The Riemann problem

The Riemann problem consists of the hyperbolic equation
under study together with initial data of the form

LR P
Piecewise constant with a single jump discontinuity from ¢; to
qr-
The Riemann problem is fundamental to understanding
¢ The mathematical theory of hyperbolic problems,
e Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the
Riemann problem can often be solved for general ¢; and ¢,., and
consists of a set of waves propagating at constant speeds.
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The Riemann problem for advection

The Riemann problem for the advection equation ¢; + ug, =0
with
Joa if <0

has solution

_ B Joa if v <ut
o) =ala—ur0) = { 1 ES

consisting of a single wave of strength W' = ¢, — ¢
propagating with speed s' = u.
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Riemann solution for advection

q(z,T)

x—t plane

q(z,0)
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Discontinuous solutions

Note: The Riemann solution is not a classical solution of the
PDE ¢; + ug, = 0, since ¢; and ¢, blow up at the discontinuity.

Integral form:

d [*

= | atet)do = uglar, 1) - uglaz, 1
t S,

Integrate in time from ¢, to ¢, to obtain

T2 T2
/ q(;v,tg)dx—/ q(x,ty) de
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to to
:/ uq(wl,t)dt—/ uq(zxe,t) dt.

t1 t1

The Riemann solution satisfies the given initial conditions and
this integral form for all z3 > z1 and t, > ¢; > 0.
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Diffusive flux

q(x,t) = concentration
B = diffusion coefficient (5 > 0)
diffusive flux = —fq.(x, 1)

q: + f = 0 = diffusion equation:

¢t = (Bqz)z = Bas (if B = const).
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Diffusive flux
q(x,t) = concentration
B = diffusion coefficient (5 > 0)
diffusive flux = —fq.(x, 1)

q: + f. = 0 = diffusion equation:
@t = (B4z)s = Baas (if B = const).

Heat equation: Same form, where

q(z,t) = density of thermal energy = xkT'(x,t),
T'(x,t) = temperature, = heat capacity,
flux = —ﬁT(.%’,t) = _(ﬁ/&)Q(x7t) ==

Qt(I', t) = (ﬁ/’{)qzx(x7 t)'
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Advection-diffusion

q(z,t) = concentration that advects with velocity «
and diffuses with coefficient 3:

flux = uq — Bq,.

Advection-diffusion equation:

qt + U = Buz-
If 5 > 0 then this is a parabolic equation.
Advection dominated if u/3 (the Péclet number) is large.

Fluid dynamics: “parabolic terms” arise from
¢ thermal diffusion and

e diffusion of momentum, where the diffusion parameter is
the viscosity.
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

e=0.1
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

€= 0.01
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution ¢(z,t) is
the limit as € — 0 of the solution ¢¢(z, t) of the parabolic
advection-diffusion equation

Gt + UGy = €Qzg-
For any e > 0 this has a classical smooth solution:

e = 0.001

I
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Nonlinear Burgers’ equation

Conservation form: u; + (3u?) =0, flu) = Lu?.

Quasi-linear form: ug + uug = 0.
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Nonlinear Burgers’ equation

Conservation form: u; + (3u?) =0, flu) = Lu?.
Quasi-linear form: ug + uug = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed
f'(u) = w until the wave “breaks” (shock forms).
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Time t = 0.0
2.0
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=0.2
2.0
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet =0.4
2t
2.0
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Time t = 0.6
2t
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=10.8
2t
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet = 1.0
2t
2.0 l
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=1.2
2t
2.0
1.5
1.0
-2 -1 0 1 2 3 4
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=1.4

2t
2.0 )/—]

15 d L
1.0
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=1.6

2t
2.0

-
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet=1.8

2t
2.0

15 1'5t/7L
1.0
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Burgers’ equation

Quasi-linear form: u; + uu, =0

The solution is constant on characteristics so each value
advects at constant speed equal to the value...

Timet = 2.0

2.0

e
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Burgers’ equation

Equal-area rule:
The area “under” the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.

22
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R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 11.7]



Vanishing Viscosity solution

Viscous Burgers’ equation: u; + (3u?) = €y,

This parabolic equation has a smooth C* solution for all ¢ > 0
for any initial data.
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Vanishing Viscosity solution

Viscous Burgers’ equation: u; + (3u?) = €y,

This parabolic equation has a smooth C* solution for all ¢ > 0
for any initial data.

Limiting solution as ¢ — 0 gives the shock-wave solution.
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Vanishing Viscosity solution

Viscous Burgers’ equation: u; + (3u?) = €y,

This parabolic equation has a smooth C* solution for all ¢ > 0
for any initial data.

Limiting solution as ¢ — 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?
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Vanishing Viscosity solution

Viscous Burgers’ equation: u; + (3u?) = €y,

This parabolic equation has a smooth C* solution for all ¢ > 0
for any initial data.

Limiting solution as ¢ — 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?

e Solving parabolic equation requires implicit method,

e Often correct value of physical “viscosity” is very small,
shock profile that cannot be resolved on the desired grid
— smoothness of exact solution doesn’t help!

R.J. LeVeque, University of Washington AMath 574, Winter 2017 [FVMHP Sec. 11.6]



	Video 1 - Jan 4, 2017
	Introduction
	Hyperbolic equations
	Advection


