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Hyperbolic Problems & Finite Volume Methods

For more about these methods...

• AMath 574, Winter 2017

• Book on Finite Volume Methods for Hyperbolic Problems,
www.clawpack.org/book.html

• Clawpack Software (Conservation Laws Package)
www.clawpack.org
www.clawpack.org/gallery
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Hyperbolic Problems & Finite Volume Methods

Note different notation...

Solution = q(x, t),

Advection velocity = u,

Advection equation: qt + uqx = 0,

Linear hyerbolic system: qt +Aqx = 0

Nonlinear hyerbolic system: qt + f(q)x = 0
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Derivation of Conservation Laws

q(x, t) = density function for some conserved quantity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = F1(t)− F2(t)

where
Fj = f(q(xj , t)), f(q) = flux function.
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Derivation of Conservation Laws

If q is smooth enough, we can rewrite

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

as ∫ x2

x1

qt dx = −
∫ x2

x1

f(q)x dx

or ∫ x2

x1

(qt + f(q)x) dx = 0

True for all x1, x2 =⇒ differential form:

qt + f(q)x = 0.
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Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2
)

x

= 0

Jacobian matrix:

f ′(q) =

[
0 1

gh− u2 2u

]
, λ = u±

√
gh.
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Linearized shallow water equations

h(x, t) = h0 + h̃(x, t) (with |h̃| � h0)
u(x, t) = 0 + ũ(x, t) (linearized about ocean at rest)

Insert into the nonlinear equations

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2
)

x

= 0

Then ignore quadratic terms like ũh̃x to obtain:

h̃t + h0 ũx = 0

h0 ũt + gh0 h̃x = 0

=⇒
[
h̃
ũ

]
t

+

[
0 h0
g 0

] [
h̃
ũ

]
x

= 0. Eigenvalues: ±
√
gh0

Same structure as linear acoustics.
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h̃t + h0 ũx = 0
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Compressible gas dynamics

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

Same as shallow water if P (ρ) = 1
2gρ

2 (with ρ ≡ h).

Isothermal: P (ρ) = a2ρ (since T proportional to p/ρ).

Jacobian matrix:

f ′(q) =

[
0 1

P ′(ρ)− u2 2u

]
, λ = u±

√
P ′(ρ).
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Linear acoustics

Example: Linear acoustics in a 1d gas tube

q =

[
p
u

]
p(x, t) = pressure perturbation
u(x, t) = velocity

Equations:

pt + κux = 0 Change in pressure due to compression
ρut + px = 0 Newton’s second law, F = ma

where K = bulk modulus, and ρ = unperturbed density of gas.

Hyperbolic system:[
p
u

]
t

+

[
0 κ

1/ρ 0

] [
p
u

]
x

= 0.
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Linear hyperbolic systems

Linear system of m equations: q(x, t) ∈ lRm for each (x, t) and

qt +Aqx = 0, −∞ < x,∞, t ≥ 0.

A is m×m with eigenvalues λp and eigenvectors rp,
for p = 1, 2, , . . . , m:

Arp = λprp.

Combining these for p = 1, 2, , . . . , m gives

AR = RΛ

where

R = [r1 r2 · · · rm], Λ = diag(λ1, λ2, . . . , λm).

The system is hyperbolic if the eigenvalues are real and
R is invertible. Then A can be diagonalized:

R−1AR = Λ
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Linear hyperbolic systems

Let R be matrix of right eigenvectors and v(x, t) = R−1q(x, t).
Multiply system qt +Aqx = 0 by R−1 on left to obtain

R−1qt +R−1ARR−1qx = 0

Since R−1AR = Λ, this diagonalizes the system:

wt + Λwx = 0.

This is a system of m decoupled advection equations

wp
t + λpwp

x = 0.

So
wp(x, t) = wp(x− λpt, 0)

where w(x, 0) = R−1q(x, 0) = R−1η(x).
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Linear acoustics

[
p
u

]
t

+

[
0 κ

1/ρ 0

] [
p
u

]
x

= 0.

This has the form qt +Aqx = 0 with

eigenvalues: λ1 = −c, λ2 = +c,

where c =
√
κ/ρ = speed of sound.

eigenvectors: r1 =

[
−Z
1

]
, r2 =

[
Z
1

]
where Z = ρc =

√
ρκ = impedance.

R =

[
−Z Z
1 1

]
, R−1 =

1

2Z

[
−1 Z
1 Z

]
.
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Linear acoustics

pt + κux = 0 Change in pressure due to compression
ρut + px = 0 Newton’s second law, F = ma

This is a first-order hyperbolic system qt +Aqx = 0.

Second-order form:
Can combine equations to obtain wave equation:

ptt = c2pxx

since
ptt = −κuxt,
utx = −1/ρ pxx

and so
ptt = −κ(−1/ρ)pxx = c2pxx.
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Acoustic waves

q(x, 0) =

[
p0(x)

0

]
= −p0(x)

2Z

[
−Z
1

]
+ p0(x)

2Z

[
Z
1

]
= w1(x, 0)r1 + w2(x, 0)r2

=

[
p0(x)/2

−p0(x)/(2Z)

]
+

[
p0(x)/2

p0(x)/(2Z)

]
.
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Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.
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Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.

Computational challenges!

Need to capture sharp discontinuities.

PDE breaks down, standard finite difference approximation to
qt + f(q)x = 0 can fail badly: nonphysical oscillations,
convergence to wrong weak solution.
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