AMath 574 February 9, 2011
Today: - Scalar nonlinear conservation laws - Traffic flow - Shocks and rarefaction waves - Burgers' equation
Friday: - More about nonlinear scalar problems and finite volume methods Reading: Chapter 11, 12
R.J. Leveque, Univesity of Wastingoton AMarn 574 , Februar 9,2011

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Note:

- System of two equations gives rise to 2 waves.
- Each wave behaves like solution of nonlinear scalar equation.

Notes:

Car following model

$X_{j}(t)=$ location of j th car at time t on one-lane road.

$$
\frac{d X_{j}(t)}{d t}=V_{j}(t)
$$

Velocity $V_{j}(t)$ of j th car varies with j and t.

Simple model: Driver adjusts speed (instantly) depending on distance to car ahead.

$$
V_{j}(t)=v\left(X_{j+1}(t)-X_{j}(t)\right)
$$

for some function $v(s)$ that defines speed as a function of separation s.

Simulations: http://www.traffic-simulation.de/
R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Function $v(s)$ (speed as function of separation)

$v(s)= \begin{cases}u_{\max }\left(1-\frac{L}{s}\right) & \text { if } s \geq L, \\ 0 & \text { if } s \leq L .\end{cases}$
where:
$L=$ car length
$u_{\text {max }}=$ maximum velocity
Local density: $0<L / s \leq 1 \quad(s=L \Longrightarrow$ bumper-to-bumper)
R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Chap. 11]

Continuum model

Switch to density function:
Let $q(x, t)=$ density of cars, normalized so:
Units for x : carlengths, so $x=10$ is 10 carlengths from $x=0$.
Units for q : cars per carlength, so $0 \leq q \leq 1$.
Total number of cars in interval $x_{1} \leq x \leq x_{2}$ at time t is

$$
\int_{x_{1}}^{x_{2}} q(x, t) d x
$$

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

R.J. LeVeque, University of Washington

Notes:

Flux function for traffic

$q(x, t)=$ density,$u(x, t)=$ velocity $=U(q(x, t))$.
flux: $f(q)=u q \quad$ Conservation law: $q_{t}+f(q)_{x}=0$.
Constant velocity $u_{\text {max }}$ independent of density:

$$
f(q)=u_{\max } q \Longrightarrow q_{t}+u_{\max } q_{x}=0 \quad \text { (advection) }
$$

Velocity varying with density:

$$
\begin{aligned}
V(s) & =u_{\max }(1-L / s) \quad \Longrightarrow \quad U(q)=u_{\max }(1-q), \\
f(q) & =u_{\max } q(1-q) \quad \text { (quadratic nonlinearity) }
\end{aligned}
$$

Characteristics for a scalar problem

$q_{t}+f(q)_{x}=0 \Longrightarrow q_{t}+f^{\prime}(q) q_{x}=0 \quad$ (if solution is smooth).
Characteristic curves satisfy $X^{\prime}(t)=f^{\prime}(q(X(t), t)), \quad X(0)=x_{0}$.
How does solution vary along this curve?

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) f(q(X(t), t))+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

So solution is constant on characteristic as long as solution stays smooth.
$q(X(t), t)=$ constant $\Longrightarrow X^{\prime}(t)$ is constant on characteristic, so characteristics are straight lines!
R.J. LeVeque, University of Washington

Nonlinear Burgers' equation

Conservation form: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad f(u)=\frac{1}{2} u^{2}$.
Quasi-linear form: $\quad u_{t}+u u_{x}=0$.
This looks like an advection equation with u advected with speed u.

True solution: u is constant along characteristic with speed $f^{\prime}(u)=u$ until the wave "breaks" (shock forms).

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

Burgers' equation

The solution is constant on characteristics so each value advects at constant speed equal to the value...

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Burgers' equation

Equal-area rule:
The area "under" the curve is conserved with time,
We must insert a shock so the two areas cut off are equal.

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

R.J. LeVeque, University of Washington

Weak solutions to $q_{t}+f(q)_{x}=0$
$q(x, t)$ is a weak solution if it satisfies the integral form of the conservation law over all rectangles in space-time,

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} q\left(x, t_{2}\right) d x-\int_{x_{1}}^{x_{2}} q\left(x, t_{1}\right) d x \\
&=\int_{t_{1}}^{t_{2}} f\left(q\left(x_{1}, t\right)\right) d t-\int_{t_{1}}^{t_{2}} f\left(q\left(x_{2}, t\right)\right) d t
\end{aligned}
$$

Obtained by integrating

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=f\left(q\left(x_{1}, t\right)\right)-f\left(q\left(x_{2}, t\right)\right)
$$

from t_{n} to t_{n+1}.

Weak solutions to $q_{t}+f(q)_{x}=0$

Alternatively, multiply PDE by smooth test function $\phi(x, t)$, with compact support $\quad(\phi(x, t) \equiv 0$ for $|x|$ and t sufficiently large), and then integrate over rectangle,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(q_{t}+f(q)_{x}\right) \phi(x, t) d x d t
$$

Then we can integrate by parts to get

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(q \phi_{t}+f(q) \phi_{x}\right) d x d t=-\int_{0}^{\infty} q(x, 0) \phi(x, 0) d x
$$

$q(x, t)$ is a weak solution if this holds for all such ϕ.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

Notes:

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

Notes:

Weak solutions to $q_{t}+f(q)_{x}=0$

A function $q(x, t)$ that is piecewise smooth with jump discontinuities is a weak solution only if:

- The PDE is satisfied where q is smooth,
- The jump discontinuities all satisfy the Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!
R.J. LeVeque, University of Washington

Shock speed with states q_{l} and q_{r} at instant t_{1}

Then

$$
\begin{array}{rl}
\int_{x_{1}}^{x_{1}+\Delta x} & q\left(x, t_{1}+\Delta t\right) d x-\int_{x_{1}}^{x_{1}+\Delta x} q\left(x, t_{1}\right) d x \\
& =\int_{t_{1}}^{t_{1}+\Delta t} f\left(q\left(x_{1}, t\right)\right) d t-\int_{t_{1}}^{t_{1}+\Delta t} f\left(q\left(x_{1}+\Delta x, t\right)\right) d t
\end{array}
$$

Since q is essentially constant along each edge, this becomes

$$
\Delta x q_{l}-\Delta x q_{r}=\Delta t f\left(q_{l}\right)-\Delta t f\left(q_{r}\right)+\mathcal{O}\left(\Delta t^{2}\right)
$$

Taking the limit as $\Delta t \rightarrow 0$ gives

$$
s\left(q_{r}-q_{l}\right)=f\left(q_{r}\right)-f\left(q_{l}\right) .
$$

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

Rankine-Hugoniot jump condition

$$
s\left(q_{r}-q_{l}\right)=f\left(q_{r}\right)-f\left(q_{l}\right) .
$$

This must hold for any discontinuity propagating with speed s, even for systems of conservation laws.
For scalar problem, any jump allowed with speed:

$$
s=\frac{f\left(q_{r}\right)-f\left(q_{l}\right)}{q_{r}-q_{l}} .
$$

For systems, $q_{r}-q_{l}$ and $f\left(q_{r}\right)-f\left(q_{l}\right)$ are vectors, s scalar,
R-H condition: $f\left(q_{r}\right)-f\left(q_{l}\right)$ must be scalar multiple of $q_{r}-q_{l}$.
For linear system, $f(q)=A q$, this says

$$
A\left(q_{r}-q_{l}\right)=s\left(q_{r}-q_{l}\right),
$$

Jump must be an eigenvector, speed s the eigenvalue.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

Notes:

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

Notes:

Figure 11.1 - Shock formation in traffic
Discrete cars: \quad Continuum model: $f^{\prime}(q)=u_{\max }(1-2 q)$

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Chap. 11]

Figure 11.1 - Shock formation
(a) particle paths (car trajectories) $u(x, t)=u_{\max }(1-q(x, t))$

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Chap. 11]

Figure 11.1 - Shock formation
(b) characteristics: $f^{\prime}(q)=u_{\max }(1-2 q)$

Figure 11.2 - Traffic jam shock wave

Cars approaching red light $\left(q_{\ell}<1, \quad q_{r}=1\right)$
Shock speed:

$$
s=\frac{f\left(q_{r}\right)-f\left(q_{\ell}\right)}{q_{r}-q_{\ell}}=\frac{-2 u_{\max } q_{\ell}}{1-q_{\ell}}<0 .
$$

R.J. LeVeque, University of Washington

AMath 574, February 9, 2011 [FVMHP Chap. 11]
Figure 11.3 - Rarefaction wave

Cars accelerating at green light $\left(q_{\ell}=1, q_{r}=0\right)$
Characteristic speed $f^{\prime}(q)=u_{\max }(1-2 q)$
varies from $f^{\prime}\left(q_{\ell}\right)=-u_{\text {max }}$ to $f^{\prime}\left(q_{r}\right)=u_{\text {max }}$.

Notes:
R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

