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Course outline

Main goals:
• Theory of hyperbolic conservation laws in one dimension
• Finite volume methods in 1 and 2 dimensions
• Some applications: advection, acoustics, Burgers’, shallow

water equations, gas dynamics, traffic flow
• Use of the Clawpack software: www.clawpack.org

Slides will be posted and green links can be clicked.

http://kingkong.amath.washington.edu/trac/am574w11
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Outline

Today:
• Hyperbolic equations
• Advection
• Riemann problem
• Diffusion
• Clawpack
• Acoustics

Reading: Chapters 1 and 2
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First order hyperbolic PDE in 1 space dimension

Linear: qt +Aqx = 0, q(x, t) ∈ lRm, A ∈ lRm×m

Conservation law: qt + f(q)x = 0, f : lRm → lRm (flux)

Quasilinear form: qt + f ′(q)qx = 0

Hyperbolic if A or f ′(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.

Eigenvalues are wave speeds.

Note: Second order wave equation ptt = c2pxx can be written
as a first-order system (acoustics).
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity, so

∫ x2

x1

q(x, t) dx = total mass in interval

changes only because of fluxes at left or right of interval.
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = F1(t)− F2(t)

where
Fj = f(q(xj , t)), f(q) = flux function.
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Derivation of Conservation Laws

If q is smooth enough, we can rewrite

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

as ∫ x2

x1

qt dx = −
∫ x2

x1

f(q)x dx

or ∫ x2

x1

(qt + f(q)x) dx = 0

True for all x1, x2 =⇒ differential form:

qt + f(q)x = 0.
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Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qni ≈ q(xi, tn)
• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qni ≈
1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Advection equation

u = constant flow velocity

q(x, t) = tracer concentration, f(q) = uq

=⇒ qt + uqx = 0.

True solution: q(x, t) = q(x− ut, 0)

R.J. LeVeque, University of Washington AMath 574, January 3, 2011 [FVMHP Sec. 2.1]
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Characteristics for advection

q(x, t) = η(x− ut) =⇒ q is constant along lines

X(t) = x0 + ut, t ≥ 0.

Can also see that q is constant along X(t) from:

d

dt
q(X(t), t) = qx(X(t), t)X ′(t) + qt(X(t), t)

= qx(X(t), t)u+ qt(X(t), t)
= 0.

In x–t plane:
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Cauchy problem for advection

Advection equation on infinite 1D domain:

qt + uqx = 0 −∞ < x <∞, t ≥ 0,

with initial data

q(x, 0) = η(x) −∞ < x <∞.

Solution:

q(x, t) = η(x− ut) −∞ < x <∞, t ≥ 0.
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Initial–boundary value problem (IBVP) for advection

Advection equation on finite 1D domain:

qt + uqx = 0 a < x < b, t ≥ 0,

with initial data

q(x, 0) = η(x) a < x < b.

and boundary data at the inflow boundary:

If u > 0, need data at x = a:

q(a, t) = g(t), t ≥ 0,

If u < 0, need data at x = b:

q(b, t) = g(t), t ≥ 0,
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Characteristics for IBVP

In x–t plane for the case u > 0:

Solution:

q(x, t) =
{
η(x− ut) if a ≤ x− ut ≤ b,
g((x− a)/u) otherwise .
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Periodic boundary conditions

q(a, t) = q(b, t), t ≥ 0.

In x–t plane for the case u > 0:

Solution:
q(x, t) = η(X0(x, t)),

where X0(x, t) = a+ mod(x− ut− a, b− a).
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The Riemann problem

The Riemann problem consists of the hyperbolic equation
under study together with initial data of the form

q(x, 0) =
{
ql if x < 0
qr if x ≥ 0

Piecewise constant with a single jump discontinuity from ql to
qr.

The Riemann problem is fundamental to understanding
• The mathematical theory of hyperbolic problems,
• Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the
Riemann problem can often be solved for general ql and qr, and
consists of a set of waves propagating at constant speeds.
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The Riemann problem for advection

The Riemann problem for the advection equation qt + uqx = 0
with

q(x, 0) =
{
ql if x < 0
qr if x ≥ 0

has solution

q(x, t) = q(x− ut, 0) =
{
ql if x < ut
qr if x ≥ ut

consisting of a single wave of strengthW1 = qr − ql
propagating with speed s1 = u.
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Riemann solution for advection

q(x, T )

x–t plane

q(x, 0)
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Discontinuous solutions

Note: The Riemann solution is not a classical solution of the
PDE qt + uqx = 0, since qt and qx blow up at the discontinuity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = uq(x1, t)− uq(x2, t)

Integrate in time from t1 to t2 to obtain∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=
∫ t2

t1

uq(x1, t) dt−
∫ t2

t1

uq(x2, t) dt.

The Riemann solution satisfies the given initial conditions and
this integral form for all x2 > x1 and t2 > t1 ≥ 0.
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Diffusive flux

q(x, t) = concentration
β = diffusion coefficient (β > 0)

diffusive flux = −βqx(x, t)

qt + fx = 0 =⇒ diffusion equation:

qt = (βqx)x = βqxx (if β = const).

Heat equation: Same form, where

q(x, t) = density of thermal energy = κT (x, t),
T (x, t) = temperature, κ = heat capacity,
flux = −βT (x, t) = −(β/κ)q(x, t) =⇒

qt(x, t) = (β/κ)qxx(x, t).
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Advection-diffusion

q(x, t) = concentration that advects with velocity u
and diffuses with coefficient β:

flux = uq − βqx.

Advection-diffusion equation:

qt + uqx = βqxx.

If β > 0 then this is a parabolic equation.

Advection dominated if u/β (the Péclet number) is large.

Fluid dynamics: “parabolic terms” arise from
• thermal diffusion and
• diffusion of momentum, where the diffusion parameter is

the viscosity.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x, t) is
the limit as ε→ 0 of the solution qε(x, t) of the parabolic
advection-diffusion equation

qt + uqx = εqxx.

For any ε > 0 this has a classical smooth solution:
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