
The Riemann problem

The Riemann problem consists of the hyperbolic equation
under study together with initial data of the form

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

Piecewise constant with a single jump discontinuity from ql to
qr.

The Riemann problem is fundamental to understanding
• The mathematical theory of hyperbolic problems,
• Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the
Riemann problem can often be solved for general ql and qr, and
consists of a set of waves propagating at constant speeds.
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The Riemann problem for advection

The Riemann problem for the advection equation qt + uqx = 0
with

q(x, 0) =

{
ql if x < 0
qr if x ≥ 0

has solution

q(x, t) = q(x− ut, 0) =
{
ql if x < ut
qr if x ≥ ut

consisting of a single wave of strengthW1 = qr − ql
propagating with speed s1 = u.
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Riemann solution for advection

q(x, T )

x–t plane

q(x, 0)
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Discontinuous solutions

Note: The Riemann solution is not a classical solution of the
PDE qt + uqx = 0, since qt and qx blow up at the discontinuity.

Integral form:

d

dt

∫ x2

x1

q(x, t) dx = uq(x1, t)− uq(x2, t)

Integrate in time from t1 to t2 to obtain∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=

∫ t2

t1

uq(x1, t) dt−
∫ t2

t1

uq(x2, t) dt.

The Riemann solution satisfies the given initial conditions and
this integral form for all x2 > x1 and t2 > t1 ≥ 0.
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Diffusive flux

q(x, t) = concentration
β = diffusion coefficient (β > 0)

diffusive flux = −βqx(x, t)

qt + fx = 0 =⇒ diffusion equation:

qt = (βqx)x = βqxx (if β = const).

Heat equation: Same form, where

q(x, t) = density of thermal energy = κT (x, t),
T (x, t) = temperature, κ = heat capacity,
flux = −βT (x, t) = −(β/κ)q(x, t) =⇒

qt(x, t) = (β/κ)qxx(x, t).
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Advection-diffusion

q(x, t) = concentration that advects with velocity u
and diffuses with coefficient β:

flux = uq − βqx.

Advection-diffusion equation:

qt + uqx = βqxx.

If β > 0 then this is a parabolic equation.

Advection dominated if u/β (the Péclet number) is large.

Fluid dynamics: “parabolic terms” arise from
• thermal diffusion and
• diffusion of momentum, where the diffusion parameter is

the viscosity.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x, t) is
the limit as ε→ 0 of the solution qε(x, t) of the parabolic
advection-diffusion equation

qt + uqx = εqxx.

For any ε > 0 this has a classical smooth solution:
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Nonlinear Burgers’ equation

Conservation form: ut +
(
1
2u

2
)
x
= 0, f(u) = 1

2u
2.

Quasi-linear form: ut + uux = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed
f ′(u) = u until the wave “breaks” (shock forms).
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Burgers’ equation

Quasi-linear form: ut + uux = 0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...
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Burgers’ equation

Equal-area rule:

The area “under” the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.
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Vanishing Viscosity solution

Viscous Burgers’ equation: ut +
(
1
2u

2
)
x
= εuxx.

This parabolic equation has a smooth C∞ solution for all t > 0
for any initial data.

Limiting solution as ε→ 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?

• Solving parabolic equation requires implicit method,

• Often correct value of physical “viscosity” is very small,
shock profile that cannot be resolved on the desired grid

=⇒ smoothness of exact solution doesn’t help!
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