

Elasticity in 3d

Instead of pressure, there is a symmetric stress tensor

$$\sigma = \begin{bmatrix} \sigma^{11} & \sigma^{12} & \sigma^{13} \\ \sigma^{12} & \sigma^{22} & \sigma^{23} \\ \sigma^{13} & \sigma^{23} & \sigma^{33} \end{bmatrix}$$

In a gas,

$$\sigma(x, y, z, t) = -p(x, y, z, t) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This reduces to one variable, the pressure.

More generally compressional stress is not isotropic and there are also shear stresses that resist shear motions.

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Linear elasticity in 3d

Hyperbolic system $q_t + Aq_x + Bq_y + Cq_z = 0$ with

$$q = (\sigma^{11}, \sigma^{22}, \sigma^{33}, \sigma^{12}, \sigma^{23}, \sigma^{13}, u, v, w)^T$$

and, for example:

A =	$\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1/\rho \\ 0 \\ 0 \end{array} \right]$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} 0 \\ $	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1/\rho \\ 0 \end{smallmatrix}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1/\rho \end{smallmatrix}$	$\begin{array}{c} -(\lambda+2\mu)\\ -\lambda\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 & - \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$,
-----	--	--	---	--	--	---	--	---	--	---

where $\rho(x, y) = \text{density}$ and $\lambda(x, y), \mu(x, y)$ are Lamé parameters that characterize the stiffness of material.

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

Linear elasticity in 3d

Hyperbolic system $q_t + Aq_x + Bq_y + Cq_z = 0$

The eigenvalues of $\breve{A} = n^x A + n^y B + n^z C$ are the same for any unit vector \vec{n} , and are given by

$$\begin{split} \lambda^1 &= -c_p, \quad \lambda^2 = c_p, \quad \text{P-waves} \\ \lambda^3 &= -c_s, \quad \lambda^4 = c_s, \quad \text{S-waves} \\ \lambda^5 &= -c_s, \quad \lambda^6 = c_s, \quad \text{S-waves} \\ \lambda^7 &= \lambda^8 = \lambda^9 = 0, \end{split}$$

P-waves: compression/expansion in direction \vec{n} of propagation.

S-waves: motion in 2-dimensional plane orthogonal to \vec{n} .

$$c_p = \sqrt{\frac{\lambda + 2\mu}{\rho}} \qquad > \qquad c_s = \sqrt{\frac{\mu}{\rho}}.$$

R.J. LeVeque, University of Washington AMath 574, February 7, 2011 [FVMHP Sec. 21.5]

