
AMath 574
Homework 3
Due by 11:00pm on February 9, 2017

For submission instructions, see:

http://faculty.washington.edu/rjl/classes/am574w2017/homework3.html

Problem #1

Consider the scalar conservation law with flux function f(q) = q3− 4q2 + 3q = q(q− 1)(q− 3).

(a) Show that the flux is convex as long as we restrict the data to fall within −∞ < q < 4/3
or within 4/3 < q < +∞.

(b) Determine the exact solution to the Riemann problem with data q` = 3, qr = 2.

(c) Determine the exact solution to the Riemann problem with data q` = 2, qr = 3. In this
case the solution is a rarefaction wave, so determine the solution in the form of a similarity
solution q(x, t) = Q(x/t) and find an exact expression for the function Q(ξ). At the trailing
edge of the rarefaction wave there is a kink, a jump in the slope of the solution, from 0 to some
non-zero value. What value (as a function of time)?

(d) Re-do part (c) when q` = 4/3, qr = 3. Comment on why you expect the slope at the
trailing edge of the rarefaction wave to be infinite in this case. Also plot the solution as a
function of x at time t = 1.

(e) Consider this same conservation law with initial data

q(x, 0) =


4 if x < 0,

3 if 0 < x < 1,

2 if x > 1

The solution consists of two shocks that merge at some time — determine the time when they
merge, and the new shock speed.

Problem #2.

Some sample code in $AM574/homeworks/hw3/burgers should help get you started with this
problem. I will also provide a video.

Modify the code provided to solve the conservation law from Problem #1 above, assuming
that the initial data satisfies q(x, 0) ≥ 4/3 for all x.

Test it out on −2 ≤ x ≤ 2 with initial data

q(x, 0) =

{
4/3 if − 2 ≤ x < 0,

3 if 0 ≤ x ≤ 2,

and periodic boundary conditions. Solve the problem up to time t = 0.25.

Modify the plotting specified in the provided setplot.py file so that you plot the true solution
to this problem along with the approximate solution.
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Experiment with this code and comment on what you observe. You might want to try:

• Changing the grid resolutions, e.g. using 100, 200, or more grid cells.

• Use the first order accurate method (specify clawdata.order = 1) in setrun.py and
compare to the high resolution method with clawdata.order = 2 and clawdata.limiter

= [’mc’].

• Compare results with and without the entropy fix.

What to turn in:

• Create a new directory cubic that has the necessary files, in particular Makefile,

setrun.py, setplot.py, rp1 cubic.f90, qinit.f90, setprob.f90. Note that rp1 cubic.f90

will be a modified version of rp1 burgers.f90.

• Turn in a tar file of this directory, set up for the case where the high-resolution method
is used with the entropy fix and 100 grid cells.

• Provide plots of a few other key results to illustrate your discussion.

• One way to write up your observations would be to modify the Jupyter notebook burgers.ipynb

to make a new notebook cubic.ipynb that contains some discussion and examples illus-
trating your results.
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Problem #3.

Suppose the solution to a Riemann problem for some system of conservation laws qt+f(q)x = 0
consists of exactly 2 waves with wave speeds s1 < 0 < s2. Given Riemann data q` and qr, let
qm be the resulting state between the two waves. Then we can integrate over the space-time
region shown below in order to find a simple expression for qm in terms of q`, qr, s

1, and
s2 (in a similar manner to how integrating over the region shown in Figure 11.7 gives the
Rankine-Hugoniot condition).

(a) Use this approach to compute the formula for qm.

(b) Define two waves by W1 = qm − q` and W2 = qr − qm. Show that

s1W1 + s2W2 = f(qr)− f(q`).

(c) Apply the formula from (a) to the case of constant coefficient linear acoustics with s1 = −c
and s2 = +c and show that the resulting qm agrees with what was found in (3.32) in the book
based on the eigenvectors of the coefficient matrix.

Note: For any system of m equations we could choose any values s1 < s2 and use the formula
you found to define a state qm and hence define two waves W1 = qm − q` and W2 = qr − qm.
These waves could then be used to obtain a conservative method (which follows from (b), as we
will see later). Limiters and high-resolution correction terms can also be based on this waves.

This won’t be the exact Riemann solution except for special cases like the acoustics equation
(or any linear system of two equations where s1 and s2 are chosen to be the two eigenvalues).
But it defines an approximate Riemann solver that is very cheap to compute and sometimes
works well enough. This is called the HLL solver after the original work on this idea by Harten,
Lax, and van Leer. This is discussed in Section 15.3.7 along with some extensions. (You’ll find
the solution to part (a) there too.)
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