AMath $574 \quad$ February 7, 2011

Today:

- Wave propagation for 2d acoustics
- 2d elasticity

Wednesday:

- Nonlinear scalar conservation laws

Reading: Chapter 11
R.J. LeVeque, University of Washington

AMath 574, February 7, 2011

Acoustics in heterogeneous media

$$
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \quad q=(p, u, v)^{T}
$$

where
$A=\left[\begin{array}{ccc}0 & K(x, y) & 0 \\ 1 / \rho(x, y) & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K(x, y) \\ 0 & 0 & 0 \\ 1 / \rho(x, y) & 0 & 0\end{array}\right]$.
Note: Not in conservation form!
Wave propagation still makes sense. In x-direction:
$\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}-Z_{i-1, j} \\ 1 \\ 0\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}Z_{i j} \\ 1 \\ 0\end{array}\right]$.
Wave speeds: $s_{i-1 / 2, j}^{1}=-c_{i-1, j}, \quad s_{i-1 / 2, j}^{2}=0, \quad s_{i-1 / 2, j}^{3}=+c_{i j}$.
R.J. LeVeque, University of Washington

AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Acoustics in heterogeneous media

$$
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right]
$$

Decompose $\Delta Q=(\Delta p, \Delta u, \Delta v)^{T}$:

$$
\begin{aligned}
& \alpha_{i-1 / 2, j}^{1}=\left(-\Delta Q^{1}+Z \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right), \\
& \alpha_{i-1 / 2, j}^{2}=\Delta Q^{3}, \\
& \alpha_{i-1 / 2, j}^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) .
\end{aligned}
$$

Fluctuations: (Note: $\left.s^{1}<0, s^{2}=0, s^{3}>0\right)$

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{1} \mathcal{W}_{i-1 / 2, j}^{1} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
\end{aligned}
$$

Acoustics in heterogeneous media

Transverse solver: Split right-going fluctuation

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
$$

into up-going and down-going pieces:

Decompose $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ into eigenvectors of B. Down-going:

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right],
$$

Transverse solver for acoustics

Up-going part: $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=c_{i, j+1} \beta^{3} r^{3}$ from

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right],
$$

$\beta^{3}=\left(\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i, j+1}\right) /\left(Z_{i j}+Z_{i, j+1}\right)$.

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either
$\mathcal{A}^{-} \Delta Q$ if imp $=1$, or
$\mathcal{A}^{+} \Delta Q$ if imp $=2$.
Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.
Note: there is also a parameter ixy:
ixy $=1$ means normal solve was in x-direction,
ixy $=2$ means normal solve was in y-direction, In this case asdq represents $\mathcal{B}^{-} \Delta Q$ or $\mathcal{B}^{+} \Delta Q$ and the routine must return $\mathcal{A}^{-} \mathcal{B}^{*} \Delta Q$ and $\mathcal{A}^{+} \mathcal{B}^{*} \Delta Q$.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5.1]

Notes:

Notes:

Elasticity in 3d

Instead of pressure, there is a symmetric stress tensor

$$
\sigma=\left[\begin{array}{ccc}
\sigma^{11} & \sigma^{12} & \sigma^{13} \\
\sigma^{12} & \sigma^{22} & \sigma^{23} \\
\sigma^{13} & \sigma^{23} & \sigma^{33}
\end{array}\right]
$$

In a gas,

$$
\sigma(x, y, z, t)=-p(x, y, z, t)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This reduces to one variable, the pressure.
More generally compressional stress is not isotropic and there are also shear stresses that resist shear motions.
R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Elastic waves

P-waves

R.J. LeVeque, University of Washington

AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Linear elasticity in 3d

Hyperbolic system $q_{t}+A q_{x}+B q_{y}+C q_{z}=0$ with

$$
q=\left(\sigma^{11}, \sigma^{22}, \sigma^{33}, \sigma^{12}, \sigma^{23}, \sigma^{13}, u, v, w\right)^{T}
$$

and, for example:

$$
A=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & -(\lambda+2 \mu) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu \\
-1 / \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / \rho & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 / \rho & 0 & 0 & 0
\end{array}\right],
$$

where $\rho(x, y)=$ density and $\lambda(x, y), \mu(x, y)$ are Lamé parameters that characterize the stiffness of material.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Notes:

Linear elasticity in 3d

Notes:
Hyperbolic system $q_{t}+A q_{x}+B q_{y}+C q_{z}=0$
The eigenvalues of $\breve{A}=n^{x} A+n^{y} B+n^{z} C$ are the same for any unit vector \vec{n}, and are given by

$$
\begin{array}{cc}
\lambda^{1}=-c_{p}, & \lambda^{2}=c_{p}, \\
\lambda^{3}=-c_{s}, & \quad \lambda^{4}=c_{s}, \\
\lambda^{5}=-c_{s}, & \lambda^{6}=c_{s}, \\
\lambda^{7}=\lambda^{8}=\lambda^{9}=0, & \text { S-waves } \\
\end{array}
$$

P-waves: compression/expansion in direction \vec{n} of propagation.
S-waves: motion in 2-dimensional plane orthogonal to \vec{n}.

$$
c_{p}=\sqrt{\frac{\lambda+2 \mu}{\rho}} \quad>\quad c_{s}=\sqrt{\frac{\mu}{\rho}} .
$$

