

Quasi-linear form: $u_t + uu_x = 0.$

This looks like an advection equation with *u* advected with speed u.

True solution: u is constant along characteristic with speed f'(u) = u until the wave "breaks" (shock forms).

Burgers' equation

The solution is constant on characteristics so each value advects at constant speed equal to the value ...

Burgers' equation

Equal-area rule:

The area "under" the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Vanishing Viscosity solution

Viscous Burgers' equation: $u_t + (\frac{1}{2}u^2)_x = \epsilon u_{xx}$.

This parabolic equation has a smooth C^{∞} solution for all t > 0for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.

Why try to solve hyperbolic equation?

- · Solving parabolic equation requires implicit method,
- Often correct value of physical "viscosity" is very small, shock profile that cannot be resolved on the desired grid \implies smoothness of exact solution doesn't help!

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Chap. 11]

Notes:

q(x,t) is a weak solution if this holds for all such ϕ .

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

$$s(q_r - q_l) = f(q_r) - f(q_l).$$

This must hold for any discontinuity propagating with speed *s*, even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

$$s = \frac{f(q_r) - f(q_l)}{q_r - q_l}$$

For systems, $q_r - q_l$ and $f(q_r) - f(q_l)$ are vectors, *s* scalar,

R-H condition: $f(q_r) - f(q_l)$ must be scalar multiple of $q_r - q_l$.

For linear system, f(q) = Aq, this says

$$A(q_r - q_l) = s(q_r - q_l),$$

Jump must be an eigenvector, speed *s* the eigenvalue.

R.J. LeVeque, University of Washington AMath 574, February 9, 2011 [FVMHP Sec. 11.11]

