UW AMath High Performance Scientific Computing
 
AMath 483/583 Class Notes
 
Spring Quarter, 2013

Table Of Contents

Previous topic

Array storage in Fortran

Next topic

Fortran Input / Output

This Page

Fortran modules

The general structure of a Fortran module:

module <MODULE-NAME>
    ! Declare variables
contains
    ! Define subroutines or functions
end module <MODULE-NAME>

A program or subroutine can use this module:

program <NAME>
    use <MODULE-NAME>
    ! Declare variables
    ! Executable statements
end program <NAME>

The line:

use <MODULE-NAME>

can be replaced by:

use <MODULE-NAME>, only: <LIST OF SYMBOLS>

to specify that only certain variables/subroutines/functions from the module should be used. Doing it this way also makes it clear exactly what symbols are coming from which module in the case where you use several modules.

A very simple module is:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
! $UWHPSC/codes/fortran/multifile2/sub1m.f90

module sub1m

contains

subroutine sub1()
    print *, "In sub1"
end subroutine sub1

end module sub1m

and a program that uses this:

1
2
3
4
5
6
7
! $UWHPSC/codes/fortran/multifile2/main.f90

program demo
    use sub1m, only: sub1
    print *, "In main program"
    call sub1()
end program demo

Some reasons to use modules

  • Can define global variables in modules to be used in several different routines.

    In Fortran 77 this had to be done with common blocks — much less elegant.

  • Subroutine/function interface information is generated to aid in checking that proper arguments are passed.

    It’s often best to put all subroutines and functions in modules for this reason.

  • Can define new data types to be used in several routines.

Compiling modules

Modules must be compiled before any program units that use the module. When a module is compiled, a .o file is created, but also a .mod file is created that must be present in order to compile a unit that uses the module.

Circles module example

Here is an example of a module that defines one parameter pi and two functions:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
! $UWHPSC/codes/fortran/circles/circle_mod.f90

module circle_mod

    implicit none
    real(kind=8), parameter :: pi = 3.141592653589793d0

contains

    real(kind=8) function area(r)
        real(kind=8), intent(in) :: r
        area = pi * r**2
    end function area

    real(kind=8) function circumference(r)
        real(kind=8), intent(in) :: r
        circumference = 2.d0 * pi * r
    end function circumference

end module circle_mod

This might be used as follows:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
! $UWHPSC/codes/fortran/circles/main.f90

program main

    use circle_mod, only: pi, area
    implicit none
    real(kind=8) :: a

    ! print parameter pi defined in module:
    print *, 'pi = ', pi

    ! test the area function from module:
    a = area(2.d0)
    print *, 'area for a circle of radius 2: ', a

end program main

This gives the following output:

pi =    3.14159265358979
area for a circle of radius 2:    12.5663706143592

Note: that a parameter can be defined with a specific value that will then be available to all program units using the module.

Module variables

It is also possible to declare variables that can be shared between all program units using the module. This is a way to define “global variables” that might be set in one program unit and used in another, without the need to pass the variable as a subroutine or function argument. Module variables can be defined in a module and the Fortran statement

save

is used to indicate that variables defined in the module should have values saved between one use of the module to another. You should generally specify this if you use any module variables.

Here is another version of the circles code that stores pi as a module variable rather than a parameter:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
! $UWHPSC/codes/fortran/circles/circle_mod.f90
! Version where pi is a module variable.

module circle_mod

    implicit none
    real(kind=8) :: pi 
    save  

contains

    real(kind=8) function area(r)
        real(kind=8), intent(in) :: r
        area = pi * r**2
    end function area

    real(kind=8) function circumference(r)
        real(kind=8), intent(in) :: r
        circumference = 2.d0 * pi * r
    end function circumference

end module circle_mod

In this case we also need to initialize the variable pi by means of a subroutine such as:

1
2
3
4
5
6
7
8
9
! $UWHPSC/codes/fortran/circles/initialize.f90

subroutine initialize()

    ! Set the value of pi used elsewhere.
    use circle_mod, only: pi
    pi = acos(-1.d0)

end subroutine initialize

These might be used as follows in a main program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
! $UWHPSC/codes/fortran/circles/main.f90

program main

    use circle_mod, only: pi, area
    implicit none
    real(kind=8) :: a

    call initialize()   ! sets pi

    ! print module variable pi:
    print *, 'pi = ', pi

    ! test the area function from module:
    a = area(2.d0)
    print *, 'area for a circle of radius 2: ', a

end program main

This example can be compiled and executed by going into the directory $UWHPSC/fortran/circles2/ and typing:

$ gfortran circle_mod.f90 initialize.f90 main.f90 -o main.exe
$ ./main.exe

Or by using the Makefile in this directory:

$ make main.exe
$ ./main.exe

Here is the Makefile:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# $UWHPSC/codes/fortran/circles2/Makefile

OBJECTS = circle_mod.o \
          main.o \
          initialize.o

MODULES = circle_mod.mod

.PHONY: clean

output.txt: main.exe
	./main.exe > output.txt

main.exe: $(MODULES) $(OBJECTS)
	gfortran $(OBJECTS) -o main.exe

%.o: %.f90
	gfortran -c $<

%.mod: %.f90
	gfortran -c $<

clean:
	rm -f $(OBJECTS) $(MODULES) main.exe

For more about Makefiles, see Makefiles and Makefile references.