AMath 574
 February 11, 2011

Today:

- Scalar nonlinear conservation laws
- Shocks and rarefaction waves
- Lax-Wendroff theorem
- Entropy conditions

Monday:

- Numerical methods and entropy functions
- Start nonlinear systems

Reading: Chapters 12, 13

Nonlinear scalar conservation laws

Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0$.
Quasilinear form: $u_{t}+u u_{x}=0$.
These are equivalent for smooth solutions, not for shocks!

Nonlinear scalar conservation laws

Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0$.
Quasilinear form: $u_{t}+u u_{x}=0$.
These are equivalent for smooth solutions, not for shocks!

Upwind methods for $u>0$:
Conservative: $U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\frac{1}{2}\left(\left(U_{i}^{n}\right)^{2}-\left(U_{i-1}^{n}\right)^{2}\right)\right)$

Quasilinear: $U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{\Delta x} U_{i}^{n}\left(U_{i}^{n}-U_{i-1}^{n}\right)$.

Ok for smooth solutions, not for shocks!

Importance of conservation form

Solution to Burgers' equation using conservative upwind:

Solution to Burgers' equation using quasilinear upwind:

Weak solutions depend on the conservation law

The conservation laws

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0
$$

and

$$
\left(u^{2}\right)_{t}+\left(\frac{2}{3} u^{3}\right)_{x}=0
$$

both have the same quasilinear form

$$
u_{t}+u u_{x}=0
$$

but have different weak solutions, different shock speeds!

Weak solutions depend on the conservation law

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0 \Longrightarrow s=\frac{1}{2} \frac{u_{r}^{2}-u_{\ell}^{2}}{u_{r}-u_{l}}=\frac{1}{2}\left(u_{\ell}+u_{r}\right) .
$$

whereas

$$
\left(u^{2}\right)_{t}+\left(\frac{2}{3} u^{3}\right)_{x}=0 \Longrightarrow s=\frac{2}{3} \frac{u_{r}^{3}-u_{\ell}^{3}}{u_{r}-u_{\ell}} .
$$

These speeds are different in general \Longrightarrow different weak solutions.

Conservation form

The method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

$$
\Delta x \sum_{i} Q_{i}^{n+1}=\Delta x \sum_{i} Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{+\infty}-F_{-\infty}\right) .
$$

Note: an isolated shock must travel at the right speed!

Lax-Wendroff Theorem

Suppose the method is conservative and consistent with $q_{t}+f(q)_{x}=0$,

$$
F_{i-1 / 2}=\mathcal{F}\left(Q_{i-1}, Q_{i}\right) \quad \text { with } \mathcal{F}(\bar{q}, \bar{q})=f(\bar{q})
$$

and Lipschitz continuity of \mathcal{F}.
If a sequence of discrete approximations converge to a function $q(x, t)$ as the grid is refined, then this function is a weak solution of the conservation law.

Note:
Does not guarantee a sequence converges (need stability).
Two sequences might converge to different weak solutions.
Also need to satisfy an entropy condition.

Entropy-violating numerical solutions

Riemann problem for Burgers' equation at $t=1$
with $u_{\ell}=-1$ and $u_{r}=2$:

Non-uniqueness of weak solutions

For scalar problem, any jump allowed with speed:

$$
s=\frac{f\left(q_{r}\right)-f\left(q_{l}\right)}{q_{r}-q_{l}} .
$$

So even if $f^{\prime}\left(q_{r}\right)<f^{\prime}\left(q_{l}\right)$ the integral form of cons. law is satisfied by a discontinuity propogating at the R-H speed.

In this case there is also a rarefaction wave solution.
In fact, infinitely many weak solutions.
Which one is physically correct?

Weak solutions to Burgers' equation

$u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad u_{\ell}=1, u_{r}=2$
Characteristic speed: $u \quad$ Rankine-Hugoniot speed: $\frac{1}{2}\left(u_{\ell}+u_{r}\right)$. "Physically correct" rarefaction wave solution:

Weak solutions to Burgers' equation

$u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad u_{\ell}=1, u_{r}=2$
Characteristic speed: $u \quad$ Rankine-Hugoniot speed: $\frac{1}{2}\left(u_{\ell}+u_{r}\right)$.
Entropy violating weak solution:

Weak solutions to Burgers' equation

$u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad u_{\ell}=1, \quad u_{r}=2$
Characteristic speed: u Rankine-Hugoniot speed: $\frac{1}{2}\left(u_{\ell}+u_{r}\right)$.
Another Entropy violating weak solution:

Vanishing viscosity solution

We want $q(x, t)$ to be the limit as $\epsilon \rightarrow 0$ of solution to

$$
q_{t}+f(q)_{x}=\epsilon q_{x x}
$$

This selects a unique weak solution:

- Shock if $f^{\prime}\left(q_{l}\right)>f^{\prime}\left(q_{r}\right)$,
- Rarefaction if $f^{\prime}\left(q_{l}\right)<f^{\prime}\left(q_{r}\right)$.

Vanishing viscosity solution

We want $q(x, t)$ to be the limit as $\epsilon \rightarrow 0$ of solution to

$$
q_{t}+f(q)_{x}=\epsilon q_{x x}
$$

This selects a unique weak solution:

- Shock if $f^{\prime}\left(q_{l}\right)>f^{\prime}\left(q_{r}\right)$,
- Rarefaction if $f^{\prime}\left(q_{l}\right)<f^{\prime}\left(q_{r}\right)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f^{\prime}\left(q_{\ell}\right)>s>f^{\prime}\left(q_{r}\right)$, where $s=\left(f\left(q_{r}\right)-f\left(q_{\ell}\right)\right) /\left(q_{r}-q_{\ell}\right)$.

Vanishing viscosity solution

We want $q(x, t)$ to be the limit as $\epsilon \rightarrow 0$ of solution to

$$
q_{t}+f(q)_{x}=\epsilon q_{x x}
$$

This selects a unique weak solution:

- Shock if $f^{\prime}\left(q_{l}\right)>f^{\prime}\left(q_{r}\right)$,
- Rarefaction if $f^{\prime}\left(q_{l}\right)<f^{\prime}\left(q_{r}\right)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f^{\prime}\left(q_{\ell}\right)>s>f^{\prime}\left(q_{r}\right)$, where $s=\left(f\left(q_{r}\right)-f\left(q_{\ell}\right)\right) /\left(q_{r}-q_{\ell}\right)$.

Note: This means characteristics must approach shock from both sides as t advances, not move away from shock!

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Recall that for a linear system, $s^{p}=\lambda^{p}$ and waves \mathcal{W}^{p} are eigenvectors.

$$
\begin{aligned}
\mathcal{A}^{-} \Delta Q_{i-1 / 2} & =\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \mathcal{W}_{i-1 / 2}^{p} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2} & =\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \mathcal{W}_{i-1 / 2}^{p}
\end{aligned}
$$

For scalar advection $m=1$, only one wave.
$\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1}$ and $s=u$,

$$
\begin{aligned}
\mathcal{A}^{-} \Delta Q_{i-1 / 2} & =u^{-} \mathcal{W}_{i-1 / 2} \\
\mathcal{A}^{+} \Delta Q_{i-1 / 2} & =u^{+} \mathcal{W}_{i-1 / 2}
\end{aligned}
$$

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Define

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=F_{i-1 / 2}-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-F_{i-1 / 2} \quad \text { right-going fluctuation }
\end{aligned}
$$

Then this reduces to:

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+1 / 2}-F_{i-1 / 2}\right]
$$

Riemann problem for scalar nonlinear problem

$q_{t}+f(q)_{x}=0$ with data

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Piecewise constant with a single jump discontinuity.
For Burgers' or traffic flow with quadratic flux, the Riemann solution consists of:

- Shock wave if $f^{\prime}\left(q_{l}\right)>f^{\prime}\left(q_{r}\right)$,
- Rarefaction wave if $f^{\prime}\left(q_{l}\right)<f^{\prime}\left(q_{r}\right)$.

Five possible cases:

Riemann problem for scalar convex flux

$q_{t}+f(q)_{x}=0$ with $f^{\prime \prime}(q)$ of one sign, so $f^{\prime}(q)$ is monotone.
Then f is called a convex flux function.
Then there is at most one point q_{s} where $f^{\prime}\left(q_{s}\right)=0$.
q_{s} is called the sonic point or stagnation point.

5 possible cases:

Case 3: $f^{\prime}\left(q_{l}\right)<0<f^{\prime}\left(q_{r}\right)$, so q_{s} lies between q_{l} and q_{r}. This is a trans-sonic rarefaction.

Upwind wave-propagation algorithm

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=F_{i-1 / 2}-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-F_{i-1 / 2} \quad \text { right-going fluctuation }
\end{aligned}
$$

For high-resolution method, we also need to define a wave \mathcal{W} and speed s,

$$
\begin{aligned}
\mathcal{W}_{i-1 / 2} & =Q_{i}-Q_{i-1} \\
s_{i-1 / 2} & = \begin{cases}\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right) & \text { if } Q_{i-1} \neq Q_{i} \\
f^{\prime}\left(Q_{i}\right) & \text { if } Q_{i-1}=Q_{i}\end{cases}
\end{aligned}
$$

Godunov flux for scalar problem

The Godunov flux function for the case $f^{\prime \prime}(q)>0$ is

$$
\begin{aligned}
F_{i-1 / 2}^{n} & = \begin{cases}f\left(Q_{i-1}\right) & \text { if } Q_{i-1}>q_{s} \text { and } s>0 \\
f\left(Q_{i}\right) & \text { if } Q_{i}<q_{s} \text { and } s<0 \\
f\left(q_{s}\right) & \text { if } Q_{i-1}<q_{s}<Q_{i} .\end{cases} \\
& = \begin{cases}\min _{Q_{i-1} \leq q \leq Q_{i}} f(q) & \text { if } Q_{i-1} \leq Q_{i} \\
\max _{Q_{i} \leq q \leq Q_{i-1}} f(q) & \text { if } Q_{i} \leq Q_{i-1},\end{cases}
\end{aligned}
$$

Here $s=\frac{f\left(Q_{i}\right)-f\left(Q_{i-1}\right)}{Q_{i}-Q_{i-1}}$ is the Rankine-Hugoniot shock speed.

Approximate Riemann solver

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

For scalar advection $m=1$, only one wave.
$\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}=Q_{i}-Q_{i-1}$ and $s_{i-1 / 2}=u$,

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{-} \mathcal{W}_{i-1 / 2} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=s_{i-1 / 2}^{+} \mathcal{W}_{i-1 / 2}
\end{aligned}
$$

For scalar nonlinear: Use same formulas with $\mathcal{W}_{i-1 / 2}=\Delta Q_{i-1 / 2}$ and $s_{i-1 / 2}=\Delta F_{i-1 / 2} / \Delta Q_{i-1 / 2}$.
Need to modify these by an entropy fix in the trans-sonic rarefaction case.

Entropy fix

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{A}^{+} \Delta Q_{i-1 / 2}+\mathcal{A}^{-} \Delta Q_{i+1 / 2}\right]
$$

Revert to the formulas

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2}=f\left(q_{s}\right)-f\left(Q_{i-1}\right) \quad \text { left-going fluctuation } \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2}=f\left(Q_{i}\right)-f\left(q_{s}\right) \quad \text { right-going fluctuation }
\end{aligned}
$$

$$
\text { if } f^{\prime}\left(Q_{i-1}\right)<0<f^{\prime}\left(Q_{i}\right)
$$

For high-resolution method, can still define wave \mathcal{W} and speed s by

$$
\begin{aligned}
\mathcal{W}_{i-1 / 2} & =Q_{i}-Q_{i-1} \\
s_{i-1 / 2} & = \begin{cases}\left(f\left(Q_{i}\right)-f\left(Q_{i-1}\right)\right) /\left(Q_{i}-Q_{i-1}\right) & \text { if } Q_{i-1} \neq Q_{i} \\
f^{\prime}\left(Q_{i}\right) & \text { if } Q_{i-1}=Q_{i}\end{cases}
\end{aligned}
$$

Entropy-violating numerical solutions

Riemann problem for Burgers' equation with $q_{l}=-1$ and
$q_{r}=2$:

