The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

Piecewise constant with a single jump discontinuity from q_l to q_r .

The Riemann problem is fundamental to understanding

- The mathematical theory of hyperbolic problems,
- Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the Riemann problem can often be solved for general q_l and q_r , and consists of a set of waves propagating at constant speeds.

The Riemann problem for advection

The Riemann problem for the advection equation $q_t + uq_x = 0$ with

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0\\ q_r & \text{if } x \ge 0 \end{cases}$$

has solution

$$q(x,t) = q(x - ut, 0) = \begin{cases} q_l & \text{if } x < ut \\ q_r & \text{if } x \ge ut \end{cases}$$

consisting of a single wave of strength $\mathcal{W}^1=q_r-q_l$ propagating with speed $s^1=u$.

Riemann solution for advection

Note: The Riemann solution is not a classical solution of the PDE $q_t + uq_x = 0$, since q_t and q_x blow up at the discontinuity.

Integral form:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = uq(x_1,t) - uq(x_2,t)$$

Integrate in time from t_1 to t_2 to obtain

$$\int_{x_1}^{x_2} q(x, t_2) dx - \int_{x_1}^{x_2} q(x, t_1) dx$$
$$= \int_{t_1}^{t_2} uq(x_1, t) dt - \int_{t_1}^{t_2} uq(x_2, t) dt.$$

The Riemann solution satisfies the given initial conditions and this integral form for all $x_2 > x_1$ and $t_2 > t_1 \ge 0$.

Diffusive flux

```
q(x,t)= concentration eta= diffusion coefficient (eta>0) diffusive flux =-eta q_x(x,t) q_t+f_x=0 \implies diffusion equation: q_t=(eta q_x)_x=eta q_{xx} (if eta= const).
```

Diffusive flux

$$q(x,t)=$$
 concentration $eta=$ diffusion coefficient ($eta>0$) diffusive flux $=-eta q_x(x,t)$ $q_t+f_x=0 \implies$ diffusion equation: $q_t=(eta q_x)_x=eta q_{xx}$ (if $eta=$ const).

Heat equation: Same form, where

$$q(x,t)=$$
 density of thermal energy $=\kappa T(x,t),$ $T(x,t)=$ temperature, $\kappa=$ heat capacity, flux $=-\beta T(x,t)=-(\beta/\kappa)q(x,t)\Longrightarrow$ $q_t(x,t)=(\beta/\kappa)q_{xx}(x,t).$

Advection-diffusion

q(x,t)= concentration that advects with velocity u and diffuses with coefficient β :

$$flux = uq - \beta q_x.$$

Advection-diffusion equation:

$$q_t + uq_x = \beta q_{xx}$$
.

If $\beta > 0$ then this is a parabolic equation.

Advection dominated if u/β (the Péclet number) is large.

Fluid dynamics: "parabolic terms" arise from

- thermal diffusion and
- diffusion of momentum, where the diffusion parameter is the viscosity.

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Nonlinear Burgers' equation

Conservation form:
$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$$

Quasi-linear form: $u_t + uu_x = 0$.

Nonlinear Burgers' equation

Conservation form:
$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad f(u) = \frac{1}{2}u^2.$$

Quasi-linear form:
$$u_t + uu_x = 0$$
.

This looks like an advection equation with \boldsymbol{u} advected with speed \boldsymbol{u} .

True solution: u is constant along characteristic with speed f'(u) = u until the wave "breaks" (shock forms).

Quasi-linear form: $u_t + uu_x = 0$

Equal-area rule:

The area "under" the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.

Viscous Burgers' equation:
$$u_t + \left(\frac{1}{2}u^2\right)_x = \epsilon u_{xx}$$
.

This parabolic equation has a smooth C^{∞} solution for all t>0 for any initial data.

Viscous Burgers' equation: $u_t + \left(\frac{1}{2}u^2\right)_x = \epsilon u_{xx}$.

This parabolic equation has a smooth C^{∞} solution for all t>0 for any initial data.

Limiting solution as $\epsilon \to 0$ gives the shock-wave solution.

Viscous Burgers' equation: $u_t + \left(\frac{1}{2}u^2\right)_x = \epsilon u_{xx}$.

This parabolic equation has a smooth C^{∞} solution for all t>0 for any initial data.

Limiting solution as $\epsilon \to 0$ gives the shock-wave solution.

Why try to solve hyperbolic equation?

Viscous Burgers' equation:
$$u_t + \left(\frac{1}{2}u^2\right)_x = \epsilon u_{xx}$$
.

This parabolic equation has a smooth C^{∞} solution for all t>0 for any initial data.

Limiting solution as $\epsilon \to 0$ gives the shock-wave solution.

Why try to solve hyperbolic equation?

- Solving parabolic equation requires implicit method,
- Often correct value of physical "viscosity" is very small, shock profile that cannot be resolved on the desired grid
 smoothness of exact solution doesn't help!