AMath 574 February 11, 2011

Today:

- Scalar nonlinear conservation laws
- Shocks and rarefaction waves
- Lax-Wendroff theorem
- Entropy conditions

Monday:

- Numerical methods and entropy functions
- Start nonlinear systems

Reading: Chapters 12, 13

Nonlinear scalar conservation laws

- Burgers' equation: $u_t + \left(\frac{1}{2}u^2\right)_x = 0.$
- Quasilinear form: $u_t + uu_x = 0$.
- These are equivalent for smooth solutions, not for shocks!

Nonlinear scalar conservation laws

- Burgers' equation: $u_t + \left(\frac{1}{2}u^2\right)_x = 0.$
- Quasilinear form: $u_t + uu_x = 0$.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0:

Conservative:
$$U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} \left(\frac{1}{2} ((U_i^n)^2 - (U_{i-1}^n)^2) \right)$$

Quasilinear: $U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} U_i^n (U_i^n - U_{i-1}^n).$

Ok for smooth solutions, not for shocks!

Importance of conservation form

Solution to Burgers' equation using conservative upwind:

Solution to Burgers' equation using quasilinear upwind:

AMath 574, February 11, 2011 [FVMHP Sec. 11.12]

Weak solutions depend on the conservation law

The conservation laws

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0$$

and

$$\left(u^2\right)_t + \left(\frac{2}{3}u^3\right)_x = 0$$

both have the same quasilinear form

$$u_t + uu_x = 0$$

but have different weak solutions,

different shock speeds!

Weak solutions depend on the conservation law

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0 \implies s = \frac{1}{2}\frac{u_r^2 - u_\ell^2}{u_r - u_l} = \frac{1}{2}(u_\ell + u_r).$$

whereas

$$(u^2)_t + \left(\frac{2}{3}u^3\right)_x = 0 \implies s = \frac{2}{3}\frac{u_r^3 - u_\ell^3}{u_r - u_\ell}$$

These speeds are different in general \implies different weak solutions.

The method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$$

is in conservation form.

The total mass is conserved up to fluxes at the boundaries:

$$\Delta x \sum_{i} Q_{i}^{n+1} = \Delta x \sum_{i} Q_{i}^{n} - \frac{\Delta t}{\Delta x} (F_{+\infty} - F_{-\infty}).$$

Note: an isolated shock must travel at the right speed!

Lax-Wendroff Theorem

Suppose the method is conservative and consistent with $q_t + f(q)_x = 0$,

 $F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i) \quad \text{with } \mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$

and Lipschitz continuity of \mathcal{F} .

If a sequence of discrete approximations converge to a function q(x,t) as the grid is refined, then this function is a weak solution of the conservation law.

Note:

Does not guarantee a sequence converges (need stability).

Two sequences might converge to different weak solutions.

Also need to satisfy an entropy condition.

Entropy-violating numerical solutions

Riemann problem for Burgers' equation at t = 1

with $u_{\ell} = -1$ and $u_r = 2$:

AMath 574, February 11, 2011 [FVMHP Sec. 12.3]

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}.$$

So even if $f'(q_r) < f'(q_l)$ the integral form of cons. law is satisfied by a discontinuity propogating at the R-H speed. In this case there is also a rarefaction wave solution.

In fact, infinitely many weak solutions.

Which one is physically correct?

Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. "Physically correct" rarefaction wave solution:

AMath 574, February 11, 2011 [FVMHP Sec. 11.13]

Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. Entropy violating weak solution:

AMath 574, February 11, 2011 [FVMHP Sec. 11.13]

Weak solutions to Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u_\ell = 1, \ u_r = 2$$

Characteristic speed: *u* Rankine-Hugoniot speed: $\frac{1}{2}(u_{\ell} + u_r)$. Another Entropy violating weak solution:

AMath 574, February 11, 2011 [FVMHP Sec. 11.13]

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f'(q_\ell) > s > f'(q_r)$, where $s = (f(q_r) - f(q_\ell))/(q_r - q_\ell)$.

Vanishing viscosity solution

We want q(x,t) to be the limit as $\epsilon \to 0$ of solution to

 $q_t + f(q)_x = \epsilon q_{xx}.$

This selects a unique weak solution:

- Shock if $f'(q_l) > f'(q_r)$,
- Rarefaction if $f'(q_l) < f'(q_r)$.

Lax Entropy Condition:

A discontinuity propagating with speed s in the solution of a convex scalar conservation law is admissible only if $f'(q_\ell) > s > f'(q_r)$, where $s = (f(q_r) - f(q_\ell))/(q_r - q_\ell)$.

Note: This means characteristics must approach shock from both sides as *t* advances, not move away from shock!

Upwind wave-propagation algorithm

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right].$$

Recall that for a linear system, $s^p = \lambda^p$ and waves \mathcal{W}^p are eigenvectors.

$$\mathcal{A}^{-}\Delta Q_{i-1/2} = \sum_{p=1}^{m} (\lambda^p)^{-} \mathcal{W}_{i-1/2}^p,$$
$$\mathcal{A}^{+}\Delta Q_{i-1/2} = \sum_{p=1}^{m} (\lambda^p)^{+} \mathcal{W}_{i-1/2}^p,$$

For scalar advection m = 1, only one wave. $W_{i-1/2} = \Delta Q_{i-1/2} = Q_i - Q_{i-1}$ and s = u,

$$\mathcal{A}^{-}\Delta Q_{i-1/2} = u^{-}\mathcal{W}_{i-1/2},$$
$$\mathcal{A}^{+}\Delta Q_{i-1/2} = u^{+}\mathcal{W}_{i-1/2}.$$

AMath 574, February 11, 2011 [FVMHP Sec. 12.2]

Upwind wave-propagation algorithm

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right].$$

Define

$$\begin{split} \mathcal{A}^{-}\Delta Q_{i-1/2} &= F_{i-1/2} - f(Q_{i-1}) \quad \text{left-going fluctuation} \\ \mathcal{A}^{+}\Delta Q_{i-1/2} &= f(Q_{i}) - F_{i-1/2} \quad \text{right-going fluctuation} \end{split}$$

Then this reduces to:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[F_{i+1/2} - F_{i-1/2} \right].$$

Riemann problem for scalar nonlinear problem

 $q_t + f(q)_x = 0$ with data

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

Piecewise constant with a single jump discontinuity.

For Burgers' or traffic flow with quadratic flux, the Riemann solution consists of:

- Shock wave if $f'(q_l) > f'(q_r)$,
- Rarefaction wave if $f'(q_l) < f'(q_r)$.

Five possible cases:

Riemann problem for scalar convex flux

 $q_t + f(q)_x = 0$ with f''(q) of one sign, so f'(q) is monotone.

Then f is called a convex flux function.

Then there is at most one point q_s where $f'(q_s) = 0$.

 q_s is called the sonic point or stagnation point.

5 possible cases:

Case 3: $f'(q_l) < 0 < f'(q_r)$, so q_s lies between q_l and q_r . This is a trans-sonic rarefaction.

Upwind wave-propagation algorithm

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right].$$

$$\begin{split} \mathcal{A}^{-}\Delta Q_{i-1/2} &= F_{i-1/2} - f(Q_{i-1}) \quad \text{left-going fluctuation} \\ \mathcal{A}^{+}\Delta Q_{i-1/2} &= f(Q_{i}) - F_{i-1/2} \quad \text{right-going fluctuation} \end{split}$$

For high-resolution method, we also need to define a wave $\ensuremath{\mathcal{W}}$ and speed s,

$$\begin{split} \mathcal{W}_{i-1/2} &= Q_i - Q_{i-1}, \\ s_{i-1/2} &= \begin{cases} (f(Q_i) - f(Q_{i-1}))/(Q_i - Q_{i-1}) & \text{ if } Q_{i-1} \neq Q_i \\ f'(Q_i) & \text{ if } Q_{i-1} = Q_i. \end{cases} \end{split}$$

The Godunov flux function for the case f''(q) > 0 is

$$F_{i-1/2}^{n} = \begin{cases} f(Q_{i-1}) & \text{if } Q_{i-1} > q_{s} \text{ and } s > 0\\ f(Q_{i}) & \text{if } Q_{i} < q_{s} \text{ and } s < 0\\ f(q_{s}) & \text{if } Q_{i-1} < q_{s} < Q_{i}. \end{cases}$$
$$= \begin{cases} \min_{\substack{Q_{i-1} \le q \le Q_{i}}} f(q) & \text{if } Q_{i-1} \le Q_{i}\\ \max_{\substack{Q_{i} \le q \le Q_{i-1}}} f(q) & \text{if } Q_{i} \le Q_{i-1}, \end{cases}$$

Here $s = \frac{f(Q_i) - f(Q_{i-1})}{Q_i - Q_{i-1}}$ is the Rankine-Hugoniot shock speed.

Approximate Riemann solver

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right].$$

For scalar advection m = 1, only one wave. $W_{i-1/2} = \Delta Q_{i-1/2} = Q_i - Q_{i-1}$ and $s_{i-1/2} = u$,

$$\mathcal{A}^{-}\Delta Q_{i-1/2} = s_{i-1/2}^{-} \mathcal{W}_{i-1/2},$$
$$\mathcal{A}^{+}\Delta Q_{i-1/2} = s_{i-1/2}^{+} \mathcal{W}_{i-1/2}.$$

For scalar nonlinear: Use same formulas with $W_{i-1/2} = \Delta Q_{i-1/2}$ and $s_{i-1/2} = \Delta F_{i-1/2} / \Delta Q_{i-1/2}$.

Need to modify these by an entropy fix in the trans-sonic rarefaction case.

Entropy fix

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right].$$

Revert to the formulas

$$\begin{split} \mathcal{A}^{-}\Delta Q_{i-1/2} &= f(q_s) - f(Q_{i-1}) & \text{ left-going fluctuation} \\ \mathcal{A}^{+}\Delta Q_{i-1/2} &= f(Q_i) - f(q_s) & \text{right-going fluctuation} \end{split}$$

if $f'(Q_{i-1}) < 0 < f'(Q_i)$.

For high-resolution method, can still define wave $\ensuremath{\mathcal{W}}$ and speed $\ensuremath{\mathit{s}}$ by

$$\begin{split} \mathcal{W}_{i-1/2} &= Q_i - Q_{i-1}, \\ s_{i-1/2} &= \begin{cases} (f(Q_i) - f(Q_{i-1}))/(Q_i - Q_{i-1}) & \text{ if } Q_{i-1} \neq Q_i \\ f'(Q_i) & \text{ if } Q_{i-1} = Q_i. \end{cases} \end{split}$$

Entropy-violating numerical solutions

Riemann problem for Burgers' equation with $q_l = -1$ and $q_r = 2$:

AMath 574, February 11, 2011 [FVMHP Sec. 12.3]