The solution to the decoupled equation $w_{t}^{p}+\lambda^{p} w_{x}^{p}=0$ is

$$
w^{p}(x, t)=w^{p}\left(x-\lambda^{p} t, 0\right)=\stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right)
$$

Putting these together in vector gives $w(x, t)$ and finally

$$
q(x, t)=R w(x, t)
$$

We can rewrite this as

$$
q(x, t)=\sum_{p=1}^{m} w^{p}(x, t) r^{p}=\sum_{p=1}^{m} \stackrel{\circ}{w}^{p}\left(x-\lambda^{p} t\right) r^{p}
$$

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Consider a pure 1 -wave (simple wave), at speed $\lambda^{1}=-c_{0}$, If $q(x)=\bar{q}+\stackrel{\circ}{w}^{1}(x) r^{1}$ then

$$
q(x, t)=\bar{q}+\stackrel{\circ}{w}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Variation of q, as measured by q_{x} or $\Delta q=q(x+\Delta x)-q(x)$ is proportional to eigenvector r^{1}, e.g.

$$
q_{x}(x, t)={\stackrel{o}{w_{x}}}_{x}^{1}\left(x-\lambda^{1} t\right) r^{1}
$$

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$
r^{1}=\left[\begin{array}{c}
-\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right], \quad r^{2}=\left[\begin{array}{c}
\rho_{0} c_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

In a simple 1-wave (propagating at speed $\lambda^{1}=-c_{0}$),

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is $-Z_{0}$ times the velocity variation.
Similarly, in a simple 2-wave $\left(\lambda^{2}=c_{0}\right)$,

$$
\left[\begin{array}{l}
p_{x} \\
u_{x}
\end{array}\right]=\beta(x)\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right]
$$

The pressure variation is Z_{0} times the velocity variation.

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\begin{aligned}
& q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right]\left.=\begin{array}{c}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]+\begin{array}{c}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right]\left[\begin{array}{c}
Z_{0} \\
1
\end{array}\right] \\
&=\begin{array}{c}
w^{1}(x, 0) r^{1}
\end{array}+\begin{array}{c}
w^{2}(x, 0) r^{2} \\
\end{array} \\
&=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
-\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\stackrel{\circ}{p}(x) / 2 \\
\stackrel{\circ}{p}(x) /\left(2 Z_{0}\right)
\end{array}\right]
\end{aligned}
$$

Acoustic waves

$$
\left.\left.\begin{array}{rl}
q(x, 0)=\left[\begin{array}{c}
\stackrel{\circ}{p}(x) \\
0
\end{array}\right] & =\begin{array}{|}
\stackrel{\circ}{p(x)} \\
2 Z_{0}
\end{array}\left[\begin{array}{c}
-Z_{0} \\
1
\end{array}\right]
\end{array}+\begin{array}{|}
\stackrel{\circ}{2 Z_{0}}
\end{array}\right] \begin{array}{c}
Z_{0} \\
1
\end{array}\right] .
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Recall that $w(x, 0)=R^{-1} q(x, 0)$, i.e.

$$
w^{1}(x, 0)=\ell^{1} q(x, 0), \quad w^{2}(x, 0)=\ell^{2} q(x, 0)
$$

where ℓ^{1} and ℓ^{2} are rows of R^{-1}.

$$
R^{-1}=\left[\begin{array}{l}
\ell^{1} \\
\ell^{2}
\end{array}\right]
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Recall that $w(x, 0)=R^{-1} q(x, 0)$, i.e.

$$
w^{1}(x, 0)=\ell^{1} q(x, 0), \quad w^{2}(x, 0)=\ell^{2} q(x, 0)
$$

where ℓ^{1} and ℓ^{2} are rows of R^{-1}.

$$
R^{-1}=\left[\begin{array}{l}
\ell^{1} \\
\ell^{2}
\end{array}\right]
$$

Note: ℓ^{1} and ℓ^{2} are left-eigenvectors of A :

$$
\ell^{p} A=\lambda^{p} \ell^{p} \quad \text { since } \quad R^{-1} A=\Lambda R^{-1}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
\begin{aligned}
q(x, t) & =w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2} \\
& =w^{1}\left(x+c_{0} t, 0\right) r^{1}+w^{2}\left(x-c_{0} t, 0\right) r^{2}
\end{aligned}
$$

Solution by tracing back on characteristics

The general solution for acoustics:

$$
q(x, t)=w^{1}\left(x-\lambda^{1} t, 0\right) r^{1}+w^{2}\left(x-\lambda^{2} t, 0\right) r^{2}
$$

