AMath 574
 March 9, 2011

Today:

- Approximate Riemann solvers
- Multidimensional

Friday:

- AMR

Projects: Make an appointment this week, and see http://www.clawpack.org/links/burgersadv

Shallow water equations

$h(x, t)=$ depth
$u(x, t)=$ velocity (depth averaged, varies only with x)
Conservation of mass and momentum hu gives system of two equations.
mass flux $=h u$, momentum flux $=(h u) u+p$ where $p=$ hydrostatic pressure

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
0 & 1 \\
g h-u^{2} & 2 u
\end{array}\right], \quad \lambda=u \pm \sqrt{g h}
$$

Roe solver for Shallow Water

Given $h_{l}, u_{l}, h_{r}, u_{r}$, define

$$
\bar{h}=\frac{h_{l}+h_{r}}{2}, \quad \hat{u}=\frac{\sqrt{h_{l}} u_{l}+\sqrt{h_{r}} u_{r}}{\sqrt{h_{l}}+\sqrt{h r}}
$$

Then
$\hat{A}=$ Jacobian matrix evaluated at this average state
satisfies

$$
A\left(q_{r}-q_{l}\right)=f\left(q_{r}\right)-f\left(q_{l}\right)
$$

- Roe condition is satisfied,
- Isolated shock modeled well,
- Wave propagation algorithm is conservative,
- High resolution methods obtained using corrections with limited waves.

Roe solver for Shallow Water

Given $h_{l}, u_{l}, h_{r}, u_{r}$, define

$$
\bar{h}=\frac{h_{l}+h_{r}}{2}, \quad \hat{u}=\frac{\sqrt{h_{l}} u_{l}+\sqrt{h_{r}} u_{r}}{\sqrt{h_{l}}+\sqrt{h r}}
$$

Eigenvalues of $\hat{A}=f^{\prime}(\hat{q})$ are:

$$
\hat{\lambda}^{1}=\hat{u}-\hat{c}, \quad \hat{\lambda}^{2}=\hat{u}+\hat{c}, \quad \hat{c}=\sqrt{g \bar{h}} .
$$

Eigenvectors:

$$
\hat{r}^{1}=\left[\begin{array}{c}
1 \\
\hat{u}-\hat{c}
\end{array}\right], \quad \hat{r}^{2}=\left[\begin{array}{c}
1 \\
\hat{u}+\hat{c}
\end{array}\right] .
$$

Examples in Clawpack 4.3 to be converted soon!

Potential failure of linearized solvers

Consider shallow water with $h_{\ell}=h_{r}$ and $u_{r}=-u_{\ell} \gg 1$.
Outflow away from interface \Longrightarrow small intermediate h_{m}.

With $u_{r}=0.8$
Roe $h_{m}>0$

With $u_{r}=1.8$
Roe $h_{m}<0$

HLL Solver

Harten - Lax - van Leer (1983): Use only 2 waves with $s^{1}=$ minimum characteristic speed
$s^{2}=$ maximum characteristic speed

$$
\mathcal{W}^{1}=Q^{*}-Q_{\ell}, \quad \mathcal{W}^{2}=Q_{r}-Q^{*}
$$

Conservation implies unique value for middle state Q^{*} :

$$
\begin{aligned}
& s^{1} \mathcal{W}^{1}+s^{2} \mathcal{W}^{2}=f\left(Q_{r}\right)-f\left(Q_{\ell}\right) \\
\Longrightarrow & Q^{*}=\frac{f\left(Q_{r}\right)-f\left(Q_{\ell}\right)-s^{2} Q_{r}+s^{1} Q_{\ell}}{s^{1}-s^{2}}
\end{aligned}
$$

HLL Solver

Harten - Lax - van Leer (1983): Use only 2 waves with $s^{1}=$ minimum characteristic speed
$s^{2}=$ maximum characteristic speed

$$
\mathcal{W}^{1}=Q^{*}-Q_{\ell}, \quad \mathcal{W}^{2}=Q_{r}-Q^{*}
$$

Conservation implies unique value for middle state Q^{*} :

$$
\begin{aligned}
& s^{1} \mathcal{W}^{1}+s^{2} \mathcal{W}^{2}=f\left(Q_{r}\right)-f\left(Q_{\ell}\right) \\
\Longrightarrow & Q^{*}=\frac{f\left(Q_{r}\right)-f\left(Q_{\ell}\right)-s^{2} Q_{r}+s^{1} Q_{\ell}}{s^{1}-s^{2}}
\end{aligned}
$$

Choice of speeds:

- Max and min of expected speeds over entire problem,
- Max and min of eigenvalues of $f^{\prime}\left(Q_{\ell}\right)$ and $f^{\prime}\left(Q_{r}\right)$.

HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Based on characteristic speeds and Roe averages:

$$
\begin{gathered}
s_{i-1 / 2}^{1}=\min _{p}\left(\min \left(\lambda_{i}^{p}, \hat{\lambda}_{i-1 / 2}^{p}\right)\right), \\
s_{i-1 / 2}^{2}=\max _{p}\left(\max \left(\lambda_{i+1}^{p}, \hat{\lambda}_{i-1 / 2}^{p}\right)\right) .
\end{gathered}
$$

where
λ_{i}^{p} is the p th eigenvalue of the Jacobian $f^{\prime}\left(Q_{i}\right)$,
$\hat{\lambda}_{i-1 / 2}^{p}$ is the p th eigenvalue using Roe average $f^{\prime}\left(\hat{Q}_{i-1 / 2}\right)$

Wave propagation methods

- Solving Riemann problem gives waves $\mathcal{W}_{i-1 / 2}^{p}$ "

$$
Q_{i}-Q_{i-1}=\sum_{p} \mathcal{W}_{i-1 / 2}^{p}
$$

and speeds $s_{i-1 / 2}^{p}$. (Usually approximate solver used.)

- These waves update neighboring cell averages depending on sign of s^{p} (Godunov's method) via fluctuations.
- Waves also give characteristic decomposition of slopes:

$$
q_{x}\left(x_{i-1 / 2}, t\right) \approx \frac{Q_{i}-Q_{i-1}}{\Delta x}=\frac{1}{\Delta x} \sum_{p} \mathcal{W}_{i-1 / 2}^{p}
$$

- Apply limiter to each wave to obtain $\widetilde{\mathcal{W}}_{i-1 / 2}^{p}$.
- Use limited waves in second-order correction terms.

High-resolution wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{-} \Delta Q_{i+1 / 2}+\mathcal{A}^{+} \Delta Q_{i-1 / 2}\right)-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2}-\tilde{F}_{i-1 / 2}\right)
$$

where

$$
\tilde{F}_{i-1 / 2}=\frac{1}{2} \sum_{p=1}^{m}\left|s_{i-1 / 2}^{p}\right|\left(1-\frac{\Delta t}{\Delta x}\left|s_{i-1 / 2}^{p}\right|\right) \widetilde{\mathcal{W}}_{i-1 / 2}^{p}
$$

$\widetilde{\mathcal{W}}_{i-1 / 2}^{p}$ represents a limited version of the wave $\mathcal{W}_{i-1 / 2}^{p}$, obtained by comparing this jump with the jump $\mathcal{W}_{I-1 / 2}^{p}$ in the same family at the neighboring Riemann problem in the upwind direction,

$$
I= \begin{cases}i-1 & \text { if } s_{i-1 / 2}^{p}>0 \\ i+1 & \text { if } s_{i-1 / 2}^{p}<0\end{cases}
$$

Wave limiters

Let $\mathcal{W}_{i-1 / 2}=Q_{i}^{n}-Q_{i-1}^{n}$.
Upwind: $Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x} \mathcal{W}_{i-1 / 2}$.
Lax-Wendroff:

$$
\begin{gathered}
Q_{i}^{n+1}=Q_{i}^{n}-\frac{u \Delta t}{\Delta x} \mathcal{W}_{i-1 / 2}-\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2}-\tilde{F}_{i-1 / 2}\right) \\
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{u \Delta t}{\Delta x}\right|\right)|u| \mathcal{W}_{i-1 / 2}
\end{gathered}
$$

High-resolution method:

$$
\tilde{F}_{i-1 / 2}=\frac{1}{2}\left(1-\left|\frac{u \Delta t}{\Delta x}\right|\right)|u| \widetilde{\mathcal{W}}_{i-1 / 2}
$$

where $\widetilde{\mathcal{W}}_{i-1 / 2}=\Phi_{i-1 / 2} \mathcal{W}_{i-1 / 2}$.

Extension to linear systems

Approach 1: Diagonalize the system to

$$
v_{t}+\Lambda v_{x}=0
$$

Apply scalar algorithm to each component.

Approach 2:
Solve the linear Riemann problem to decompose $Q_{i}^{n}-Q_{i-1}^{n}$ into waves.

Apply a wave limiter to each wave.

These are equivalent.
Important to apply limiters to waves or characteristic components, rather than to original variables.

Wave limiters for system

$Q_{i}-Q_{i-1}$ is split into waves $\mathcal{W}_{i-1 / 2}^{p}=\alpha_{i-1 / 2}^{p} r_{i-1 / 2}^{p} \in \mathbb{R}^{m}$.
Replace by $\widetilde{\mathcal{W}}_{i-1 / 2}^{p}=\Phi\left(\theta_{i-1 / 2}^{p}\right) \mathcal{W}_{i-1 / 2}^{p}$ where

$$
\theta_{i-1 / 2}^{p}=\frac{\mathcal{W}_{i-1 / 2}^{p} \cdot \mathcal{W}_{I-1 / 2}^{p}}{\mathcal{W}_{i-1 / 2}^{p} \cdot \mathcal{W}_{i-1 / 2}^{p}}=\frac{\alpha_{I-1 / 2}^{p}}{\alpha_{i-1 / 2}^{p}} \quad \text { if } r_{i-1 / 2}^{p}=r_{I-1 / 2}^{p}
$$

where

$$
I= \begin{cases}i-1 & \text { if } s_{i-1 / 2}^{p}>0 \\ i+1 & \text { if } s_{i-1 / 2}^{p}<0\end{cases}
$$

In the scalar case this reduces to

$$
\theta_{i-1 / 2}^{1}=\frac{\mathcal{W}_{I-1 / 2}^{1}}{\mathcal{W}_{i-1 / 2}^{1}}=\frac{Q_{I}-Q_{I-1}}{Q_{i}-Q_{i-1}}
$$

First order hyperbolic PDE in 2 space dimensions

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$
First-order system: $\quad q_{t}+A q_{x}+B q_{y}=0$
where $q \in \mathbb{R}^{m}$ and $A, B \in \mathbb{R}^{m \times m}$.

Hyperbolic if $\cos (\theta) A+\sin (\theta) B$ is diagonalizable with real eigenvalues, for all angles θ.

First order hyperbolic PDE in 2 space dimensions

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$
First-order system: $\quad q_{t}+A q_{x}+B q_{y}=0$
where $q \in \mathbb{R}^{m}$ and $A, B \in \mathbb{R}^{m \times m}$.

Hyperbolic if $\cos (\theta) A+\sin (\theta) B$ is diagonalizable with real eigenvalues, for all angles θ.

This is required so that plane-wave data gives a 1 d hyperbolic problem:

$$
q(x, y, 0)=\breve{q}(x \cos \theta+y \sin \theta) \quad(\backslash \text { breve } \quad \mathrm{q})
$$

implies contours of q in $x-y$ plane are orthogonal to θ-direction.

Acoustics in 2 dimensions

$$
\begin{aligned}
& p_{t}+K_{0}\left(u_{x}+v_{y}\right)=0 \\
& \rho_{0} u_{t}+p_{x}=0 \\
& \rho_{0} v_{t}+p_{y}=0 \\
& A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u). x-variations in v are stationary.

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u).
x-variations in v are stationary.

$$
B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] \quad R^{y}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Solving $q_{t}+B q_{y}=0$ gives pressure waves in (p, v).
y-variations in u are stationary.

2d finite volume method

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j}^{n} & -\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2, j}^{n}-F_{i-1 / 2, j}^{n}\right] \\
& -\frac{\Delta t}{\Delta y}\left[G_{i, j+1 / 2}^{n}-G_{i, j-1 / 2}^{n}\right] .
\end{aligned}
$$

Fluctuation form:

$$
\begin{aligned}
Q_{i j}^{n+1}=Q_{i j} & -\frac{\Delta t}{\Delta x}\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}+\mathcal{A}^{-} \Delta Q_{i+1 / 2, j}\right) \\
& -\frac{\Delta t}{\Delta y}\left(\mathcal{B}^{+} \Delta Q_{i, j-1 / 2}+\mathcal{B}^{-} \Delta Q_{i, j+1 / 2}\right) \\
& -\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2, j}-\tilde{F}_{i-1 / 2, j}\right)-\frac{\Delta t}{\Delta y}\left(\tilde{G}_{i, j+1 / 2}-\tilde{G}_{i, j-1 / 2}\right) .
\end{aligned}
$$

The \tilde{F} and \tilde{G} are correction fluxes to go beyond Godunov's upwind method.

Incorporate approximations to second derivative terms in each direction ($q_{x x}$ and $q_{y y}$) and mixed term $q_{x y}$.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.
Transverse Riemann solver rpt2.f
Decomposes $\mathcal{A}^{+} \Delta Q$ into $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q$ by splitting this vector into eigenvectors of B.
(Or splits vector into eigenvectors of A if $\mathrm{ixy}=2$.)

Acoustics in heterogeneous media

$$
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \quad q=(p, u, v)^{T}
$$

where
$A=\left[\begin{array}{ccc}0 & K(x, y) & 0 \\ 1 / \rho(x, y) & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K(x, y) \\ 0 & 0 & 0 \\ 1 / \rho(x, y) & 0 & 0\end{array}\right]$.
Note: Not in conservation form!

Acoustics in heterogeneous media

$$
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \quad q=(p, u, v)^{T}
$$

where
$A=\left[\begin{array}{ccc}0 & K(x, y) & 0 \\ 1 / \rho(x, y) & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K(x, y) \\ 0 & 0 & 0 \\ 1 / \rho(x, y) & 0 & 0\end{array}\right]$.
Note: Not in conservation form!
Wave propagation still makes sense. In x-direction:
$\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}-Z_{i-1, j} \\ 1 \\ 0\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}Z_{i j} \\ 1 \\ 0\end{array}\right]$.
Wave speeds: $s_{i-1 / 2, j}^{1}=-c_{i-1, j}, \quad s_{i-1 / 2, j}^{2}=0, \quad s_{i-1 / 2, j}^{3}=+c_{i j}$.

Acoustics in heterogeneous media

$$
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right]
$$

Decompose $\Delta Q=(\Delta p, \Delta u, \Delta v)^{T}$:

$$
\begin{aligned}
& \alpha_{i-1 / 2, j}^{1}=\left(-\Delta Q^{1}+Z \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
& \alpha_{i-1 / 2, j}^{2}=\Delta Q^{3} \\
& \alpha_{i-1 / 2, j}^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{aligned}
$$

Acoustics in heterogeneous media

$$
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right]
$$

Decompose $\Delta Q=(\Delta p, \Delta u, \Delta v)^{T}$:

$$
\begin{aligned}
& \alpha_{i-1 / 2, j}^{1}=\left(-\Delta Q^{1}+Z \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
& \alpha_{i-1 / 2, j}^{2}=\Delta Q^{3} \\
& \alpha_{i-1 / 2, j}^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{aligned}
$$

Fluctuations: (Note: $s^{1}<0, s^{2}=0, s^{3}>0$)

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{1} \mathcal{W}_{i-1 / 2, j}^{1} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
\end{aligned}
$$

Acoustics in heterogeneous media

Transverse solver: Split right-going fluctuation

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
$$

into up-going and down-going pieces:

Decompose $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ into eigenvectors of B. Down-going:

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right]
$$

Transverse solver for acoustics

Up-going part: $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=c_{i, j+1} \beta^{3} r^{3}$ from

$$
\begin{aligned}
& \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
1 \\
1
\end{array}\right], \\
& \beta^{3}=\left(\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i, j+1}\right) /\left(Z_{i j}+Z_{i, j+1}\right) .
\end{aligned}
$$

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.
Note: there is also a parameter ixy:
ixy $=1$ means normal solve was in x-direction,
ixy $=2$ means normal solve was in y-direction, In this case asdq represents $\mathcal{B}^{-} \Delta Q$ or $\mathcal{B}^{+} \Delta Q$ and the routine must return $\mathcal{A}^{-} \mathcal{B}^{*} \Delta Q$ and $\mathcal{A}^{+} \mathcal{B}^{*} \Delta Q$.

Shallow water equations in two dimensions

$$
\begin{aligned}
h_{t}+(h u)_{x}+(h v)_{y} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+(h u v)_{y} & =0 \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{1}{2} g h^{2}\right)_{y} & =0
\end{aligned}
$$

Shallow water equations in two dimensions

$$
\begin{aligned}
h_{t}+(h u)_{x}+(h v)_{y} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+(h u v)_{y} & =0 \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{1}{2} g h^{2}\right)_{y} & =0
\end{aligned}
$$

Jacobian matrices:

$$
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u v & v & u
\end{array}\right], \quad g^{\prime}(q)=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-u v & v & u \\
-v^{2}+g h & 0 & 2 v
\end{array}\right] .
$$

Shallow water equations in two dimensions

$$
\begin{aligned}
h_{t}+(h u)_{x}+(h v)_{y} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+(h u v)_{y} & =0 \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{1}{2} g h^{2}\right)_{y} & =0
\end{aligned}
$$

Jacobian matrices:

$$
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u v & v & u
\end{array}\right], \quad g^{\prime}(q)=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-u v & v & u \\
-v^{2}+g h & 0 & 2 v
\end{array}\right] .
$$

Eigenvalue and eigenvectors of $f^{\prime}(q)$:

$$
\begin{aligned}
\lambda^{x 1} & =u-c, & \lambda^{x 2} & =u, & \lambda^{x 3} & =u+c, \\
r^{x 1} & =\left[u \frac{1}{v} c\right], & r^{x 2} & =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], & r^{x 3} & =\left[\begin{array}{c}
1 \\
u+c \\
v
\end{array}\right] .
\end{aligned}
$$

Structure of dam-break Riemann solution in 2d

$$
h_{l}>h_{r}, \quad u_{l}=u_{r}=0, \quad v_{l}<0, v_{r}>0
$$

Jump in shear velocity v is advected with velocity u_{m}. (Linearly degenerate)
Note: Variations in v (y-velocity) in the x-direction do not compress fluid.

Structure of dam-break Riemann solution in 2d

$$
h_{l}>h_{r}, \quad u_{l}=u_{r}=0, \quad v_{l}<0, v_{r}>0
$$

Jump in shear velocity v is advected with velocity u_{m}. (Linearly degenerate)
Note: Variations in v (y-velocity) in the x-direction do not compress fluid.
(Elasticity: restoring force from shear deformation \Longrightarrow shear waves.)

Shallow water equations in two dimensions

$$
\begin{aligned}
h_{t}+(h u)_{x}+(h v)_{y} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+(h u v)_{y} & =0 \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{1}{2} g h^{2}\right)_{y} & =0
\end{aligned}
$$

Shallow water equations in two dimensions

$$
\begin{aligned}
h_{t}+(h u)_{x}+(h v)_{y} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+(h u v)_{y} & =0 \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{1}{2} g h^{2}\right)_{y} & =0
\end{aligned}
$$

Roe averages:

$$
\bar{h}=\frac{1}{2}\left(h_{l}+h_{r}\right), \quad \hat{u}=\frac{\sqrt{h_{l}} u_{l}+\sqrt{h_{r}} u_{r}}{\sqrt{h_{l}}+\sqrt{h_{r}}}, \hat{v}=\text { similar. }
$$

Roe matrix in x-direction:

$$
\hat{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\hat{u}^{2}+g \bar{h} & 2 \hat{u} & 0 \\
-\hat{u} \hat{v} & \hat{v} & \hat{u}
\end{array}\right]=f^{\prime}(\hat{q})
$$

Shallow water equations in two dimensions

Roe matrix in x-direction:

$$
\hat{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\hat{u}^{2}+g \bar{h} & 2 \hat{u} & 0 \\
-\hat{u} \hat{v} & \hat{v} & \hat{u}
\end{array}\right]
$$

has eigenvalues and eigenvectors

$$
\begin{aligned}
& \hat{\lambda}^{x 1}=\hat{u}-\hat{c}, \quad \hat{\lambda}^{x 2}=\hat{u} \quad \hat{\lambda}^{x 3}=\hat{u}+\hat{c} \\
& \hat{r}^{x 1}=\left[\begin{array}{c}
1 \\
\hat{u}-\hat{c} \\
\hat{v}
\end{array}\right], \quad \hat{r}^{x 2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \hat{r}^{x 3}=\left[\begin{array}{c}
1 \\
\hat{u}+\hat{c} \\
\hat{v}
\end{array}\right]
\end{aligned}
$$

Shallow water equations in two dimensions

Roe matrix in x-direction:

$$
\hat{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\hat{u}^{2}+g \bar{h} & 2 \hat{u} & 0 \\
-\hat{u} \hat{v} & \hat{v} & \hat{u}
\end{array}\right]
$$

has eigenvalues and eigenvectors

$$
\begin{aligned}
& \hat{\lambda}^{x 1}=\hat{u}-\hat{c}, \quad \hat{\lambda}^{x 2}=\hat{u} \quad \hat{\lambda}^{x 3}=\hat{u}+\hat{c} \\
& \hat{r}^{x 1}=\left[\begin{array}{c}
1 \\
\hat{u}-\hat{c} \\
\hat{v}
\end{array}\right], \quad \hat{r}^{x 2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \hat{r}^{x 3}=\left[\begin{array}{c}
1 \\
\hat{u}+\hat{c} \\
\hat{v}
\end{array}\right]
\end{aligned}
$$

Transverse solver: use $\hat{v} \pm \hat{c}$ for transverse wave speeds.
http:
//www.amath.washington.edu/~claw/applications/shallow/2d/rp/

