
AMath 574 February 4, 2011

Today:
• Multi-dimensional unsplit methods
• Donor Cell and Corner Transport Upwind
• Variable coefficient advection
• Stream functions
• aux arrays and b4step2.

Monday:
• Multi-dimensional acoustics and elasticity

Reading: Chapter 21

R.J. LeVeque, University of Washington AMath 574, February 4, 2011

2d finite volume method for qt + f(q)x + g(q)y = 0

Evolution of total mass due to fluxes through cell edges:

d

dt

∫∫
Cij

q(x, y, t) dx dy =
∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t) dy

−
∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t) dy

+
∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t) dx

−
∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t) dx.

Suggests:

∆x∆yQn+1
ij −∆x∆yQn

ij

∆t
= −∆y[Fn

i+1/2,j − F
n
i−1/2,j]

−∆x[Gn
i,j+1/2 −G

n
i,j−1/2],

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 19]

2d finite volume method for qt + f(q)x + g(q)y = 0

Evolution of total mass due to fluxes through cell edges:

d

dt

∫∫
Cij

q(x, y, t) dx dy =
∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t) dy

−
∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t) dy

+
∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t) dx

−
∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t) dx.

Suggests:

∆x∆yQn+1
ij −∆x∆yQn

ij

∆t
= −∆y[Fn

i+1/2,j − F
n
i−1/2,j]

−∆x[Gn
i,j+1/2 −G

n
i,j−1/2],

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 19]

2d finite volume method for qt + f(q)x + g(q)y = 0

∆x∆yQn+1
ij = ∆x∆yQn

ij −∆t∆y[Fn
i+1/2,j − F

n
i−1/2,j]

−∆t∆x[Gn
i,j+1/2 −G

n
i,j−1/2],

Where we define numerical fluxes:

Fn
i−1/2,j ≈

1
∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t)) dy dt,

Gn
i,j−1/2 ≈

1
∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t)) dx dt.

Rewrite by dividing by ∆x∆y:

Qn+1
ij = Qn

ij −
∆t
∆x

[Fn
i+1/2,j − F

n
i−1/2,j]

− ∆t
∆y

[Gn
i,j+1/2 −G

n
i,j−1/2].

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 19]

2d finite volume method for qt + f(q)x + g(q)y = 0

∆x∆yQn+1
ij = ∆x∆yQn

ij −∆t∆y[Fn
i+1/2,j − F

n
i−1/2,j]

−∆t∆x[Gn
i,j+1/2 −G

n
i,j−1/2],

Where we define numerical fluxes:

Fn
i−1/2,j ≈

1
∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t)) dy dt,

Gn
i,j−1/2 ≈

1
∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t)) dx dt.

Rewrite by dividing by ∆x∆y:

Qn+1
ij = Qn

ij −
∆t
∆x

[Fn
i+1/2,j − F

n
i−1/2,j]

− ∆t
∆y

[Gn
i,j+1/2 −G

n
i,j−1/2].

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 19]

2d finite volume method

Qn+1
ij = Qn

ij −
∆t
∆x

[Fn
i+1/2,j − F

n
i−1/2,j]

− ∆t
∆y

[Gn
i,j+1/2 −G

n
i,j−1/2].

Fluctuation form:

Qn+1
ij = Qij −

∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2)

− ∆t
∆x

(F̃i+1/2,j − F̃i−1/2,j)− ∆t
∆y

(G̃i,j+1/2 − G̃i,j−1/2).

The F̃ and G̃ are correction fluxes to go beyond Godunov’s
upwind method.

Incorporate approximations to second derivative terms in each
direction (qxx and qyy) and mixed term qxy.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 19.3.3]

Advection: Donor Cell Upwind

With no correction fluxes, Godunov’s method for advection is

Donor Cell Upwind:

Qn+1
ij = Qij −

∆t
∆x

[u+(Qij −Qi−1,j) + u−(Qi+1,j −Qij)]

− ∆t
∆y

[v+(Qij −Qi,j−1) + v−(Qi,j+1 −Qij)].

Stable only if
∣∣u∆t

∆x

∣∣+
∣∣∣v∆t

∆y

∣∣∣ ≤ 1.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.1]

Advection: Corner Transport Upwind (CTU)

Correction fluxes can be added to advect waves correctly.

Corner Transport Upwind:

Stable for max
(∣∣u∆t

∆x

∣∣ , ∣∣∣v∆t
∆y

∣∣∣) ≤ 1.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.2]

Advection: Corner Transport Upwind (CTU)

Need to transport triangular region from cell (i, j) to (i, j + 1):

Area =
1
2

(u∆t)(v∆t) =⇒
(1

2uv(∆t)2

∆x∆y

)
(Qij −Qi−1,j).

Accomplished by correction flux:

G̃i,j+1/2 = −1
2

∆t
∆x

uv(Qij −Qi−1,j)

∆t
∆y (G̃i,j+1/2 − G̃i,j−1/2) gives approximation to 1

2∆t2uvqxy .

∆t
∆x (F̃i+1/2,j − F̃i−1/2,j) gives similar approximation.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.3]

Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem qt +Aqx = 0
Decomposes ∆Q = Qij −Qi−1,j into A+∆Q and A−∆Q.
For qt +Aqx +Bqy = 0, split using eigenvalues, vectors:

A = RΛR−1 =⇒ A− = RΛ−R−1, A+ = RΛ+R−1

Input parameter ixy determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes A+∆Q into B−A+∆Q and B+A+∆Q by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if ixy=2.)

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem qt +Aqx = 0
Decomposes ∆Q = Qij −Qi−1,j into A+∆Q and A−∆Q.
For qt +Aqx +Bqy = 0, split using eigenvalues, vectors:

A = RΛR−1 =⇒ A− = RΛ−R−1, A+ = RΛ+R−1

Input parameter ixy determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes A+∆Q into B−A+∆Q and B+A+∆Q by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if ixy=2.)

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm for qt + Aqx + Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm for qt + Aqx + Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm for qt + Aqx + Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm for qt + Aqx + Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm for qt + Aqx + Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5]

Wave propagation algorithm on a quadrilateral grid

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 23]

Wave propagation algorithm on a quadrilateral grid

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Chap. 23]

Variable-coefficient advection

Assume incompressible: ux + vy = 0.

Same formulas work, but replace u and v by

ui−1/2,j =
1

∆y

∫ yj+1/2

yj−1/2

u(xi−1/2, y) dy,

vi,j−1/2 =
1

∆x

∫ xi+1/2

xi−1/2

v(x, yj−1/2) dx.

These satisfy discrete divergence-free property:

1
∆x

(ui+1/2,j − ui−1/2,j) +
1

∆y
(vi,j+1/2 − vi,j−1/2) = 0

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.5–20.8]

Variable-coefficient advection

Stream function: ψ(x, y) such that u = ψy, v = −ψx.

Then ux + vy = 0 and contours of ψ are streamlines.

The flux per unit time across any curve C in x-y plane is∫
C
∇ψ(x(s), y(x)) · ((x′(s), y′(s)) dx

In particular,

ui−1/2,j =
1

∆y
(ψ(xi−1/2, yj+1/2)− ψ(xi−1/2, yj−1/2)),

vi,j−1/2 = − 1
∆x

(ψ(xi+1/2, yj−1/2)− ψ(xi−1/2, yj−1/2)).

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.8.1]

Solid body rotation

Stream function: ψ(x, y) = ω(x2 + y2).

Streamlines are circles about origin.

Velocity field: u(x, y) = 2ωy, v(x, y) = −2ωx.

Solution is periodic with period π/ω.

See Figures 20.5, 20.6.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011 [FVMHP Sec. 20.8.2]

Swirling flow

Stream function: ψ(x, y, t) = cos(2πt)(sin2(πx) + cos2(πy))/π.

Variation in time causes reversal of flow.

See $CLAW/apps/advection/2d/swirl

R.J. LeVeque, University of Washington AMath 574, February 4, 2011

http://kingkong.amath.washington.edu/clawpack/trunk/apps/advection/2d/swirl/README.html

Storing data in aux arrays

In Clawpack, q(i,j,m), m=1,...,meqn holds the solution.

Often there is spatially varying data that describes the problem:

• Edge velocities for advection,
• Density ρ0(x, y), bulk modulus K0(x, y) for acoustics,
• Topography or bathymetry for shallow water.
• Edge lengths, angles, and cell areas for mapped grids,

These can be stored in aux(i,j,m), m=1,2,...,maux.

The Fortran function setaux is called every time a new grid is
created (when AMR is used).

To use this, copy library version (which does nothing) to
application directory and modify this file and Makefile.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011

Storing data in aux arrays

In Clawpack, q(i,j,m), m=1,...,meqn holds the solution.

Often there is spatially varying data that describes the problem:

• Edge velocities for advection,
• Density ρ0(x, y), bulk modulus K0(x, y) for acoustics,
• Topography or bathymetry for shallow water.
• Edge lengths, angles, and cell areas for mapped grids,

These can be stored in aux(i,j,m), m=1,2,...,maux.

The Fortran function setaux is called every time a new grid is
created (when AMR is used).

To use this, copy library version (which does nothing) to
application directory and modify this file and Makefile.

R.J. LeVeque, University of Washington AMath 574, February 4, 2011

Using b4stepN.f

The setaux function is only called when grids are created.

The b4stepN function (in N dimensions) is called before each
time step.

Can use this for example to:
• Change aux arrays for time-dependent velocities,
• Print something out every time step (e.g. total mass),

To use this, copy library version (which does nothing) to
application directory and modify this file and Makefile.

See:
$CLAW/apps/advection/2d/swirl/b4step2.f
$CLAW/apps/advection/2d/swirl/setaux.f
$CLAW/apps/advection/2d/swirl/psi.f

R.J. LeVeque, University of Washington AMath 574, February 4, 2011

http://kingkong.amath.washington.edu/clawpack/trunk/apps/advection/2d/swirl//b4step2.f.html
http://kingkong.amath.washington.edu/clawpack/trunk/apps/advection/2d/swirl//setaux.f.html
http://kingkong.amath.washington.edu/clawpack/trunk/apps/advection/2d/swirl//psi.f.html

	Lecture 11 - Feb 4, 2011
	Unsplit methods
	Variable-coefficient advection

