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Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.
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Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.

Computational challenges!

Need to capture sharp discontinuities.

PDE breaks down, standard finite difference approximation to
qt + f(q)x = 0 can fail badly: nonphysical oscillations,
convergence to wrong weak solution.
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Characteristics for a scalar problem

qt + f(q)x = 0 =⇒ qt + f ′(q)qx = 0 (if solution is smooth).

Characteristic curves satisfy X ′(t) = f ′(q(X(t), t)), X(0) = x0.

How does solution vary along this curve?

d

dt
q(X(t), t) = qx(X(t), t)X ′(t) + qt(X(t), t)

= qx(X(t), t)f(q(X(t), t)) + qt(X(t), t)

= 0

So solution is constant on characteristic
as long as solution stays smooth.

q(X(t), t) = constant =⇒ X ′(t) is constant on characteristic,
so characteristics are straight lines!
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Nonlinear Burgers’ equation

Conservation form: ut +
(
1
2u

2
)
x
= 0, f(u) = 1

2u
2.

Quasi-linear form: ut + uux = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed
f ′(u) = u until the wave “breaks” (shock forms).
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Burgers’ equation

Quasi-linear form: ut + uux = 0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...
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Burgers’ equation

Equal-area rule:

The area “under” the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.
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Vanishing Viscosity solution

Viscous Burgers’ equation: ut +
(
1
2u

2
)
x
= εuxx.

This parabolic equation has a smooth C∞ solution for all t > 0
for any initial data.

Limiting solution as ε→ 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?

• Solving parabolic equation requires implicit method,

• Often correct value of physical “viscosity” is very small,
shock profile that cannot be resolved on the desired grid

=⇒ smoothness of exact solution doesn’t help!
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The Riemann problem for advection

The Riemann problem for the advection equation qt + uqx = 0
with

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

has solution

q(x, t) = q(x− ut, 0) =
{
ql if x < ut
qr if x ≥ ut

consisting of a single wave of strengthW1 = qr − ql
propagating with speed s1 = u.
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Riemann solution for advection

q(x, T )

x–t plane

q(x, 0)
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Riemann Problem

Special initial data:

q(x, 0) =

{
ql if x < 0
qr if x > 0

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds ±c.
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Riemann Problem for acoustics

Waves propagating in x–t space:

Left-going waveW1 = qm − ql and
right-going waveW2 = qr − qm are eigenvectors of A.
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The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1

2
gh2

)
x
= 0
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Riemann solution for the SW equations in x-t plane

Solution is constant on any ray: q(x, t) = Q(x/t)
A “similarity solution”.

Riemann solution can be calculated for many problems.
Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice “approximate Riemann solvers” used numerically.
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