
AMath 574
Homework 4
Due by 11:00pm on Monday February 27, 2017

For submission instructions, see:

http://faculty.washington.edu/rjl/classes/am574w2017/homework4.html

1. (Adapted from Exercise 13.7 in the book)

Note: The Jupyter notebook homeworks/hw4/Homework4-p-system.ipynb will get you
started on some parts of this problem (in particular parts (d), (e) and (g) are solved
already). You can add to this notebook to produce the other plots you need and also
adapt it for parts of Problem 2 below.

Consider the p-system (described in Section 2.13),

vt − ux = 0,

ut + p(v)x = 0,

where p(v) is a given function of v. Note that q = [v, u]T for this system.

(a) Compute the eigenvalues of the Jacobian matrix and show that the system is hy-
perbolic provided p′(v) < 0.

(b) Use the Rankine-Hugoniot condition to show that a shock connecting q = (v, u) to
some fixed state q∗ = (v∗, u∗) must satisfy

u = u∗ ±

√
−
(
p(v)− p(v∗)
v − v∗

)
(v − v∗). (1)

(c) What is the propagation speed for such a shock? How does this relate to the
eigenvalues of the Jacobian matrix computed in part (a)?

(d) Plot the Hugoniot loci for the point q∗ = (1, 1) over the range −3 ≤ v ≤ 5 for the
case p(v) = −ev.

Note: This is not a realistic equation of state for a gas if v represents the specific
volume 1/ρ as described in Section 2.13, since in that case v > 0 is required and
p(v)→∞ as v → 0. But mathematically this gives a fine hyperbolic system.

(e) Determine the 2-shock solution to the Riemann problem for the p-system with
p(v) = −ev and data

q` = (1, 1), qr = (4, 3).

Do this in two ways:

i. Plot the relevant Hugoniot loci and estimate where they intersect.

ii. Set up and solve the proper scalar nonlinear equation for vm, using scipy.optimize.fsolve.

(f) Does the Riemann solution found in the previous part satisfy the Lax Entropy
Condition? Sketch the structure of the solution in the x-t plane showing also some
sample 1-characteristics and 2-characteristics.
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(g) For the given left state q` = (1, 1), in what region of the phase plane must the right
state qr lie in order for the 2-shock Riemann solution to satisfy the Lax Entropy
Condition? (This is already done in the notebook, you’ll have to do something
similar in 2(f) below.)

2. Consider the p-system of Problem 1 with p(v) = −ev.

(a) Follow the procedure of 13.8.1 to show that along any integral curve of r1 the relation

u = u∗ − 2
(
ev∗/2 − ev/2

)
must hold, where (v∗, u∗) is a particular point on the integral curve. Conclude that

w1(q) = u− 2ev/2

is a 1-Riemann invariant for this system.

(b) Follow the procedure of Section 13.8.5 to show that through a centered rarefaction
wave

ũ(ξ) = A− 2ξ,

where
A = ul − 2evl/2 = ur − 2evr/2,

and determine the form of ṽ(ξ).

(c) Show that this field is genuinely nonlinear for all q.

(d) Determine the 2-Riemann invariants and the form of a 2-rarefaction.

(e) Suppose arbitrary states q` and qr are specified and we wish to construct a Riemann
solution consisting of two “rarefaction waves” (which might not be physically real-
izable). Determine the point qm = (vm, um) where the two relevant integral curves
intersect.

(f) What conditions must be satisfied on q` and qr for this to be the physically correct
solution to the Riemann problem?

In particular, for the left state q` = (1, 1), shade the region of phase space where qr
must lie in order to have the Riemann solution consist of two rarefaction waves.

(g) Determine the correct Riemann solution (consisting of one shock and one rarefaction
wave) for the problem with

q` = (1, 1), qr = (4, 3).

3. For the general p-system of Problem 1, determine the condition on the function p(v) that
must be satisfied in order for both fields to be genuinely nonlinear for all q.
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4. Again consider the p-system. For given states q` and qr, define the matrix Â(q`, qr) as

Â =

[
0 −1

p(vr)−p(v`)
vr−v` 0

]
.

(a) Show that this matrix satisfies the condition

Â(qr − q`) = f(qr)− f(q`).

corresponding to equation (15.18) in the book. This means we can solve the linear
Riemann problem qt + Âqx = 0 with left and right states q` and qr to obtain
an approximate Riemann solution that has nice properties as described in Section
15.3.2. Since (15.18) is satisfied, this is called a “Roe solver”.

(b) Let

c =

√
p(vr)− p(v`)
vr − v`

Show that the eigenvalues and eigenvectors of Â are:

Λ =

[
−c 0
0 c

]
, R =

[
1 1
c −c

]
and compute the inverse R−1. The waves in the approximate Riemann solution are
then W1 = α1r1 and W2 = α2r2 where α = R−1(qr − q`). You will need to use this
in the next problem.

5. The sample code in $AM574/homeworks/hw4/swe_collide solves the shallow water equa-
tions for a case similar to what is shown in Figure 13.19, illustrating that when two shocks
collide in a nonlinear system the resulting interact gives waves in both families.

Using this code as a starting point, implement the Roe solver for the p-system in a
modified version of the shallow water Riemann solver. Note that it will be much simpler
since you don’t need to worry about an entropy fix.

Clean up the code and document it so that it doesn’t contain extraneous things left over
from the shallow water equations. Create a new directory psystem containing this code.

Test your code for initial data consisting of the Riemann problem with a single jump,
with

q` = (1, 1), qr = (4, 3)

as studied above.

Solve on the domain −5 ≤ x ≤ 5 for 0 ≤ t ≤ 0.5, using 1000 grid cells.

By examining the output files in the _output directory, confirm that the intermediate
state observed in the numerical solution agrees to at least 2 or 3 significant digits with
the exact intermediate state qm you found in Problem 2(g). Note that even though an
approximate Riemann solver is used in the numerical method, it should converge to the
exact solution of the Riemann problem as the grid is refined, when viewed at some fixed
time.
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