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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.
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The Riemann problem for advection

The Riemann problem for the advection equation qt + uqx = 0
with

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

has solution

q(x, t) = q(x− ut, 0) =

{
ql if x < ut
qr if x ≥ ut

consisting of a single wave of strengthW1 = qr − ql
propagating with speed s1 = u.
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Riemann solution for advection

q(x, T )

x–t plane

q(x, 0)
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Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds spi−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at tn+1,

2. Compute fluxes at interfaces and flux-difference:

Qn+1
i = Qn

i −
∆t

∆x
[Fn

i+1/2 − F
n
i−1/2]

3. Update cell averages by contributions from all waves entering cell:

Qn+1
i = Qn

i −
∆t

∆x
[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =

m∑
i=1

(spi−1/2)±Wp
i−1/2.
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First-order REA Algorithm

1 Reconstruct a piecewise constant function q̃n(x, tn)
defined for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:
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Cell update

The cell average is modified by

u∆t · (Qn
i−1 −Qn

i )

∆x

So we obtain the upwind method

Qn+1
i = Qn

i −
u∆t

∆x
(Qn

i −Qn
i−1).
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Second-order REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σni (x− xi) for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:
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Choice of slopes

Q̃n(x, tn) = Qn
i + σni (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i −
u∆t

∆x
(Qn

i −Qn
i−1)−

1

2

u∆t

∆x
(∆x− ū∆t) (σni − σni−1)

Choice of slopes:

Centered slope: σni =
Qn

i+1 −Qn
i−1

2∆x
(Fromm)

Upwind slope: σni =
Qn

i −Qn
i−1

∆x
(Beam-Warming)

Downwind slope: σni =
Qn

i+1 −Qn
i

∆x
(Lax-Wendroff)
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Oscillations

Any of these slope choices will give oscillations near
discontinuities.

Ex: Lax-Wendroff:
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution.

σni =

(
Qn

i+1 −Qn
i

∆x

)
Φn
i .

Φ = 1 =⇒ Lax-Wendroff,

Φ = 0 =⇒ upwind.
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Minmod slope

minmod(a, b) =


a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

Slope:

σni = minmod((Qn
i −Qn

i−1)/∆x, (Qn
i+1 −Qn

i )/∆x)

=

(
Qn

i+1 −Qn
i

∆x

)
Φ(θni )

where

θni =
Qn

i −Qn
i−1

Qn
i+1 −Qn

i

Φ(θ) = minmod(θ, 1)
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Piecewise linear reconstructions

Lax-Wendroff reconstruction:

Minmod reconstruction:
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TVD Methods

Total variation:
TV (Q) =

∑
i

|Qi −Qi−1|

For a function, TV (q) =
∫
|qx(x)| dx.

A method is Total Variation Diminishing (TVD) if

TV (Qn+1) ≤ TV (Qn).

If Qn is monotone, then so is Qn+1.

No spurious oscillations generated.

Gives a form of stability useful for proving convergence,
also for nonlinear scalar conservation laws.
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TVD REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σni (x− xi) for all x ∈ Ci

with the property that TV (q̃n) ≤ TV (Qn).

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx.

Note: Steps 2 and 3 are always TVD.
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Some popular limiters

Linear methods:

upwind : φ(θ) = 0

Lax-Wendroff : φ(θ) = 1

Beam-Warming : φ(θ) = θ

Fromm : φ(θ) =
1

2
(1 + θ)

High-resolution limiters:

minmod : φ(θ) = minmod(1, θ)

superbee : φ(θ) = max(0, min(1, 2θ), min(2, θ))

MC : φ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer : φ(θ) =
θ + |θ|
1 + |θ|
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Extensions

These methods extend naturally to:

Linear systems of equations:

Solve Riemann problem to decompose each jump into waves,
Apply same technique to each wave.

Nonlinear problems:

Use approximate Riemann solver to decompose jump,
Apply same technique to each wave.

Multidimensional problems:

Waves propagate normal to interfaces,
Can add in transverse propagation.

R. J. LeVeque AMath 586


	Finite volume methods
	High-resolution methods
	TVD

