Conservation Laws and Finite Volume Methods

AMath 574
Winter Quarter, 2011
Randall J. LeVeque Applied Mathematics
University of Washington

January 24, 2011

Outline

Today:

- CFL condition
- Numerical examples using Clawpack
- Numerical dissipation of upwind
- Lax-Wendroff method (second order)
- Numerical dispersion, modified equations

Next:

- High resolution methods

Reading: Chapters 5 and 6

Godunov's method

Q_{i}^{n} defines a piecewise constant function

$$
\tilde{q}^{n}\left(x, t_{n}\right)=Q_{i}^{n} \text { for } x_{i-1 / 2}<x<x_{i+1 / 2}
$$

Discontinuities at cell interfaces \Longrightarrow Riemann problems.

$$
\begin{aligned}
& Q_{i}^{n} \\
& \tilde{q}^{n}\left(x_{i-1 / 2}, t\right) \equiv q^{\Downarrow}\left(Q_{i-1}, Q_{i}\right) \quad \text { for } t>t_{n} . \\
& F_{i-1 / 2}^{n}=\frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} f\left(q^{\Downarrow}\left(Q_{i-1}^{n}, Q_{i}^{n}\right)\right) d t=f\left(q^{\Downarrow}\left(Q_{i-1}^{n}, Q_{i}^{n}\right)\right) .
\end{aligned}
$$

Wave-propagation viewpoint

For linear system $q_{t}+A q_{x}=0$, the Riemann solution consists of waves \mathcal{W}^{p} propagating at constant speed λ^{p}.

$$
Q_{i}-Q_{i-1}=\sum_{p=1}^{m} \alpha_{i-1 / 2}^{p} r^{p} \equiv \sum_{p=1}^{m} \mathcal{W}_{i-1 / 2}^{p}
$$

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\lambda^{2} \mathcal{W}_{i-1 / 2}^{2}+\lambda^{3} \mathcal{W}_{i-1 / 2}^{3}+\lambda^{1} \mathcal{W}_{i+1 / 2}^{1}\right]
$$

Matrix splitting for upwind method

For $q_{t}+A q_{x}=0$, the upwind method (Godunov) is:

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \alpha_{i-1 / 2}^{p} r^{p}+\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \alpha_{i+1 / 2}^{p} r^{p}\right] \\
& =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[A^{+} \Delta Q_{i-1 / 2}+A^{-} \Delta Q_{i+1 / 2}\right] \\
& =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
\end{aligned}
$$

Matrix splitting for upwind method

For $q_{t}+A q_{x}=0$, the upwind method (Godunov) is:

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[\sum_{p=1}^{m}\left(\lambda^{p}\right)^{+} \alpha_{i-1 / 2}^{p} r^{p}+\sum_{p=1}^{m}\left(\lambda^{p}\right)^{-} \alpha_{i+1 / 2}^{p} r^{p}\right] \\
& =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[A^{+} \Delta Q_{i-1 / 2}+A^{-} \Delta Q_{i+1 / 2}\right] \\
& =Q_{i}^{n}+\frac{\Delta t}{\Delta x}\left[A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)+A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)\right]
\end{aligned}
$$

Natural generalization of upwind to a system.
If all eigenvalues are positive, then $A^{+}=A$ and $A^{-}=0$, If all eigenvalues are negative, then $A^{+}=0$ and $A^{-}=A$.

The CFL Condition

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

$$
q(x, t)=q(x-u t, 0)
$$

For a 3-point method, CFL condition requires $\left|\frac{u \Delta t}{\Delta x}\right| \leq 1$.
If this is violated:
True solution is determined by data at a point $x-u t$ that is ignored by the numerical method, even as the grid is refined.

The CFL Condition

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.
For advection, the solution is constant along characteristics,

$$
q(x, t)=q(x-u t, 0)
$$

For a 3-point method, CFL condition requires $\left|\frac{u \Delta t}{\Delta x}\right| \leq 1$.
If this is violated:
True solution is determined by data at a point $x-u t$ that is ignored by the numerical method, even as the grid is refined.

The CFL Condition

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.
For advection, the solution is constant along characteristics,

$$
q(x, t)=q(x-u t, 0)
$$

For a 3-point method, CFL condition requires $\left|\frac{u \Delta t}{\Delta x}\right| \leq 1$.

If this is violated:
True solution is determined by data at a point $x-u t$ that is ignored by the numerical method, even as the grid is refined.

The CFL Condition

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.
For advection, the solution is constant along characteristics,

$$
q(x, t)=q(x-u t, 0)
$$

For a 3-point method, CFL condition requires $\left|\frac{u \Delta t}{\Delta x}\right| \leq 1$.
If this is violated:
True solution is determined by data at a point $x-u t$ that is ignored by the numerical method, even as the grid is refined.

Stencil

CFL Condition

$$
-\infty<\frac{\lambda_{p} \Delta t}{\Delta x}<\infty, \quad \forall p
$$

Numerical Experiments

Experiment with the code in \$CLAW/apps/advection/1d/example1

Make the following changes in setrun.py:

- Upwind method (clawdata.order = 1)
- Finer grid (clawdata.mx = 100)
- Periodic boundary conditions

$$
\begin{aligned}
& \text { clawdata.mthbc_xlower }=2 \\
& \text { clawdata.mthbc_xupper }=2
\end{aligned}
$$

- Narrower pulse (beta $=300$ or 3000)
- Courant number greater than 1.

$$
\begin{aligned}
& \text { clawdata.cfl_desired = } 1.1 \\
& \text { clawdata.cfl_max }=1.1
\end{aligned}
$$

Upwind for a linear system

The one-sided method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} A\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

is stable only if $0 \leq \Delta t \lambda^{p} / \Delta x \leq 1$ for all p.
Upwind method based on sign of each λ^{p} :

$$
\text { Let } \begin{aligned}
& \lambda^{+}=\max (\lambda, 0), \lambda^{-}=\min (\lambda, 0) \\
& \Lambda^{+}=\operatorname{diag}\left(\left(\left(\lambda^{p}\right)^{+}\right), \Lambda^{-}=\operatorname{diag}\left(\left(\lambda^{p}\right)^{-}\right)\right. \\
& A^{+}=R \Lambda^{+} R^{-1}, \quad A^{-}=R \Lambda^{-} R^{-1}
\end{aligned}
$$

Then

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} A^{+}\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{\Delta t}{\Delta x} A^{-}\left(Q_{i+1}^{n}-Q_{i}^{n}\right)
$$

Symmetric methods

Centered in space, forward in time:

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\frac{1}{2} A\right)\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\frac{1}{2} A\right)\left(Q_{i+1}^{n}-Q_{i}^{n}\right) \\
& =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
\end{aligned}
$$

Centered approximation to q_{x}, but unstable for any fixed $\Delta t / \Delta x$.

Symmetric methods

Centered in space, forward in time:

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\frac{1}{2} A\right)\left(Q_{i}^{n}-Q_{i-1}^{n}\right)-\frac{\Delta t}{\Delta x}\left(\frac{1}{2} A\right)\left(Q_{i+1}^{n}-Q_{i}^{n}\right) \\
& =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
\end{aligned}
$$

Centered approximation to q_{x}, but unstable for any fixed $\Delta t / \Delta x$.

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This is stable if $\left|\frac{\lambda^{p} \Delta t}{\Delta x}\right| \leq 1$ for all p.

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)
$$

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right) \\
& =Q_{i}^{n}-\Delta t A\left(\frac{Q_{i+1}^{n}-Q_{i-1}^{n}}{2 \Delta x}\right)+\Delta t\left(\frac{\Delta x^{2}}{2 \Delta t}\right)\left(\frac{Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}}{\Delta x^{2}}\right)
\end{aligned}
$$

Numerical dissipation

Lax-Friedrichs:

$$
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)
$$

This can be rewritten as

$$
\begin{aligned}
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right) \\
& =Q_{i}^{n}-\Delta t A\left(\frac{Q_{i+1}^{n}-Q_{i-1}^{n}}{2 \Delta x}\right)+\Delta t\left(\frac{\Delta x^{2}}{2 \Delta t}\right)\left(\frac{Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}}{\Delta x^{2}}\right)
\end{aligned}
$$

The unstable method with the addition of artificial viscosity,
Approximates $q_{t}+A q_{x}=\epsilon q_{x x} \quad$ (modified equation)
with $\epsilon=\frac{\Delta x^{2}}{2 \Delta t}=\mathcal{O}(\Delta x)$ if $\Delta t / \Delta x$ is fixed as $\Delta x \rightarrow 0$.

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.

Modified Equations

The upwind method

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x} u\left(Q_{i}^{n}-Q_{i-1}^{n}\right)
$$

gives a first-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a second-order approximation to

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2}\left(1-\frac{u \Delta t}{\Delta x}\right) q_{x x}
$$

This is an advection-diffusion equation.
Indicates that the numerical solution will diffuse.
Note: coefficient of diffusive term is $O(\Delta x)$.
Note: No diffusion if $\frac{u \Delta t}{\Delta x}=1 \quad\left(Q_{i}^{n+1}=Q_{i-1}^{n}\right.$ exactly $)$.

Lax-Wendroff

Second-order accuracy?

Taylor series:

$$
q(x, t+\Delta t)=q(x, t)+\Delta t q_{t}(x, t)+\frac{1}{2} \Delta t^{2} q_{t t}(x, t)+\cdots
$$

From $q_{t}=-A q_{x}$ we find $q_{t t}=A^{2} q_{x x}$.

$$
q(x, t+\Delta t)=q(x, t)-\Delta t A q_{x}(x, t)+\frac{1}{2} \Delta t^{2} A^{2} q_{x x}(x, t)+\cdots
$$

Replace q_{x} and $q_{x x}$ by centered differences:
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$

Modified Equation for Lax-Wendroff

The Lax-Wendroff method
$Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{2 \Delta x} A\left(Q_{i+1}^{n}-Q_{i-1}^{n}\right)+\frac{1}{2} \frac{\Delta t^{2}}{\Delta x^{2}} A^{2}\left(Q_{i-1}^{n}-2 Q_{i}^{n}+Q_{i+1}^{n}\right)$
gives a second-order accurate approximation to $q_{t}+u q_{x}=0$.
But it gives a third-order approximation to

$$
q_{t}+u q_{x}=-\frac{u h^{2}}{6}\left(1-\left(\frac{u \Delta t}{\Delta x}\right)^{2}\right) q_{x x x}
$$

This has a dispersive term with $O\left(\Delta x^{2}\right)$ coefficient.
Indicates that the numerical solution will become oscillatory.

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE.
This is the dispersion relation.
$q_{t}=-i \omega q, \quad q_{x}=i \xi q, \quad q_{x x}=-\xi^{2} q, \quad q_{x x x}=-i \xi^{3} q, \ldots$
$q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}$
(translates at speed u for all ξ)

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE.
This is the dispersion relation.
$q_{t}=-i \omega q, \quad q_{x}=i \xi q, \quad q_{x x}=-\xi^{2} q, \quad q_{x x x}=-i \xi^{3} q, \ldots$
$q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}$
(translates at speed u for all ξ)

$$
\begin{equation*}
q_{t}+u q_{x}=\epsilon q_{x x} \Longrightarrow \quad q(x, t)=e^{-\epsilon \xi^{2} t} e^{i \xi(x-u t)} \tag{decays}
\end{equation*}
$$

Dispersion relation

Consider a single Fourier mode:

$$
q(x, 0)=e^{i \xi x} \Longrightarrow q(x, t)=e^{i(\xi x-\omega t)}
$$

Determine $\omega(\xi)$ based on the PDE.
This is the dispersion relation.
$q_{t}=-i \omega q, \quad q_{x}=i \xi q, \quad q_{x x}=-\xi^{2} q, \quad q_{x x x}=-i \xi^{3} q, \ldots$
$q_{t}+u q_{x}=0 \Longrightarrow \omega(\xi)=u \xi, \quad q(x, t)=e^{i \xi(x-u t)}$
(translates at speed u for all ξ)
$q_{t}+u q_{x}=\epsilon q_{x x} \Longrightarrow \quad q(x, t)=e^{-\epsilon \xi^{2}} t e^{i \xi(x-u t)}$
(decays)
$q_{t}+u q_{x}=\beta q_{x x x} \Longrightarrow q(x, t)=e^{i \xi\left(x-\left(u+\beta \xi^{2}\right) t\right)}$
(translates at speed $u+\beta \xi^{2}$ that depends on wave number!)

