AMath 574 February 2, 2011
Today: - Multi-dimensional advection - Finite volume methods - Dimensional splitting and fractional steps Friday: - Multi-dimensional wave propagation Reading: Chapters 18, 19, 20
R.J. Leveque, University of Washington AMath 574, February 2, 2011
First order hyperbolic PDE in 2 space dimensions
Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$ First-order system: $\quad q_{t}+A q_{x}+B q_{y}=0$ where $q \in \mathbb{R}^{m}$ and $A, B \in \mathbb{R}^{m \times m}$. Hyperbolic if $\cos (\theta) A+\sin (\theta) B$ is diagonalizable with real eigenvalues, for all angles θ. This is required so that plane-wave data gives a 1d hyperbolic problem: $q(x, y, 0)=\breve{q}(x \cos \theta+y \sin \theta) \quad(\backslash \text { breve q) }$ implies contours of q in $x-y$ plane are orthogonal to θ-direction.
R.J. Leveque, University of Washington AMat5 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

Advection in 2 dimensions

Constant coefficient: $\quad q_{t}+u q_{x}+v q_{y}=0$
In this case solution for arbitrary initial data is easy:

$$
q(x, y, t)=q(x-u t, y-v t, 0) .
$$

Data simply shifts at constant velocity (u, v) in $x-y$ plane.
Variable coefficient:
Conservation form: $\quad q_{t}+(u(x, y, t) q)_{x}+(v(x, y, t) q)_{y}=0$
Advective form (color eqn): $\quad q_{t}+u(x, y, t) q_{x}+v(x, y, t) q_{y}=0$
Equivalent only if flow is divergence-free (incompressible):

$$
\nabla \cdot \vec{u}=u_{x}(x, y, t)+v_{y}(x, y, t)=0 \quad \forall t \geq 0
$$

Advection in 2 dimensions: characteristics

The characteristic curve $(X(t), Y(t))$ starting at some $\left(x_{0}, y_{0}\right)$ is determined by solving the ODEs

$$
\begin{array}{ll}
X^{\prime}(t)=u(X(t), Y(t), t), & X(0)=x_{0} \\
Y^{\prime}(t)=v(X(t), Y(t), t), & Y(0)=y_{0}
\end{array}
$$

How does q vary along this curve?

$$
\frac{d}{d t} q(X(t), Y(t), t)=X^{\prime}(t) q_{x}(\cdots)+Y^{\prime}(t) q_{y}(\cdots)+q_{t}(\cdots)
$$

For color equation: $q_{t}+u(x, y, t) q_{x}+v(x, y, t) q_{y}=0$ q is constant along characterisitic (color is advected).

Advection in 2 dimensions: characteristics

For conservative equation: $q_{t}+(u(x, y, t) q)_{x}+(v(x, y, t) q)_{y}=0$
Can rewrite as $q_{t}+u(x, y, t) q_{x}+v(x, y, t) q_{y}=\left(u_{x}+v_{y}\right) q$
Along characteristic q varies because of source term:

$$
\begin{aligned}
\frac{d}{d t} q(X(t), Y(t), t) & =X^{\prime}(t) q_{x}(\cdots)+Y^{\prime}(t) q_{y}(\cdots)+q_{t}(\cdots) \\
& =(\nabla \cdot \vec{u}) q
\end{aligned}
$$

Conservative form models density of conserved quantity.
Mass in region advecting with the flow varies stays constant but density increases if volume of region decreases, or density decreases if volume of region increases.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

Note: pressure responds to compression or expansion and so p_{t} is proportional to divergence of velocity.

Second and third equations are $F=m a$.
Gives hyperbolic system $q_{t}+A q_{x}+B q_{y}=0$ with
$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$.
R.J. LeVeque, University of Washington

AMath 574, February 2, 2011 [FVMHP Chap. 18]

Acoustics in 2 dimensions

$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$.
Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Eigenvalues: $\lambda^{1}=-c_{0}, \quad \lambda^{2}=0, \quad \lambda^{3}=+c_{0}$ where
$c_{0}=\sqrt{K_{0} / \rho_{0}}$
Independent of angle θ.
Isotropic: sound propagates at same speed in any direction.
Note: Zero wave speed for "shear wave" with variation only in velocitv in direction $(-\sin \theta, \cos \theta)$. (Fia 18.1)
R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Diagonalization 2 dimensions

Can we diagonalize system $q_{t}+A q_{x}+B q_{y}=0$?
Only if A and B have the same eigenvectors!
If $A=R \Lambda R^{-1}$ and $B=R M R^{-1}$, then let $w=R^{-1} q$ and

$$
w_{t}+\Lambda w_{x}+M w_{y}=0
$$

This decouples into scalar advection equations for each component of w :
$w_{t}^{p}+\lambda^{p} w_{x}^{p}+\mu^{p} w_{y}^{p}=0 \Longrightarrow w^{p}(x, y, t)=w^{p}\left(x-\lambda^{p} t, y-\mu^{p} t, 0\right)$.
Note: In this case information propagates only in a finite number of directions $\left(\lambda^{p}, \mu^{p}\right)$ for $p=1, \ldots, m$.

This is not true for most coupled systems, e.g. acoustics.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 18]

Notes:

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u). x-variations in v are stationary.

$$
B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] \quad R^{y}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Solving $q_{t}+B q_{y}=0$ gives pressure waves in (p, v). y-variations in u are stationary.

Dimensional Splitting

Hyperbolic system in 2d: $\quad q_{t}+A q_{x}+B q_{y}=0$
x-sweeps : $\quad q_{t}+A q_{x}=0$
y-sweeps : $\quad q_{t}+B q_{y}=0$.
Use one-dimensional high-resolution methods for each,
"Godunov splitting" if clawdata.order_trans $=-1$,
"Strang splitting" if clawdata.order_trans $=-2$,

- Easy to extend good one-dimensional methods to 2D or 3D.
- Often very effective and efficient.
- May suffer from lack of isotropy.
- May be hard to use with AMR, complex geometry.

Alternative: Unsplit method if clawdata.order_trans ≥ 0.
R.J. LeVeque, University of Washington

AMath 574, February 2, 2011 [FVMHP Chap. 19]

Fractional step method for a linear PDE

$q_{t}=(\mathcal{A}+\mathcal{B}) q \quad$ dimensional splitting: $\mathcal{A}=A \partial_{x}, \quad \mathcal{B}=B \partial_{y}$.
Then

$$
q_{t t}=(\mathcal{A}+\mathcal{B}) q_{t}=(\mathcal{A}+\mathcal{B})^{2} q,
$$

and so

$$
\begin{aligned}
q(x, \Delta t) & =q(x, 0)+\Delta t(\mathcal{A}+\mathcal{B}) q(x, 0)+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2} q(x, 0)+\cdots \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}(\mathcal{A}+\mathcal{B})^{2}+\cdots\right) q(x, 0)
\end{aligned}
$$

Solution operator: $q(x, \Delta t)=e^{\Delta t(\mathcal{A}+\mathcal{B})} q(x, 0)$.
With the fractional step method, we instead compute

$$
q^{*}(x, \Delta t)=e^{\Delta t \mathcal{A}} q(x, 0),
$$

and then

$$
q^{* *}(x, \Delta t)=e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}} q(x, 0),
$$

Splitting error

$$
q(x, \Delta t)-q^{* *}(x, \Delta t)=\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0)
$$

Combining 2 steps gives:

$$
\begin{aligned}
q^{* *}(x, \Delta t) & =\left(I+\Delta t \mathcal{B}+\frac{1}{2} \Delta t^{2} \mathcal{B}^{2}+\cdots\right)\left(I+\Delta t \mathcal{A}+\frac{1}{2} \Delta t^{2} \mathcal{A}^{2}+\cdots\right) q(x, 0) \\
& =\left(I+\Delta t(\mathcal{A}+\mathcal{B})+\frac{1}{2} \Delta t^{2}\left(\mathcal{A}^{2}+2 \mathcal{B} \mathcal{A}+\mathcal{B}^{2}\right)+\cdots\right) q(x, 0) .
\end{aligned}
$$

In true solution operator,

$$
\begin{aligned}
(\mathcal{A}+\mathcal{B})^{2} & =(\mathcal{A}+\mathcal{B})(\mathcal{A}+\mathcal{B}) \\
& =\mathcal{A}^{2}+\mathcal{A B}+\mathcal{B A}+\mathcal{B}^{2}
\end{aligned}
$$

R.J. LeVeque, University of Washington

Splitting error

$$
\begin{aligned}
q(x, \Delta t)-q^{* *}(x, \Delta t) & =\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\Delta t \mathcal{B}} e^{\Delta t \mathcal{A}}\right) q(x, 0) \\
& =\frac{1}{2} \Delta t^{2}(\mathcal{A B}-\mathcal{B A}) q(x, 0)+O\left(\Delta t^{3}\right)
\end{aligned}
$$

There is a splitting error unless the two operators commute.
No splitting error for constant coefficient advection:

$$
\mathcal{A}=u \partial_{x}, \quad \mathcal{B}=v \partial_{y} \quad \mathcal{A B} q=\mathcal{B} \mathcal{A} q=u v q_{x y}
$$

There is a splitting error if u, v are varying:

$$
\begin{aligned}
& \mathcal{A B} q=u(x, y) \partial_{x}\left(v(x, y) \partial_{y}\right) q=u v q_{x y}+u v_{x} q_{y}, \\
& \mathcal{B A} \mathcal{A} q=v(x, y) \partial_{y}\left(u(x, y) \partial_{x}\right) q=u v q_{x y}+v u_{y} q_{x} .
\end{aligned}
$$

There is a splitting error for acoustics since $A B q_{x y} \neq B A q_{x y}$.
R.J. LeVeque, University of Washington

AMath 574, February 2, 2011 [FVMHP Chap. 19]

Strang splitting

- Time step $\Delta t / 2$ on A-problem,
- Time step Δt on B-problem,
- Time step $\Delta t / 2$ on A-problem.

Formally second order if each solution method is.

$$
\left(e^{\Delta t(\mathcal{A}+\mathcal{B})}-e^{\frac{1}{2} \Delta t \mathcal{A}} e^{\Delta t \mathcal{B}} e^{\frac{1}{2} \Delta t \mathcal{A}}\right) q(x, 0)=O\left(\Delta t^{3}\right)
$$

In practice often little difference from "first order Godunov splitting"

Notes:

R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 19]

Notes:

Notes:

Example of splitting error for source term

Advection + decay: $\quad q_{t}+u q_{x}=-\lambda(x) q$
Take $\mathcal{A}=-u \partial_{x}$ and $\mathcal{B}=\lambda(x) \partial_{x}$.
Then:

$$
\begin{aligned}
\mathcal{A B} q & =-u \partial_{x}\left(\lambda(x) q_{x}\right)=-u \lambda(x) q_{x x}-u \lambda^{\prime}(x) q_{x} \\
\mathcal{B A} q & =-\lambda(x) u q_{x x}
\end{aligned}
$$

Splitting error unless $\lambda(x)=$ constant
Source term in Clawpack: Provide src1.f in 1d or src2.f in 2 d that advances Q in each cell by time Δt.

Set clawdata.src_split $=1$ (or $=2$ for Strang splitting)
R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 19]

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction. In latter case splitting is done using B instead of A. This is all that's required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes $\mathcal{A}^{+} \Delta Q$ into $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q$ by splitting this vector into eigenvectors of B.
(Or splits vector into eigenvectors of A if ixy=2.)
R.J. LeVeque, University of Washington AMath 574, February 2, 2011 [FVMHP Chap. 19]

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

