
AMath 584 / Math 584
Homework #1
Due 11:00pm PDT
Tuesday, October 11, 2016

Name: Your Name Here

Netid: Your NetID Here

Problem 1. Exercise 1.1 in Trefethen and Bau. Note for example that part (a) is accomplished by
multiplying B on the right by the matrix

C1 =

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

You can write out analogous matrices for each step and then write the required product of these matrices.
Make sure to write them in the correct order.

Problem 2. Exercise 2.1 in Trefethen and Bau.

Problem 3. Exercise 2.6 in Trefethen and Bau. In addition, please note the value that α takes in the
special case when u and v are orthogonal.

Problem 4. Exercises 3.1, 3.3, and 3.4 in Trefethen and Bau.

Problem 5.

Linear algebra is widely used in image processing. An image that appears on a computer screen, for
example, is typically represented as an array of pixels that could be viewed as forming a matrix. If it’s
a color image then there are typically three arrays (e.g. for the red, green, and blue channels ([R,G,B]
to describe an arbitrary color) but for simplicity we will consinder only a grayscale image, and assume
that a single value ranges from 0 for white to 1 for black. The array below might then represent a
10× 10 image with 100 pixels as shown in the following figure.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.3000 0.3000 0.3000 0.3000 0 0 0 0 0

0 0.3000 0.3000 0.9000 0.9000 0.6000 0.6000 0.6000 0 0

0 0.3000 0.3000 0.9000 0.9000 0.6000 0.6000 0.6000 0 0

0 0 0 0.6000 0.6000 0.6000 0.6000 0.6000 0 0

0 0 0 0.6000 0.6000 0.6000 0.6000 0.6000 0 0

0 0 0 0.6000 0.6000 0.6000 0.6000 0.6000 0 0

0 0 0 0.6000 0.6000 0.6000 0.6000 0.6000 0 0

0 0 0 0 0 0 0 0 0 0

1

In Matlab, if C is defined to be the 10× 10 matrix above, then the commands below will produce this
plot (see the end of the assignment for a Python version):

cmap = linspace(1,0,11)’ * [1 1 1]; % define grayscale colormap

figure

colormap(cmap) % use gray scale colormap

image(11*C) % plot image (indexing into colormap of length 11)

hold on % now add grid lines for clarity...

x = linspace(0.5,10.5,11);

y = x;

[X,Y] = meshgrid(x,y)

plot(X’,Y’,’r’) % plot horizontal grid lines

plot(X,Y,’r’) % plot vertical grid lines

axis square % scale x and y axis equally

hold off

Note that we scale C by 11 to index into the colormap which is defined here as an 11× 3 matrix with
[R,G,B] values corresponding to 11 shades of gray. (Note that this matrix has been specified as an
outer product of a column vector with 11 components and a row vector with 3 components. Print these
things out if you are not sure what this matrix looks like.)

The matrix C given above can also be specified fairly easily as a combination of two outer products, C =
0.3a1b

T
1 + 0.6a2b

T
2 where for example a1 = [0, 0, 1, 1, 1, 0, 0, 0, 0, 0]T and b1 = [0, 1, 1, 1, 1, 0, 0, 0, 0, 0]T .

Problem 5a. Compute the matrix A1 = a1b
T
1 and produce a plot of the image that this describes.

Problem 5b. Determine the vectors a2, b2 and the matrix A2 = a2b
T
2 so that the matrix above can

be written as A = 0.3A1 + 0.6A2.

Note that it takes much less storage to store the image in terms of the vectors forming these outer
products than it would to store every element of the matrix. This would be more dramatic if the image
were say 1000× 1000 (1 megapixel, with 1,000,000 matrix elements) rather than only 10× 10. This is
a form of image compression.

This works so well because the matrix for this image is a rank 2 matrix and so only 2 outer products
are needed. If it were a full rank matrix then this compression might not work so well. But images
generally aren’t random pixels. Instead they have a lot of structure and so it is sometimes possible to
approximate an image well with a low rank approximation.

The singular value decomposition gives a way of writing any matrix as a linear combination of rank one

2

matrices (outer products) and if the singular values decay rapidly (which they often do for real images)
then we may be able to truncate the SVD to relatively few terms.

Problem 5c. Use Matlab or Python to determine the SVD of the matrix A above and confirm
that only two singular values are nonzero. With this decomposition we see that we can express C as
C = σ1u1v

∗
1 + σ2u2v

∗
2 . Confirm that this is true and print out the singular values and vectors used in

this sum, and also the two rank-1 matrices that appear in this sum separately.

Problem 5d. Plot the image given by the matrix σ1u1v
∗
1 . This is the best approximation to the matrix

C by a rank-1 matrix.

Problem 5e. Confirm that u1 and u2 are orthonormal vectors (whereas a1 and a2 were not). In fact
u1 and u2 form an orthonormal basis for the 2-dimensional space span(a1, a2). To check this: In Matlab
(or Python), form the matrix with columns [u1|u2|a1|a2] and confirm that it has rank 2. Explain why
this shows that the vectors u1 and u2 span the same subspace of C2 as that spanned by a1 and a2.

Note: The SVD is not the best approach for image compression, and the point of this example is
primarily to get familiar with the SVD and the idea of low-rank representations of a matrix.

See https://www.mathworks.com/company/newsletters/articles/professor-svd.html for an in-
troductory article by Cleve Moler (inventor of Matlab) on the SVD that also shows an example of using
it to compress an image of Gene Golub, who did much to popularize the use of the SVD for a wide
range of applications.

Plotting an image in Python:

This produces a similar plot to the one shown above, but flipped vertically and also recall that Python
indexing starts at 0.

imshow(C, cmap=’Greys’, interpolation=’none’)

x = linspace(-0.5,9.5,11)

y = x

[X,Y] = meshgrid(x,y)

plot(X.T,Y.T,’r’);

plot(X,Y,’r’);

axis(’scaled’)

axis([-0.5, 9.5, -0.5, 9.5])

3

https://www.mathworks.com/company/newsletters/articles/professor-svd.html

