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Outline

Today:
• Lax-Wendroff, dispersion
• High resolution methods

Friday:
• Clawpack Plotting

Monday:
• Boundary conditions
• Multi-dimensional

Reading: Chapters 7, 18, 19

Plotting documentation:
http://www.clawpack.org/users/plotting.html
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Modified Equations

The upwind method

Qn+1
i = Qn

i −
∆t
∆x

u(Qn
i −Qn

i−1).

gives a first-order accurate approximation to qt + uqx = 0.

But it gives a second-order approximation to

qt + uqx =
u∆x

2

(
1− u∆t

∆x

)
qxx.

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is O(∆x).

Note: No diffusion if u∆t
∆x = 1 (Qn+1

i = Qn
i−1 exactly).
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Lax-Wendroff

Second-order accuracy?

Taylor series:

q(x, t+ ∆t) = q(x, t) + ∆tqt(x, t) +
1
2

∆t2qtt(x, t) + · · ·

From qt = −Aqx we find qtt = A2qxx.

q(x, t+ ∆t) = q(x, t)−∆tAqx(x, t) +
1
2

∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by centered differences:

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1
2

∆t2

∆x2
A2(Qn

i−1−2Qn
i +Qn

i+1)
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Modified Equation for Lax-Wendroff

The Lax-Wendroff method

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1
2

∆t2

∆x2
A2(Qn

i−1−2Qn
i +Qn

i+1)

gives a second-order accurate approximation to qt + uqx = 0.

But it gives a third-order approximation to

qt + uqx = −uh
2

6

(
1−

(
u∆t
∆x

)2
)
qxxx.

This has a dispersive term with O(∆x2) coefficient.

Indicates that the numerical solution will become oscillatory.
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Beam-Warming method

Taylor series for second order accuracy:

q(x, t+ ∆t) = q(x, t)−∆tAqx(x, t) +
1
2

∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by one-sided differences:

Qn+1
i = Qn

i −
∆t

2∆x
A(3Qn

i − 4Qn
i−1 +Qn

i−2)

+
1
2

∆t2

∆x2
A2(Qn

i − 2Qn
i−1 +Qn

i−2)

CFL condition: 0 ≤ λp ≤ 2 for all eigenvalues.

This is also the stability limit (von Neumann analysis).
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First-order REA Algorithm

1 Reconstruct a piecewise constant function q̃n(x, tn)
defined for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫

Ci
q̃n(x, tn+1) dx.
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:
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Second-order REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫

Ci
q̃n(x, tn+1) dx.
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:
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Choice of slopes

Q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1)− 1
2
u∆t
∆x

(∆x− ū∆t) (σn
i − σn

i−1)

Choice of slopes:

Centered slope: σn
i =

Qn
i+1 −Qn

i−1

2∆x
(Fromm)

Upwind slope: σn
i =

Qn
i −Qn

i−1

∆x
(Beam-Warming)

Downwind slope: σn
i =

Qn
i+1 −Qn

i

∆x
(Lax-Wendroff)
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Oscillations

Any of these slope choices will give oscillations near
discontinuities.

Ex: Lax-Wendroff:
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution.

σn
i =

(
Qn

i+1 −Qn
i

∆x

)
Φn

i .

Φ = 1 =⇒ Lax-Wendroff,

Φ = 0 =⇒ upwind.

Might also take 1 < Φ ≤ 2 to sharpen discontinuities.
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Minmod slope

minmod(a, b) =





a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

Slope:

σn
i = minmod((Qn

i −Qn
i−1)/∆x, (Qn

i+1 −Qn
i )/∆x)

=
(
Qn

i+1 −Qn
i

∆x

)
Φ(θn

i )

where

θn
i =

Qn
i −Qn

i−1

Qn
i+1 −Qn

i

Φ(θ) = minmod(θ, 1) 0 ≤ Φ ≤ 1
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Piecewise linear reconstructions

Lax-Wendroff reconstruction:

Minmod reconstruction:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.8]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 26, 2011 [FVMHP Sec. 6.8]



TVD Methods

Total variation:
TV (Q) =

∑

i

|Qi −Qi−1|

For a function, TV (q) =
∫
|qx(x)| dx.

A method is Total Variation Diminishing (TVD) if

TV (Qn+1) ≤ TV (Qn).

If Qn is monotone, then so is Qn+1.

No spurious oscillations generated.

Gives a form of stability useful for proving convergence,
also for nonlinear scalar conservation laws.
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TVD REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci

with the property that TV (q̃n) ≤ TV (Qn).

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫

Ci
q̃n(x, tn+1) dx.

Note: Steps 2 and 3 are always TVD.
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Choosing 1 < Φ ≤ 2 to sharpen jumps

Minmod reconstruction:

Doubling the slopes is possible without loss of TVD:
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Some popular limiters

Linear methods:

upwind : φ(θ) = 0
Lax-Wendroff : φ(θ) = 1

Beam-Warming : φ(θ) = θ

Fromm : φ(θ) =
1
2

(1 + θ)

High-resolution limiters:

minmod : φ(θ) = minmod(1, θ)
superbee : φ(θ) = max(0, min(1, 2θ), min(2, θ))

MC : φ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer : φ(θ) =
θ + |θ|
1 + |θ|
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Sweby diagram
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Order of accuracy isn’t everything

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth data.

The high-resolution method is not formally second-order
accurate, but is more accurate on realistic grids.

Crossover in the max-norm is at 2800 grid points.
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Numerical Experiments

Experiment with the codes available from

$CLAW/book/chap6/compareadv

$CLAW/book/chap6/wavepacket

Use clawdata.order = 2 and one of the following:
• clawdata.mthlim = [0]: Lax-Wendroff
• clawdata.mthlim = [1]: minmod
• clawdata.mthlim = [2]: superbee
• clawdata.mthlim = [3]: van Leer
• clawdata.mthlim = [4]: Monotonized Centered (MC)
• clawdata.mthlim = [5]: Beam-Warming

See Figures 6.2 and 6.3 for sample results.
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Slope limiters and flux limiters

Slope limiter formulation for advection:

Q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1)− 1
2
u∆t
∆x

(∆x− ū∆t) (σn
i − σn

i−1)

Flux limiter formulation:

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

with flux

Fn
i−1/2 = uQn

i−1 +
1
2
u(∆x− u∆t)σn

i−1.
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Wave limiters

LetWi−1/2 = Qn
i −Qn

i−1.

Upwind: Qn+1
i = Qn

i − u∆t
∆xWi−1/2.

Lax-Wendroff:

Qn+1
i = Qn

i −
u∆t
∆x
Wi−1/2 −

∆t
∆x

(F̃i+1/2 − F̃i−1/2)

F̃i−1/2 =
1
2

(
1−

∣∣∣∣
u∆t
∆x

∣∣∣∣
)
|u|Wi−1/2

High-resolution method:

F̃i−1/2 =
1
2

(
1−

∣∣∣∣
u∆t
∆x

∣∣∣∣
)
|u|W̃i−1/2

where W̃i−1/2 = Φi−1/2Wi−1/2.
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Extension to linear systems

Approach 1: Diagonalize the system to

vt + Λvx = 0

Apply scalar algorithm to each component.

Approach 2:

Solve the linear Riemann problem to decompose Qn
i −Qn

i−1

into waves.

Apply a wave limiter to each wave.

For constant-coefficient linear problems these are equivalent.

For nonlinear problems Approach 2 generalizes!

Note: Limiters are applied to waves or characteristic
components, not to original variables.
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