Conservation Laws and Finite Volume Methods

AMath 586
Spring Quarter, 2015

Burgers' equation and Riemann problems

Randall J. LeVeque Applied Mathematics
University of Washington

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Shock formation

For nonlinear problems wave speed generally depends on q.
Waves can steepen up and form shocks
\Longrightarrow even smooth data can lead to discontinuous solutions.

Computational challenges!

Need to capture sharp discontinuities.
PDE breaks down, standard finite difference approximation to $q_{t}+f(q)_{x}=0$ can fail badly: nonphysical oscillations, convergence to wrong weak solution.

Characteristics for a scalar problem

$q_{t}+f(q)_{x}=0 \Longrightarrow q_{t}+f^{\prime}(q) q_{x}=0 \quad$ (if solution is smooth).
Characteristic curves satisfy $X^{\prime}(t)=f^{\prime}(q(X(t), t)), \quad X(0)=x_{0}$. How does solution vary along this curve?

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) f(q(X(t), t))+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

Characteristics for a scalar problem

$q_{t}+f(q)_{x}=0 \Longrightarrow q_{t}+f^{\prime}(q) q_{x}=0 \quad$ (if solution is smooth).
Characteristic curves satisfy $X^{\prime}(t)=f^{\prime}(q(X(t), t)), \quad X(0)=x_{0}$. How does solution vary along this curve?

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) f(q(X(t), t))+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

So solution is constant on characteristic as long as solution stays smooth.

Characteristics for a scalar problem

$q_{t}+f(q)_{x}=0 \Longrightarrow q_{t}+f^{\prime}(q) q_{x}=0 \quad$ (if solution is smooth).
Characteristic curves satisfy $X^{\prime}(t)=f^{\prime}(q(X(t), t)), \quad X(0)=x_{0}$. How does solution vary along this curve?

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) f(q(X(t), t))+q_{t}(X(t), t) \\
& =0
\end{aligned}
$$

So solution is constant on characteristic as long as solution stays smooth.
$q(X(t), t)=$ constant $\Longrightarrow X^{\prime}(t)$ is constant on characteristic, so characteristics are straight lines!

Nonlinear Burgers' equation

Conservation form: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad f(u)=\frac{1}{2} u^{2}$.
Quasi-linear form: $\quad u_{t}+u u_{x}=0$.

Nonlinear Burgers' equation

Conservation form: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad f(u)=\frac{1}{2} u^{2}$.
Quasi-linear form: $\quad u_{t}+u u_{x}=0$.
This looks like an advection equation with u advected with speed u.

True solution: u is constant along characteristic with speed $f^{\prime}(u)=u$ until the wave "breaks" (shock forms).

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Time $\mathrm{t}=0.2$

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Time $\mathrm{t}=0.4$

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Time $\mathrm{t}=0.8$

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Time $\mathrm{t}=1.8$

Burgers' equation

Quasi-linear form: $u_{t}+u u_{x}=0$
The solution is constant on characteristics so each value advects at constant speed equal to the value...

Burgers' equation

Equal-area rule:
The area "under" the curve is conserved with time,
We must insert a shock so the two areas cut off are equal.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.
Why try to solve hyperbolic equation?

Vanishing Viscosity solution

Viscous Burgers' equation: $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=\epsilon u_{x x}$.
This parabolic equation has a smooth C^{∞} solution for all $t>0$ for any initial data.

Limiting solution as $\epsilon \rightarrow 0$ gives the shock-wave solution.
Why try to solve hyperbolic equation?

- Solving parabolic equation requires implicit method,
- Often correct value of physical "viscosity" is very small, shock profile that cannot be resolved on the desired grid \Longrightarrow smoothness of exact solution doesn't help!

The Riemann problem for advection

The Riemann problem for the advection equation $q_{t}+u q_{x}=0$ with

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

has solution

$$
q(x, t)=q(x-u t, 0)= \begin{cases}q_{l} & \text { if } x<u t \\ q_{r} & \text { if } x \geq u t\end{cases}
$$

consisting of a single wave of strength $\mathcal{W}^{1}=q_{r}-q_{l}$ propagating with speed $s^{1}=u$.

Riemann solution for advection

$q(x, T)$
$x-t$ plane
$q(x, 0)$

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem

Special initial data:

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x>0\end{cases}
$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

Riemann Problem for acoustics

Waves propagating in $x-t$ space:

Left-going wave $\mathcal{W}^{1}=q_{m}-q_{l}$ and right-going wave $\mathcal{W}^{2}=q_{r}-q_{m}$ are eigenvectors of A.

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

Riemann solution for the SW equations in $x-t$ plane

Solution is constant on any ray: $q(x, t)=Q(x / t)$ A "similarity solution".

Riemann solution can be calculated for many problems. Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice "approximate Riemann solvers" used numerically.

