

Note: This means characteristics must approach shock from both sides as t advances, not move away from shock!

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.13]

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.13]

Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each Riemann problem may not be possible, or too expensive.

Often the nonlinear problem $q_t + f(q)_x = 0$ is approximated by

 $q_t + A_{i-1/2}q_x = 0, \qquad q_\ell = Q_{i-1}, \quad q_r = Q_i$

for some choice of $A_{i-1/2} \approx f'(q)$ based on data Q_{i-1}, Q_i .

Solve linear system for $\alpha_{i-1/2}$: $Q_i - Q_{i-1} = \sum_p \alpha_{i-1/2}^p r_{i-1/2}^p$. Waves $\mathcal{W}_{i-1/2}^p = \alpha_{i-1/2}^p r_{i-1/2}^p$ propagate with speeds $s_{i-1/2}^p$, $r_{i-1/2}^p$ are eigenvectors of $A_{i-1/2}$, $s_{i-1/2}^p$ are eigenvalues of $A_{i-1/2}$.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 15.3.2]

Approximate Riemann solvers

 $q_t + \hat{A}_{i-1/2}q_x = 0, \qquad q_\ell = Q_{i-1}, \quad q_r = Q_i$ Often $\hat{A}_{i-1/2} = f'(Q_{i-1/2})$ for some choice of $Q_{i-1/2}$. In general $\hat{A}_{i-1/2} = \hat{A}(q_\ell, q_r)$.

Roe conditions for consistency and conservation:

- $\bullet \ \hat{A}(q_\ell,q_r) \to f'(q^*) \ \ \text{as} \ \ q_\ell,q_r \to q^*\text{,}$
- \hat{A} diagonalizable with real eigenvalues,
- For conservation in wave-propagation form,

$$\hat{A}_{i-1/2}(Q_i - Q_{i-1}) = f(Q_i) - f(Q_{i-1}).$$

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 15.3.2]

Approximate Riemann solvers

For a scalar problem, we can easily satisfy the Roe condition

$$\hat{A}_{i-1/2}(Q_i - Q_{i-1}) = f(Q_i) - f(Q_{i-1})$$

by choosing

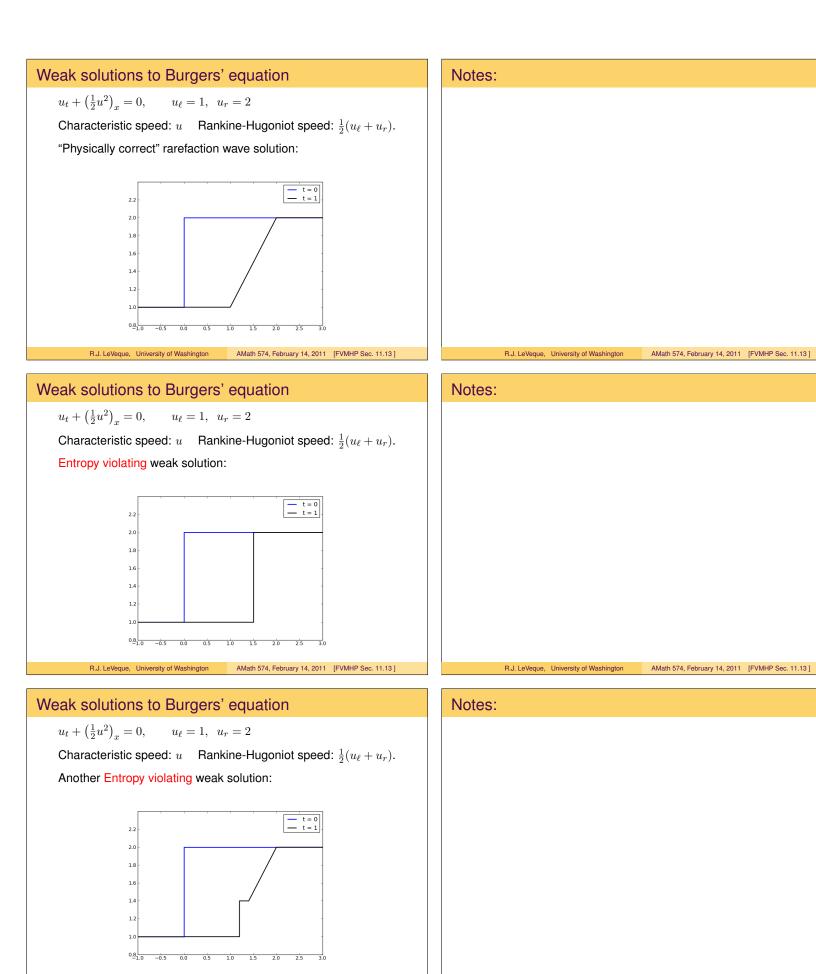
$$\hat{A}_{i-1/2} = \frac{f(Q_i) - f(Q_{i-1})}{Q_i - Q_{i-1}}$$

Then $r_{i-1/2}^1 = 1$ and $s_{i-1/2}^1 = \hat{A}_{i-1/2}$ (scalar!).

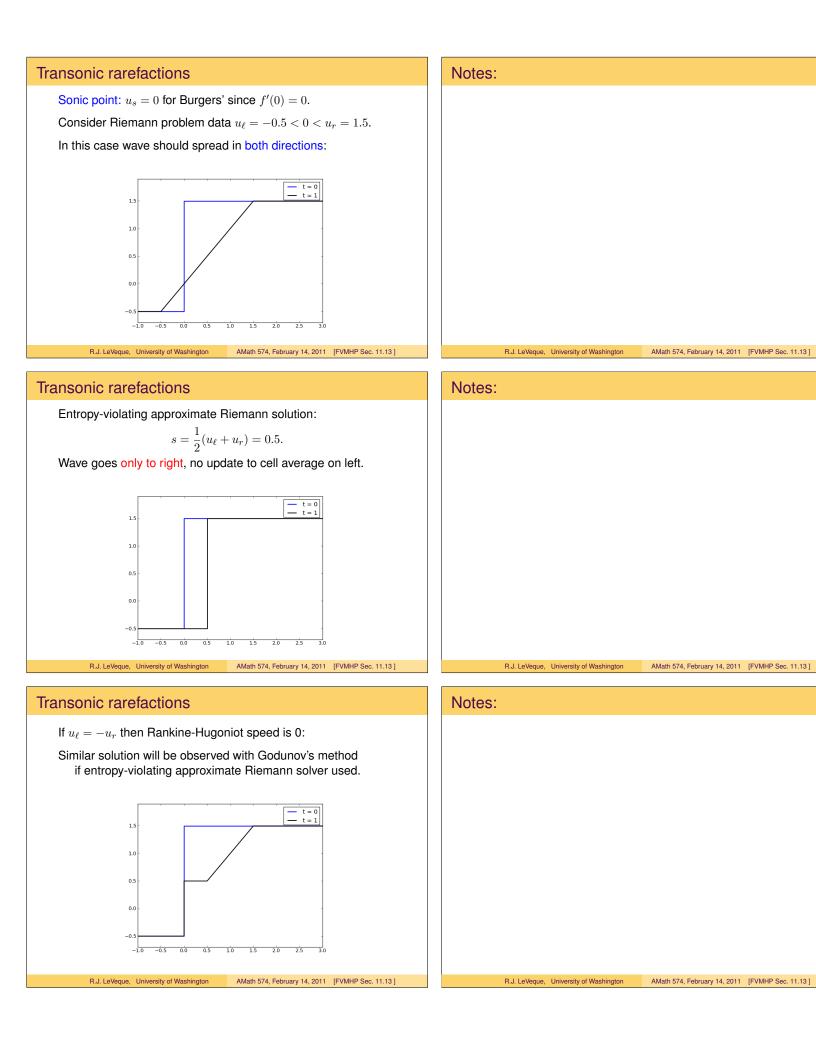
Note: This is the Rankine-Hugoniot shock speed.

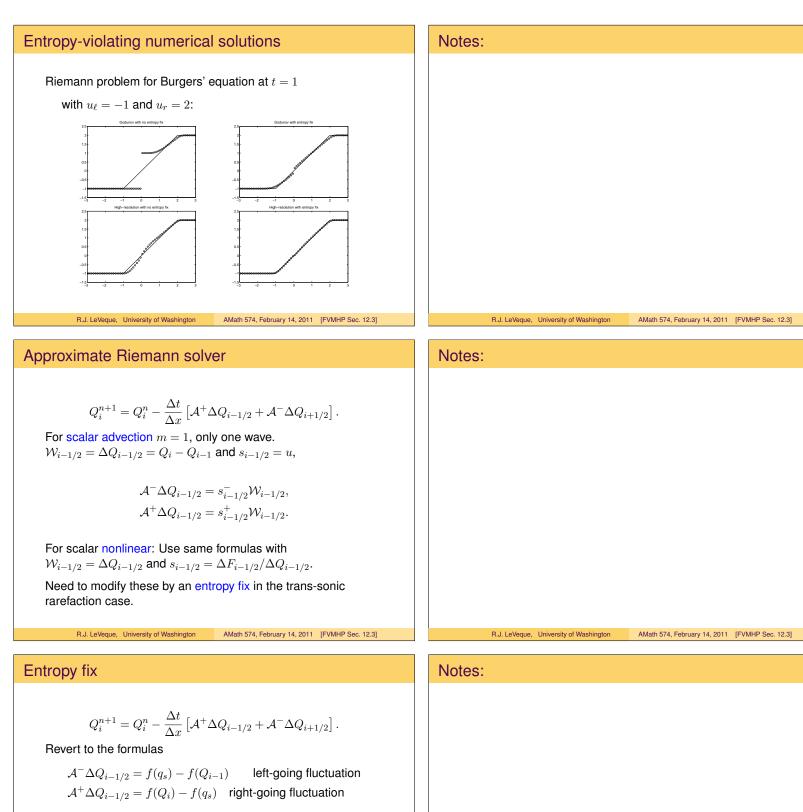
⇒ shock waves are correct, rarefactions replaced by entropy-violating shocks. Notes: R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 15.32]

Notes:				
	B LL M			
	R.J. LeVeque,	University of Washington	AMath 574, February 14, 2011	[FVMHP Sec. 15.3.2]
Notoo				
Notes:	R.J. LeVeque,	University of Washington	AMath 574, February 14, 2011	[FVMHP Sec. 12.2]



R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.13]



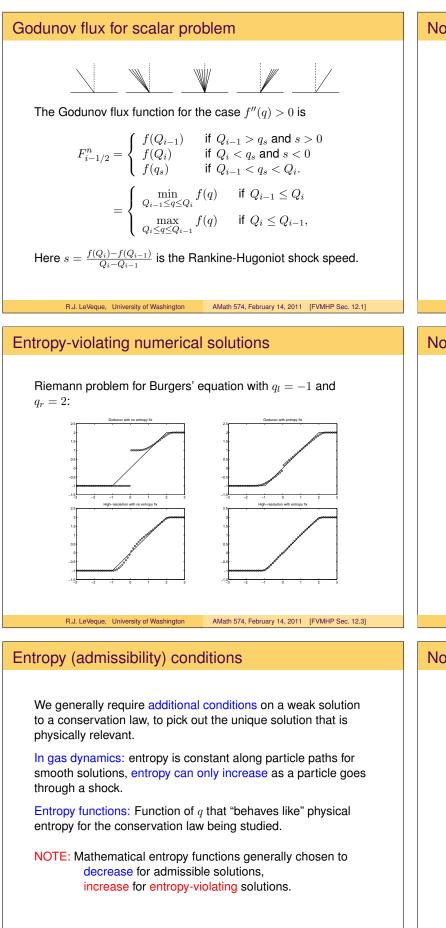


if $f'(Q_{i-1}) < 0 < f'(Q_i)$.

High-resolution method: still define wave W and speed s by

 $\mathcal{W}_{i-1/2} = Q_i - Q_{i-1},$ $s_{i-1/2} = \begin{cases} (f(Q_i) - f(Q_{i-1}))/(Q_i - Q_{i-1}) & \text{if } Q_{i-1} \neq Q_i \\ f'(Q_i) & \text{if } Q_{i-1} = Q_i. \end{cases}$

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 12.3]



R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]

Entropy functions

A scalar-valued function $\eta : \mathbb{R}^m \to \mathbb{R}$ is a convex function of qif the Hessian matrix $\eta''(q)$ with (i, j) element

$$\eta_{ij}''(q) = \frac{\partial^2 \eta}{\partial q^i \partial q^j}$$

is positive definite for all q, i.e., satisfies

$$v^T \eta''(q) v > 0$$
 for all $q, v \in \mathbb{R}^m$.

Scalar case: reduces to $\eta''(q) > 0$.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]

Entropy functions

Entropy function: $\eta : \mathbb{R}^m \to \mathbb{R}$ Entropy flux: $\psi : \mathbb{R}^m \to \mathbb{R}$

chosen so that $\eta(q)$ is convex and:

• $\eta(q)$ is conserved wherever the solution is smooth,

 $\eta(q)_t + \psi(q)_x = 0.$

• Entropy decreases across an admissible shock wave.

Weak form:

$$\int_{x_1}^{x_2} \eta(q(x,t_2)) \, dx \leq \int_{x_1}^{x_2} \eta(q(x,t_1)) \, dx \\ + \int_{t_1}^{t_2} \psi(q(x_1,t)) \, dt - \int_{t_1}^{t_2} \psi(q(x_2,t)) \, dt$$

with equality where solution is smooth.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]

Entropy functions

How to find η and ψ satisfying this?

$$\eta(q)_t + \psi(q)_x = 0$$

For smooth solutions gives

$$\eta'(q)q_t + \psi'(q)q_x = 0.$$

Since $q_t = -f'(q)q_x$ this is satisfied provided

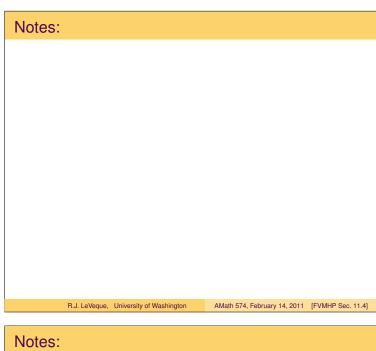
$$\psi'(q) = \eta'(q)f'(q)$$

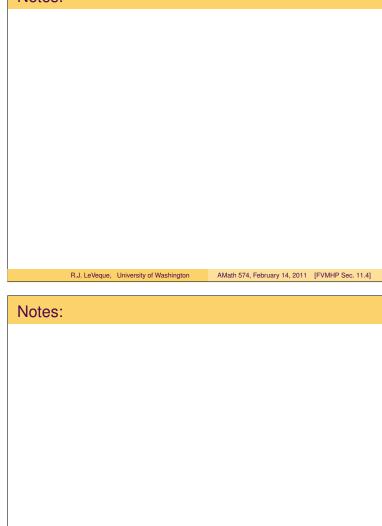
Scalar: Can choose any convex $\eta(q)$ and integrate.

Example: Burgers' equation, f'(u) = u and take $\eta(u) = u^2$.

Then $\psi'(u) = 2u^2 \implies$ Entropy function: $\psi(u) = \frac{2}{3}u^3$.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]





Weak solutions and entropy functions

The conservation laws

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0$$
 and $(u^2)_t + \left(\frac{2}{3}u^3\right)_x = 0$

both have the same quasilinear form

 $u_t + uu_x = 0$

but have different weak solutions, different shock speeds!

Entropy function: $\eta(u) = u^2$.

A correct Burgers' shock at speed $s=\frac{1}{2}(u_\ell+u_r)$ will have total mass of $\eta(u)$ decreasing.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]

Entropy functions

$$\int_{x_1}^{x_2} \eta(q(x,t_2)) \, dx \leq \int_{x_1}^{x_2} \eta(q(x,t_1)) \, dx + \int_{t_1}^{t_2} \psi(q(x_1,t)) \, dt - \int_{t_1}^{t_2} \psi(q(x_2,t)) \, dt$$

comes from considering the vanishing viscosity solution:

$$q_t^{\epsilon} + f(q^{\epsilon})_x = \epsilon q_{xx}^{\epsilon}$$

Multiply by $\eta'(q^{\epsilon})$ to obtain:

$$\eta(q^{\epsilon})_t + \psi(q^{\epsilon})_x = \epsilon \eta'(q^{\epsilon}) q_{xx}^{\epsilon}.$$

Manipulate further to get

$$\eta(q^{\epsilon})_t + \psi(q^{\epsilon})_x = \epsilon \left(\eta'(q^{\epsilon})q_x^{\epsilon}\right)_x - \epsilon \eta''(q^{\epsilon}) (q_x^{\epsilon})^2.$$

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4]

Entropy functions

Smooth solution to viscous equation satisfies

$$\eta(q^{\epsilon})_t + \psi(q^{\epsilon})_x = \epsilon \left(\eta'(q^{\epsilon})q_x^{\epsilon}\right)_x - \epsilon \eta''(q^{\epsilon}) (q_x^{\epsilon})^2.$$

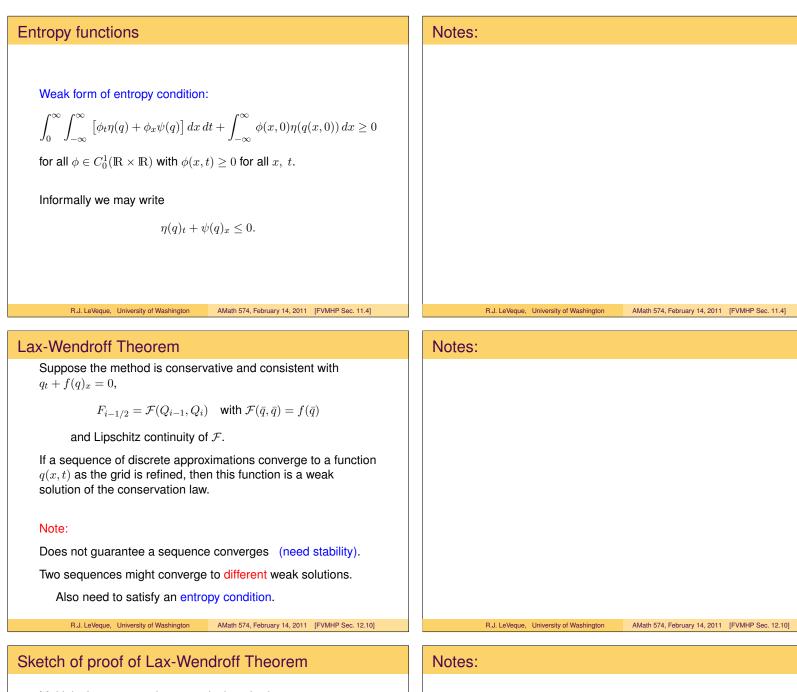
Integrating over rectangle $[x_1, x_2] \times [t_1, t_2]$ gives

$$\begin{split} \int_{x_1}^{x_2} & \eta(q^{\epsilon}(x,t_2)) \, dx = \int_{x_1}^{x_2} \eta(q^{\epsilon}(x,t_1)) \, dx \\ & - \left(\int_{t_1}^{t_2} \, \psi(q^{\epsilon}(x_2,t)) \, dt - \int_{t_1}^{t_2} \, \psi(q^{\epsilon}(x_1,t)) \, dt \right) \\ & + \epsilon \int_{t_1}^{t_2} \, \left[\eta'(q^{\epsilon}(x_2,t)) \, q^{\epsilon}_x(x_2,t) - \eta'(q^{\epsilon}(x_1,t)) \, q^{\epsilon}_x(x_1,t) \right] \, dt \\ & - \epsilon \int_{t_1}^{t_2} \, \int_{x_1}^{x_2} \, \eta''(q^{\epsilon}) \, (q^{\epsilon}_x)^2 \, dx \, dt. \end{split}$$

 $\label{eq:linear} \begin{array}{l} \mbox{Let ϵ} \to 0 \mbox{ to get result:} \\ \mbox{Term on third line goes to 0,} \\ \mbox{Term of fourth line is always} \leq 0. \\ \\ \mbox{R.J. LeVeque, University of Washington} \\ \end{array} \qquad \mbox{AMath 574, February 14, 2011 [FVMHP Sec. 11.4]} \end{array}$

Notes:		
140100.		

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 11.4] Notes: R.J. LeVeque, University of Washington



Multiply the conservative numerical method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

by Φ_i^n to obtain

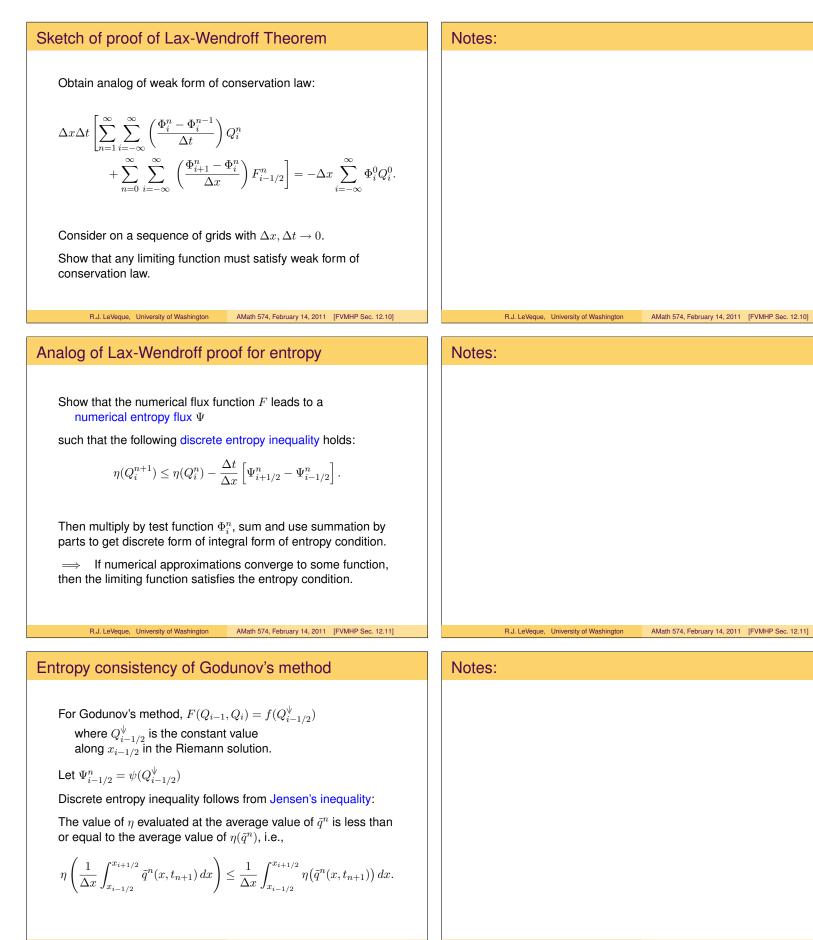
$$\Phi_i^n Q_i^{n+1} = \Phi_i^n Q_i^n - \frac{\Delta t}{\Delta x} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

This is true for all values of i and n on each grid. Now sum over all i and $n \ge 0$ to obtain

$$\sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (Q_i^{n+1} - Q_i^n) = -\frac{\Delta t}{\Delta x} \sum_{n=0}^{\infty} \sum_{i=-\infty}^{\infty} \Phi_i^n (F_{i+1/2}^n - F_{i-1/2}^n).$$

Use summation by parts to transfer differences to Φ terms.

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 12.10]



R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 12.11]

R.J. LeVeque, University of Washington AMath 574, February 14, 2011 [FVMHP Sec. 12.11]