

Modified Equations

The upwind method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x}u(Q_i^n - Q_{i-1}^n).$$

gives a first-order accurate approximation to $q_t + uq_x = 0$.

But it gives a second-order approximation to

$$q_t + uq_x = \frac{u\Delta x}{2} \left(1 - \frac{u\Delta t}{\Delta x}\right) q_{xx}$$

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is $O(\Delta x)$.

Note: No diffusion if $\frac{u\Delta t}{\Delta x} = 1$ $(Q_i^{n+1} = Q_{i-1}^n \text{ exactly}).$

Lax-Wendroff

Second-order accuracy?

Taylor series:

$$q(x,t+\Delta t) = q(x,t) + \Delta t q_t(x,t) + \frac{1}{2} \Delta t^2 q_{tt}(x,t) + \cdots$$

From $q_t = -Aq_x$ we find $q_{tt} = A^2q_{xx}$.

$$q(x,t+\Delta t) = q(x,t) - \Delta t A q_x(x,t) + \frac{1}{2} \Delta t^2 A^2 q_{xx}(x,t) + \cdots$$

Replace q_x and q_{xx} by centered differences:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2(Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n)$$

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.1]

Modified Equation for Lax-Wendroff

The Lax-Wendroff method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2(Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n)$$

gives a second-order accurate approximation to $q_t + uq_x = 0$. But it gives a third-order approximation to

$$q_t + uq_x = -\frac{uh^2}{6} \left(1 - \left(\frac{u\Delta t}{\Delta x}\right)^2 \right) q_{xxx}$$

This has a dispersive term with $O(\Delta x^2)$ coefficient.

Indicates that the numerical solution will become oscillatory.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 8.6]

Beam-Warming method

Taylor series for second order accuracy:

$$q(x,t+\Delta t) = q(x,t) - \Delta t A q_x(x,t) + \frac{1}{2} \Delta t^2 A^2 q_{xx}(x,t) + \cdots$$

Replace q_x and q_{xx} by one-sided differences:

$$\begin{split} Q_i^{n+1} &= Q_i^n - \frac{\Delta t}{2\Delta x} A(3Q_i^n - 4Q_{i-1}^n + Q_{i-2}^n) \\ &+ \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2(Q_i^n - 2Q_{i-1}^n + Q_{i-2}^n) \end{split}$$

CFL condition: $0 \le \lambda^p \le 2$ for all eigenvalues.

This is also the stability limit (von Neumann analysis).

Second-order REA Algorithm

1 Reconstruct a piecewise linear function $\tilde{q}^n(x, t_n)$ defined for all x, from the cell averages Q_i^n .

$$\tilde{q}^n(x,t_n) = Q_i^n + \sigma_i^n(x-x_i) \quad \text{for all } x \in \mathcal{C}_i.$$

- **2** Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x, t_{n+1})$ a time *k* later.
- Average this function over each grid cell to obtain new cell averages

$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) \, dx.$$

Notes:

 R.J. LeVeque, University of Washington
 AMath 574, January 26, 2011 (FVMHP Sec. 4.10)

High-resolution methods

Want to use slope where solution is smooth for "second-order" accuracy.

Where solution is not smooth, adding slope corrections gives oscillations.

Limit the slope based on the behavior of the solution.

$$\sigma_i^n = \left(\frac{Q_{i+1}^n - Q_i^n}{\Delta x}\right) \Phi_i^n.$$

 $\Phi = 1 \implies$ Lax-Wendroff,

 $\Phi = 0 \implies \text{upwind.}$

Might also take $1 < \Phi \leq 2$ to sharpen discontinuities.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.4]

Minmod slope

$$\mathsf{minmod}(a,b) = \begin{cases} a & \text{if } |a| < |b| \text{ and } ab > 0 \\ b & \text{if } |b| < |a| \text{ and } ab > 0 \\ 0 & \text{if } ab < 0 \end{cases}$$

Slope:

$$\begin{split} \sigma_i^n &= \min \operatorname{momod}((Q_i^n - Q_{i-1}^n) / \Delta x, \ (Q_{i+1}^n - Q_i^n) / \Delta x) \\ &= \left(\frac{Q_{i+1}^n - Q_i^n}{\Delta x}\right) \Phi(\theta_i^n) \end{split}$$

where

$$\begin{array}{lll} \theta_i^n &=& \displaystyle \frac{Q_i^n - Q_{i-1}^n}{Q_{i+1}^n - Q_i^n} \\ \Phi(\theta) &=& \displaystyle \min (\theta, 1) & \quad 0 \leq \Phi \leq 1 \end{array}$$

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.8]

Piecewise linear reconstructions

Notes:				
	R.J. LeVeque,	University of Washington	AMath 574, January 26, 2011	[FVMHP Sec. 6.4]
Notes:				

TVD Methods

Total variation:

$$TV(Q) = \sum_{i} |Q_i - Q_{i-1}|$$

For a function, $TV(q) = \int |q_x(x)| dx$.

A method is Total Variation Diminishing (TVD) if

 $TV(Q^{n+1}) \le TV(Q^n).$

If Q^n is monotone, then so is Q^{n+1} .

No spurious oscillations generated.

Gives a form of stability useful for proving convergence, also for nonlinear scalar conservation laws.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.7]

TVD REA Algorithm

1 Reconstruct a piecewise linear function $\tilde{q}^n(x, t_n)$ defined for all x, from the cell averages Q_i^n .

$$\tilde{q}^n(x,t_n) = Q_i^n + \sigma_i^n(x-x_i)$$
 for all $x \in C_i$

with the property that $TV(\tilde{q}^n) \leq TV(Q^n)$.

- **2** Evolve the hyperbolic equation exactly (or approximately) with this initial data to obtain $\tilde{q}^n(x, t_{n+1})$ a time k later.
- Average this function over each grid cell to obtain new cell averages

$$Q_i^{n+1} = \frac{1}{\Delta x} \int_{\mathcal{C}_i} \tilde{q}^n(x, t_{n+1}) \, dx.$$

Note: Steps 2 and 3 are always TVD.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.7]

Mint bY4, Jahuary 26, 2011 [PVMPP Set 6.7] Minmod reconstruction: $f = 0 \ f = 0$

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.7]

Order of accuracy isn't everything

Comparison of Lax-Wendroff and a high-resolution method on linear advection equation with smooth data.

The high-resolution method is not formally second-order accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.12]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 8.5]

Numerical Experiments	Notes:
<pre>Experiment with the codes available from \$CLAW/book/chap6/compareadv \$CLAW/book/chap6/wavepacket Use clawdata.order = 2 and one of the following: clawdata.mthlim = [0]: Lax-Wendroff clawdata.mthlim = [1]: minmod clawdata.mthlim = [2]: superbee clawdata.mthlim = [3]: van Leer clawdata.mthlim = [4]: Monotonized Centered (MC) clawdata.mthlim = [5]: Beam-Warming See Figures 6.2 and 6.3 for sample results.</pre>	
R.J. LeVeque, University of Washington AMath 574, January 26, 2011	R.J. LeVeque, University of Washington AMath 574, January 26, 2011
Slope limiters and flux limiters	Notes:
Slope limiter formulation for advection:	
$\tilde{Q}^n(x, t_n) = Q_i^n + \sigma_i^n(x - x_i)$ for $x_{i-1/2} \le x < x_{i+1/2}$.	
Applying REA algorithm gives:	
$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n) - \frac{1}{2}\frac{u\Delta t}{\Delta x}\left(\Delta x - \bar{u}\Delta t\right)\left(\sigma_i^n - \sigma_{i-1}^n\right)$	
Flux limiter formulation:	
$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n)$	
with flux	
$F_{i-1/2}^{n} = uQ_{i-1}^{n} + \frac{1}{2}u(\Delta x - u\Delta t)\sigma_{i-1}^{n}.$	
R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.11]	R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.11]
Wave limiters	Notes:
Let $W_{i-1/2} = Q_i^n - Q_{i-1}^n$.	
Upwind: $Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x} \mathcal{W}_{i-1/2}.$	

Lax-Wendroff:

 $Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x} \mathcal{W}_{i-1/2} - \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2})$ $\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left| \frac{u\Delta t}{\Delta x} \right| \right) |u| \mathcal{W}_{i-1/2}$

High-resolution method:

$$\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left| \frac{u \Delta t}{\Delta x} \right| \right) |u| \widetilde{\mathcal{W}}_{i-1/2}$$

where $\widetilde{\mathcal{W}}_{i-1/2} = \Phi_{i-1/2} \mathcal{W}_{i-1/2}$.

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.14]

Extension to linear systems	Notes:
Approach 1: Diagonalize the system to	
$v_t + \Lambda v_x = 0$	
Apply scalar algorithm to each component.	
Approach 2:	
Solve the linear Riemann problem to decompose $Q_i^n - Q_{i-1}^n$ into waves.	
Apply a wave limiter to each wave.	
For constant-coefficient linear problems these are equivalent.	
For nonlinear problems Approach 2 generalizes!	
Note: Limiters are applied to waves or characteristic components, not to original variables.	
R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.14]	R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.14