Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2011

Randall J. LeVeque

Applied Mathematics University of Washington

January 10, 2011

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011

Outline

Today:

- · Gas dynamics
- · Linearization of gas dynamics
- Linear acoustics
- Diagonalization of linear systems
- · Meaning of eigenvectors
- · Characteristic solution for acoustics

Next:

- · Riemann problem for acoustics
- · Finite volume methods

Reading: Chapter 3 and start Chapter 4

R.J. LeVeque, University of Washington AMath 574, January 10, 2011

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011

Compressible gas dynamics

In one space dimension (e.g. in a pipe).

$$\rho(x,t) = \text{density}, \quad u(x,t) = \text{velocity},$$

$$p(x,t) = \text{pressure}, \quad \rho(x,t)u(x,t) = \text{momentum}.$$

Conservation of:

mass: ρ flux: ρu momentum: ρu flux: $(\rho u)u + p$ (energy)

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

$$p = P(\rho)$$
.

(Later: p may also depend on internal energy / temperature)

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Compressible gas dynamics

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Momentum flux:

$$\rho u^2 = (\rho u)u = advective flux$$

p term in flux?

- $-p_x$ = force in Newton's second law,
- as momentum flux: microscopic motion of gas molecules.

R.J. LeVeque, University of Washington

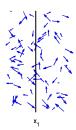
AMath 574, January 10, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Chap. 14]

Momentum flux arising from pressure



Note that:

- molecules with positive x-velocity crossing x_1 to right increase the momentum in $[x_1, x_2]$
- molecules with negative x-velocity crossing x_1 to left also increase the momentum in $[x_1, x_2]$

Hence momentum flux increases with pressure $p(x_1, t)$ even if macroscopic (average) velocity is zero.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Compressible gas dynamics

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

$$p = P(\rho)$$
.

Same as shallow water if $P(\rho) = \frac{1}{2}g\rho^2$ (with $\rho \equiv h$).

Isothermal: $P(\rho) = a^2 \rho$ (since T proportional to p/ρ).

Isentropic: $P(\rho) = \hat{\kappa} \rho^{\gamma} \ (\gamma \approx 1.4 \text{ for air})$

Jacobian matrix:

$$f'(q) = \begin{bmatrix} 0 & 1 \\ P'(\rho) - u^2 & 2u \end{bmatrix}, \qquad \lambda = u \pm \sqrt{P'(\rho)}.$$

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

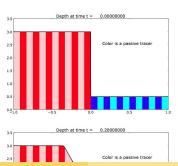
Notes:

The Riemann problem

Dam break problem for shallow water equations

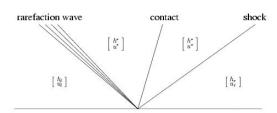
$$h_t + (hu)_x = 0$$

$$(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0$$



AMath 574, January 10, 2011 [FVMHP Chap. 13]

Riemann solution for the SW equations in x-t plane



Similarity solution:

Solution is constant on any ray: q(x,t) = Q(x/t)

Riemann solution can be calculated for many problems. Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice "approximate Riemann solvers" used numerically.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 13]

Compressible gas dynamics

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

$$p = P(\rho)$$
.

Jacobian matrix:

$$f'(q) = \begin{bmatrix} 0 & 1 \\ P'(\rho) - u^2 & 2u \end{bmatrix}, \qquad \lambda = u \pm \sqrt{P'(\rho)}.$$

Sound speed: $c = \sqrt{P'(\rho)}$ varies with ρ .

System is hyperbolic if $P'(\rho) > 0$.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Chap. 13]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 13]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Chap. 14]

Linearization of gas dynamics

Suppose $\rho(x,t) \approx \rho_0$ and $u(x,t) \approx u_0$.

Model small perturbations to this steady state (sound waves).

$$\left[\begin{array}{c} \rho(x,t) \\ (\rho u)(x,t) \end{array}\right] = \left[\begin{array}{c} \rho_0 \\ \rho_0 u_0 \end{array}\right] + \left[\begin{array}{c} \widetilde{\rho}(x,t) \\ (\widetilde{\rho u})(x,t) \end{array}\right]$$

or $q(x,t) = q_0 + \tilde{q}(x,t)$ where $\|\tilde{q}(x,t)\| = \epsilon$ is small

Then nonlinear equation $q_t + f(q)_x = 0$ leads to

$$\tilde{q}_t = q_t
= -f(q)_x
= -f'(q)q_x
= -f'(q_0 + \tilde{q})\tilde{q}_x
= -f'(q_0)\tilde{q}_x + \mathcal{O}(\epsilon^2).$$

Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0)$.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Linearization of gas dynamics

Linearization: $\tilde{q}_t + A\tilde{q}_x = 0$ where $A = f'(q_0)$.

$$A = f'(q_0) = \begin{bmatrix} 0 & 1 \\ -u_0^2 + P'(\rho_0) & 2u_0 \end{bmatrix}.$$

This can be written out as (2.47):

$$\tilde{\rho}_t + (\widetilde{\rho u})_x = 0$$

 $(\widetilde{\rho u})_t + (-u_0^2 + P'(\rho_0))\widetilde{\rho}_x + 2u_0(\widetilde{\rho u})_x = 0.$

Rewrite in terms of p and u perturbations (Exer. 2.1): $\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$

 $\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$

where $K_0 = \rho_0 P'(\rho_0)$ is the bulk modulus.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Linearization of gas dynamics

$$\tilde{p}_t + u_0 \tilde{p}_x + K_0 \tilde{u}_x = 0,$$

$$\rho_0 \tilde{u}_t + \tilde{p}_x + \rho_0 u_0 \tilde{u}_x = 0,$$

gives the system $q_t + Aq_x = 0$ (Drop tildes)

$$q(x,t) = \begin{bmatrix} p(x,t) \\ u(x,t) \end{bmatrix}, \qquad A = \begin{bmatrix} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{bmatrix}$$

Eigenvalues: $\lambda = u_0 \pm c_0$

where $c_0 = \sqrt{K_0/\rho_0} = \sqrt{P'(\rho_0)}$ is the linearized sound speed.

Usually $u_0 = 0$ for linear acoustics. Then $\lambda^1 = -c_0$, $\lambda^2 = +c_0$.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.7]

Example: Linear acoustics in a 1d tube

$$q = \left[\begin{array}{c} p \\ u \end{array} \right] \qquad \begin{array}{c} p(x,t) = \text{pressure perturbation} \\ u(x,t) = \text{velocity} \end{array}$$

Equations:

$$\begin{array}{lll} p_t + \kappa u_x &= 0 & \qquad \kappa &= \text{bulk modulus} \\ \rho u_t + p_x &= 0 & \qquad \rho &= \text{density} \end{array}$$

or

$$\left[\begin{array}{c} p \\ u \end{array}\right]_t + \left[\begin{array}{cc} 0 & \kappa \\ 1/\rho & 0 \end{array}\right] \left[\begin{array}{c} p \\ u \end{array}\right]_x = 0.$$

Eigenvalues: $\lambda = \pm c$, where $c = \sqrt{\kappa/\rho} = \text{sound speed}$

Second order form: Can combine equations to obtain

$$p_{tt} = c^2 p_{xx}$$

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

Riemann Problem

Special initial data:

$$q(x,0) = \begin{cases} q_l & \text{if } x < 0 \\ q_r & \text{if } x > 0 \end{cases}$$

Example: Acoustics with bursting diaphram

Pressure:

Acoustic waves propagate with speeds $\pm c$.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

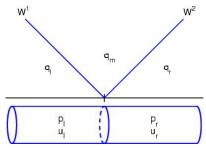
Notes:

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

Riemann Problem for acoustics

Waves propagating in x-t space:



Left-going wave $\mathcal{W}^1=q_m-q_l$ and right-going wave $\mathcal{W}^2=q_r-q_m$ are eigenvectors of A.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.9.1]

Eigenvectors for acoustics

$$A = \left[\begin{array}{cc} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{array} \right]$$

Eigenvectors:

$$r^1 = \left[\begin{array}{c} -\rho_0 c_0 \\ 1 \end{array} \right], \qquad r^2 = \left[\begin{array}{c} \rho_0 c_0 \\ 1 \end{array} \right].$$

Check that $Ar^p = \lambda^p r^p$, where

$$\lambda^1 = u_0 - c_0, \qquad \lambda^2 = u_0 + c_0.$$

with
$$c_0 = \sqrt{K_0/\rho_0} \implies K_0 = \rho_0 c_0^2$$
.

Note: Eigenvectors are independent of u_0 .

Let $Z_0 = \rho_0 c_0 = \sqrt{K_0 \rho_0} = \text{impedance}.$

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 2.8]

Diagonalization of linear system

Consider constant coefficient linear system $q_t + Aq_x = 0$.

Suppose hyperbolic:

- Real eigenvalues $\lambda^1 \leq \lambda^2 \leq \cdots \leq \lambda^m$,
- Linearly independent eigenvalues r^1, r^2, \ldots, r^m .

Let $R = [r^1 | r^2 | \cdots | r^m]$ $m \times m$ matrix of eigenvectors.

Then $Ar^p=\lambda^p r^p$ means that $AR=R\Lambda$ where

$$\Lambda = \left[\begin{array}{ccc} \lambda^1 & & & \\ & \lambda^2 & & \\ & & \ddots & \\ & & & \lambda^m \end{array} \right] \equiv \operatorname{diag}(\lambda^1, \lambda^2, \dots, \lambda^m).$$

 $AR = R\Lambda \implies A = R\Lambda R^{-1} \quad \text{and} \quad R^{-1}AR = \Lambda.$ Similarity transformation with R diagonalizes A.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9]

Diagonalization of linear system

Consider constant coefficient linear system $q_t + Aq_x = 0$.

Multiply system by R^{-1} :

$$R^{-1}q_t(x,t) + R^{-1}Aq_x(x,t) = 0.$$

Introduce $RR^{-1} = I$:

$$R^{-1}q_t(x,t) + R^{-1}ARR^{-1}q_x(x,t) = 0.$$

Use $R^{-1}AR = \Lambda$ and define $w(x,t) = R^{-1}q(x,t)$:

$$w_t(x,t) + \Lambda w_x(x,t) = 0$$
. Since R is constant!

This decouples to m independent scalar advection equations:

$$w_t^p(x,t) + \lambda^p w_x^p(x,t) = 0.$$
 $p = 1, 2, ..., m.$

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9, 3.1]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 2.8]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 2.9, 3.1]

Solution to Cauchy problem

Suppose $q(x,0) = \overset{\circ}{q}(x)$ for $-\infty < x < \infty$.

From this initial data we can compute data

$$\overset{\circ}{w}(x) \equiv R^{-1}\overset{\circ}{q}(x)$$

The solution to the decoupled equation $w_t^p + \lambda^p w_x^p = 0$ is

$$w^{p}(x,t) = w^{p}(x - \lambda^{p}t, 0) = \overset{\circ}{w}^{p}(x - \lambda^{p}t).$$

Putting these together in vector gives w(x,t) and finally

$$q(x,t) = Rw(x,t).$$

We can rewrite this as

$$q(x,t) = \sum_{p=1}^{m} w^{p}(x,t) r^{p} = \sum_{p=1}^{m} \overset{\circ}{w}(x - \lambda^{p}t) r^{p}$$

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.1]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.1]

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$r^1 = \left[\begin{array}{c} -\rho_0 c_0 \\ 1 \end{array} \right] = \left[\begin{array}{c} -Z_0 \\ 1 \end{array} \right], \qquad r^2 = \left[\begin{array}{c} \rho_0 c_0 \\ 1 \end{array} \right] = \left[\begin{array}{c} Z_0 \\ 1 \end{array} \right].$$

Consider a pure 1-wave (simple wave), at speed $\lambda^1 = -c_0$, If $\overset{\circ}{q}(x) = \bar{q} + \overset{\circ}{w}^{1}(x)r^{1}$ then

$$q(x,t) = \bar{q} + \overset{\circ}{w}^{1}(x - \lambda^{1}t)r^{1}$$

Variation of q, as measured by q_x or $\Delta q = q(x + \Delta x) - q(x)$ is proportional to eigenvector r^1 , e.g.

$$q_x(x,t) = \mathring{w}_x^1(x - \lambda^1 t)r^1$$

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.4, 3.5]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.4, 3.5]

Physical meaning of eigenvectors

Eigenvectors for acoustics:

$$r^1 = \left[\begin{array}{c} -\rho_0 c_0 \\ 1 \end{array} \right] = \left[\begin{array}{c} -Z_0 \\ 1 \end{array} \right], \qquad r^2 = \left[\begin{array}{c} \rho_0 c_0 \\ 1 \end{array} \right] = \left[\begin{array}{c} Z_0 \\ 1 \end{array} \right].$$

In a simple 1-wave (propagating at speed $\lambda^1 = -c_0$),

$$\left[\begin{array}{c} p_x \\ u_x \end{array}\right] = \beta(x) \left[\begin{array}{c} -Z_0 \\ 1 \end{array}\right]$$

The pressure variation is $-Z_0$ times the velocity variation.

Similarly, in a simple 2-wave ($\lambda^2 = c_0$),

$$\left[\begin{array}{c} p_x \\ u_x \end{array}\right] = \beta(x) \left[\begin{array}{c} Z_0 \\ 1 \end{array}\right]$$

The pressure variation is Z_0 times the velocity variation.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Acoustic waves

$$q(x,0) = \begin{bmatrix} \stackrel{\circ}{p}(x) \\ 0 \end{bmatrix} = -\frac{\stackrel{\circ}{p}(x)}{2Z_0} \begin{bmatrix} -Z_0 \\ 1 \end{bmatrix} + \frac{\stackrel{\circ}{p}(x)}{2Z_0} \begin{bmatrix} Z_0 \\ 1 \end{bmatrix}$$

$$= w^1(x,0)r^1 + w^2(x,0)r^2$$

$$= \begin{bmatrix} \stackrel{\circ}{p}(x)/2 \\ -\stackrel{\circ}{p}(x)/(2Z_0) \end{bmatrix} + \begin{bmatrix} \stackrel{\circ}{p}(x)/2 \\ \stackrel{\circ}{p}(x)/(2Z_0) \end{bmatrix}.$$

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Solution by tracing back on characteristics

The general solution for acoustics:

$$\begin{split} q(x,t) &= w^1(x-\lambda^1 t,0) r^1 + w^2(x-\lambda^2 t,0) r^2 \\ &= w^1(x+c_0t,0) r^1 + w^2(x-c_0t,0) r^2 \end{split}$$

Recall that $w(x,0) = R^{-1}q(x,0)$, i.e.

$$w^{1}(x,0) = \ell^{1}q(x,0), \qquad w^{2}(x,0) = \ell^{2}q(x,0)$$

where ℓ^1 and ℓ^2 are rows of R^{-1} .

$$R^{-1} = \left[\begin{array}{c} \ell^1 \\ \ell^2 \end{array} \right]$$

Note: ℓ^1 and ℓ^2 are left-eigenvectors of A:

$$\ell^p A = \lambda^p \ell^p$$
 since $R^{-1} A = \Lambda R^{-1}$.

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

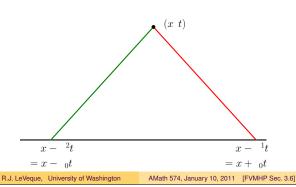
Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Solution by tracing back on characteristics

The general solution for acoustics:

$$q(x,t) = w^{1}(x - \lambda^{1}t, 0)r^{1} + w^{2}(x - \lambda^{2}t, 0)r^{2}$$
$$= w^{1}(x + c_{0}t, 0)r^{1} + w^{2}(x - c_{0}t, 0)r^{2}$$



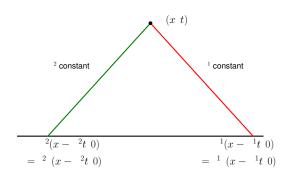
Notes:

R.J. LeVeque, University of Washington AMath 574, January 10, 2011 [FVMHP Sec. 3.6]

Solution by tracing back on characteristics

The general solution for acoustics:

$$q(x,t) = w^{1}(x - \lambda^{1}t, 0)r^{1} + w^{2}(x - \lambda^{2}t, 0)r^{2}$$



R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.5]

Notes:

R.J. LeVeque, University of Washington

AMath 574, January 10, 2011 [FVMHP Sec. 3.5]