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Outline

Today:
• Gas dynamics
• Linearization of gas dynamics
• Linear acoustics
• Diagonalization of linear systems
• Meaning of eigenvectors
• Characteristic solution for acoustics

Next:
• Riemann problem for acoustics
• Finite volume methods

Reading: Chapter 3 and start Chapter 4
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Compressible gas dynamics

In one space dimension (e.g. in a pipe).
ρ(x, t) = density, u(x, t) = velocity,
p(x, t) = pressure, ρ(x, t)u(x, t) = momentum.

Conservation of:

mass: ρ flux: ρu
momentum: ρu flux: (ρu)u+ p
(energy)

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

(Later: p may also depend on internal energy / temperature)
R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]



Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Momentum flux:
ρu2 = (ρu)u = advective flux

p term in flux?
• −px = force in Newton’s second law,
• as momentum flux: microscopic motion of gas molecules.
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Momentum flux arising from pressure

Note that:
• molecules with positive x-velocity crossing x1 to right

increase the momentum in [x1, x2]
• molecules with negative x-velocity crossing x1 to left also

increase the momentum in [x1, x2]
Hence momentum flux increases with pressure p(x1, t) even if
macroscopic (average) velocity is zero.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]



Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

Same as shallow water if P (ρ) = 1
2gρ

2 (with ρ ≡ h).

Isothermal: P (ρ) = a2ρ (since T proportional to p/ρ).

Isentropic: P (ρ) = κ̂ργ (γ ≈ 1.4 for air)

Jacobian matrix:

f ′(q) =
[

0 1
P ′(ρ)− u2 2u

]
, λ = u±

√
P ′(ρ).

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]



The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 13]
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Riemann solution for the SW equations in x-t plane

Similarity solution:
Solution is constant on any ray: q(x, t) = Q(x/t)

Riemann solution can be calculated for many problems.
Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice “approximate Riemann solvers” used numerically.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 13]



Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

Jacobian matrix:

f ′(q) =
[

0 1
P ′(ρ)− u2 2u

]
, λ = u±

√
P ′(ρ).

Sound speed: c =
√
P ′(ρ) varies with ρ.

System is hyperbolic if P ′(ρ) > 0.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]



Linearization of gas dynamics

Suppose ρ(x, t) ≈ ρ0 and u(x, t) ≈ u0.

Model small perturbations to this steady state (sound waves).[
ρ(x, t)

(ρu)(x, t)

]
=
[

ρ0

ρ0u0

]
+
[

ρ̃(x, t)
(ρ̃u)(x, t)

]
or q(x, t) = q0 + q̃(x, t) where ‖q̃(x, t)‖ = ε is small.

Then nonlinear equation qt + f(q)x = 0 leads to

q̃t = qt

= −f(q)x
= −f ′(q)qx
= −f ′(q0 + q̃)q̃x
= −f ′(q0)q̃x +O(ε2).

Linearization: q̃t +Aq̃x = 0 where A = f ′(q0).

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]
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Linearization of gas dynamics

Linearization: q̃t +Aq̃x = 0 where A = f ′(q0).

A = f ′(q0) =
[

0 1
−u2

0 + P ′(ρ0) 2u0

]
.

This can be written out as (2.47):

ρ̃t + (ρ̃u)x = 0

(ρ̃u)t + (−u2
0 + P ′(ρ0))ρ̃x + 2u0(ρ̃u)x = 0.

Rewrite in terms of p and u perturbations (Exer. 2.1):

p̃t + u0p̃x +K0ũx = 0,
ρ0ũt + p̃x + ρ0u0ũx = 0,

where K0 = ρ0P
′(ρ0) is the bulk modulus.
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Linearization of gas dynamics

p̃t + u0p̃x +K0ũx = 0,
ρ0ũt + p̃x + ρ0u0ũx = 0,

gives the system qt +Aqx = 0 (Drop tildes)

q(x, t) =
[
p(x, t)
u(x, t)

]
, A =

[
u0 K0

1/ρ0 u0

]

Eigenvalues: λ = u0 ± c0
where c0 =

√
K0/ρ0 =

√
P ′(ρ0) is the linearized sound speed.

Usually u0 = 0 for linear acoustics. Then λ1 = −c0, λ2 = +c0.
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Example: Linear acoustics in a 1d tube

q =
[
p
u

]
p(x, t) = pressure perturbation
u(x, t) = velocity

Equations:

pt + κux = 0 κ = bulk modulus
ρut + px = 0 ρ = density

or [
p
u

]
t

+
[

0 κ
1/ρ 0

] [
p
u

]
x

= 0.

Eigenvalues: λ = ±c, where c =
√
κ/ρ = sound speed

Second order form: Can combine equations to obtain

ptt = c2pxx

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]



Riemann Problem

Special initial data:

q(x, 0) =
{
ql if x < 0
qr if x > 0

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds ±c.
R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]



Eigenvectors for acoustics

A =
[

u0 K0

1/ρ0 u0

]
Eigenvectors:

r1 =
[
−ρ0c0

1

]
, r2 =

[
ρ0c0

1

]
.

Check that Arp = λprp, where

λ1 = u0 − c0, λ2 = u0 + c0.

with c0 =
√
K0/ρ0 =⇒ K0 = ρ0c

2
0.

Note: Eigenvectors are independent of u0.

Let Z0 = ρ0c0 =
√
K0ρ0 = impedance.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.8]
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Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Suppose hyperbolic:
• Real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm,

• Linearly independent eigenvalues r1, r2, . . . , rm.

Let R = [r1|r2| · · · |rm] m×m matrix of eigenvectors.

Then Arp = λprp means that AR = RΛ where

Λ =


λ1

λ2

. . .
λm

 ≡ diag(λ1, λ2, . . . , λm).

AR = RΛ =⇒ A = RΛR−1 and R−1AR = Λ.
Similarity transformation with R diagonalizes A.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9]
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Diagonalization of linear system

Consider constant coefficient linear system qt +Aqx = 0.

Multiply system by R−1:

R−1qt(x, t) +R−1Aqx(x, t) = 0.

Introduce RR−1 = I:

R−1qt(x, t) +R−1ARR−1qx(x, t) = 0.

Use R−1AR = Λ and define w(x, t) = R−1q(x, t):

wt(x, t) + Λwx(x, t) = 0. Since R is constant!

This decouples to m independent scalar advection equations:

wpt (x, t) + λpwpx(x, t) = 0. p = 1, 2, . . . , m.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9, 3.1]
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Solution to Cauchy problem

Suppose q(x, 0) = q
◦(x) for −∞ < x <∞.

From this initial data we can compute data

w
◦(x) ≡ R−1q

◦(x)

The solution to the decoupled equation wpt + λpwpx = 0 is

wp(x, t) = wp(x− λpt, 0) = w
◦p(x− λpt).

Putting these together in vector gives w(x, t) and finally

q(x, t) = Rw(x, t).

We can rewrite this as

q(x, t) =
m∑
p=1

wp(x, t) rp =
m∑
p=1

w
◦p(x− λpt) rp

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.1]
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Physical meaning of eigenvectors

Eigenvectors for acoustics:

r1 =
[
−ρ0c0

1

]
=
[
−Z0

1

]
, r2 =

[
ρ0c0

1

]
=
[
Z0

1

]
.

Consider a pure 1-wave (simple wave), at speed λ1 = −c0,
If q◦(x) = q̄ + w

◦1(x)r1 then

q(x, t) = q̄ + w
◦1(x− λ1t)r1

Variation of q, as measured by qx or ∆q = q(x+ ∆x)− q(x)
is proportional to eigenvector r1, e.g.

qx(x, t) = w
◦1
x(x− λ1t)r1

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.4, 3.5]



Physical meaning of eigenvectors

Eigenvectors for acoustics:

r1 =
[
−ρ0c0

1

]
=
[
−Z0

1

]
, r2 =

[
ρ0c0

1

]
=
[
Z0

1

]
.

In a simple 1-wave (propagating at speed λ1 = −c0),[
px
ux

]
= β(x)

[
−Z0

1

]
The pressure variation is −Z0 times the velocity variation.

Similarly, in a simple 2-wave (λ2 = c0),[
px
ux

]
= β(x)

[
Z0

1

]
The pressure variation is Z0 times the velocity variation.
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Physical meaning of eigenvectors
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Acoustic waves

q(x, 0) =
[
p
◦(x)

0

]
= −p

◦
(x)

2Z0

[
−Z0

1

]
+ p

◦
(x)

2Z0

[
Z0

1

]

= w1(x, 0)r1 + w2(x, 0)r2

=

[
p
◦(x)/2

−p◦(x)/(2Z0)

]
+

[
p
◦(x)/2

p
◦(x)/(2Z0)

]
.
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

= w1(x+ c0t, 0)r1 + w2(x− c0t, 0)r2

Recall that w(x, 0) = R−1q(x, 0), i.e.

w1(x, 0) = `1q(x, 0), w2(x, 0) = `2q(x, 0)

where `1 and `2 are rows of R−1.

R−1 =
[
`1

`2

]

Note: `1 and `2 are left-eigenvectors of A:

`pA = λp`p since R−1A = ΛR−1.
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

= w1(x+ c0t, 0)r1 + w2(x− c0t, 0)r2

(x, t)

x− λ2t

= x− c0t

x− λ1t

= x + c0t
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Solution by tracing back on characteristics

The general solution for acoustics:

q(x, t) = w1(x− λ1t, 0)r1 + w2(x− λ2t, 0)r2

q(x, t)

w2(x− λ2t, 0)

= `2q(x− λ2t, 0)

w1(x− λ1t, 0)

= `1q(x− λ1t, 0)

w2 constant w1 constant
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