Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2011 Randall J. LeVeque Applied Mathematics University of Washington January 3, 2011
R.J. Leveque, Univesity of Wastingion AMaat 574, January 3,2011
Course outline
Main goals: - Theory of hyperbolic conservation laws in one dimension - Finite volume methods in 1 and 2 dimensions - Some applications: advection, acoustics, Burgers', shallow water equations, gas dynamics, traffic flow - Use of the Clawpack software: www.clawpack.org Slides will be posted and green links can be clicked. http://kingkong.amath.washington.edu/trac/am574w11
R.J. Leveque, Univesity of Wastington AMat 574, Januay 3,2011

Outline
Today:
- Hyperbolic equations
- Advection
- Riemann problem
- Diffusion
- Clawpack
- Acoustics
Reading: Chapters 1 and 2
R.J. Leveoue, Univesity o f Wassingion

Notes:

Notes:

R.J. LeVeque, University of Washington AMath 574, January 3, 2011

Notes:

First order hyperbolic PDE in 1 space dimension
Linear: $\quad q_{t}+A q_{x}=0, \quad q(x, t) \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times m}$

Conservation law: $\quad q_{t}+f(q)_{x}=0, \quad f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ (flux)

Quasilinear form: $q_{t}+f^{\prime}(q) q_{x}=0$

Hyperbolic if A or $f^{\prime}(q)$ is diagonalizable with real eigenvalues.

Models wave motion or advective transport.
Eigenvalues are wave speeds.
Note: Second order wave equation $p_{t t}=c^{2} p_{x x}$ can be written as a first-order system (acoustics).
R.J. LeVeque, University of Washington

AMath 574, January 3, 2011 [FVMHP Sec. 1.1]

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity, so

$$
\int_{x_{1}}^{x_{2}} q(x, t) d x=\text { total mass in interval }
$$

changes only because of fluxes at left or right of interval.

R.J. LeVeque, University of Washington

Derivation of Conservation Laws

$q(x, t)=$ density function for some conserved quantity. Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=F_{1}(t)-F_{2}(t)
$$

where

$$
F_{j}=f\left(q\left(x_{j}, t\right)\right), \quad f(q)=\text { flux function. }
$$

R.J. LeVeque, University of Washington AMath 574, January 3, 2011 [FVMHP Sec. 1.1]

Notes:

R.J. LeVeque, University of Washington

Notes:

Derivation of Conservation Laws

If q is smooth enough, we can rewrite

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=f\left(q\left(x_{1}, t\right)\right)-f\left(q\left(x_{2}, t\right)\right)
$$

as

$$
\int_{x_{1}}^{x_{2}} q_{t} d x=-\int_{x_{1}}^{x_{2}} f(q)_{x} d x
$$

or

$$
\int_{x_{1}}^{x_{2}}\left(q_{t}+f(q)_{x}\right) d x=0
$$

True for all $x_{1}, x_{2} \Longrightarrow$ differential form:

$$
q_{t}+f(q)_{x}=0
$$

Finite differences vs. finite volumes

Finite difference Methods

- Pointwise values $Q_{i}^{n} \approx q\left(x_{i}, t_{n}\right)$
- Approximate derivatives by finite differences
- Assumes smoothness

Finite volume Methods

- Approximate cell averages: $Q_{i}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} q\left(x, t_{n}\right) d x$
- Integral form of conservation law,

$$
\frac{\partial}{\partial t} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} q(x, t) d x=f\left(q\left(x_{i-1 / 2}, t\right)\right)-f\left(q\left(x_{i+1 / 2}, t\right)\right)
$$

leads to conservation law $q_{t}+f_{x}=0$ but also directly to numerical method.
R.J. LeVeque, University of Washington AMath 574, January 3, 2011 [FVMHP Chap. 4]

Advection equation

$u=$ constant flow velocity
$q(x, t)=$ tracer concentration, $\quad f(q)=u q$
$\Longrightarrow \quad q_{t}+u q_{x}=0$.
True solution: $q(x, t)=q(x-u t, 0)$

\qquad

Characteristics for advection

$q(x, t)=\eta(x-u t) \Longrightarrow q$ is constant along lines

$$
X(t)=x_{0}+u t, \quad t \geq 0 .
$$

Can also see that q is constant along $X(t)$ from:

$$
\begin{aligned}
\frac{d}{d t} q(X(t), t) & =q_{x}(X(t), t) X^{\prime}(t)+q_{t}(X(t), t) \\
& =q_{x}(X(t), t) u+q_{t}(X(t), t) \\
& =0 .
\end{aligned}
$$

In $x-t$ plane:

R.J. LeVeque, University of Washington

Cauchy problem for advection

Advection equation on infinite 1D domain:

$$
q_{t}+u q_{x}=0 \quad-\infty<x<\infty, \quad t \geq 0
$$

with initial data

$$
q(x, 0)=\eta(x) \quad-\infty<x<\infty .
$$

Solution:

$$
q(x, t)=\eta(x-u t) \quad-\infty<x<\infty, \quad t \geq 0 .
$$

Notes:

Advection equation on finite 1D domain:

$$
q_{t}+u q_{x}=0 \quad a<x<b, \quad t \geq 0
$$

with initial data

$$
q(x, 0)=\eta(x) \quad a<x<b .
$$

and boundary data at the inflow boundary:
If $u>0$, need data at $x=a$:

$$
q(a, t)=g(t), \quad t \geq 0,
$$

If $u<0$, need data at $x=b$:

$$
q(b, t)=g(t), \quad t \geq 0
$$

Characteristics for IBVP

In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)= \begin{cases}\eta(x-u t) & \text { if } a \leq x-u t \leq b \\ g((x-a) / u) & \text { otherwise }\end{cases}
$$

R.J. LeVeque, University of Washington

Periodic boundary conditions

$$
q(a, t)=q(b, t), \quad t \geq 0
$$

In $x-t$ plane for the case $u>0$:

Solution:

$$
q(x, t)=\eta\left(X_{0}(x, t)\right),
$$

where $X_{0}(x, t)=a+\bmod (x-u t-a, b-a)$.

> R.J. LeVeque, University of Washington

The Riemann problem

The Riemann problem consists of the hyperbolic equation under study together with initial data of the form

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

Piecewise constant with a single jump discontinuity from q_{l} to q_{r}.

The Riemann problem is fundamental to understanding

- The mathematical theory of hyperbolic problems,
- Godunov-type finite volume methods

Why? Even for nonlinear systems of conservation laws, the Riemann problem can often be solved for general q_{l} and q_{r}, and consists of a set of waves propagating at constant speeds.

Notes:

R.J. LeVeque, University of Washington AMath 574, January 3, 2011 [FVMHP Sec. 2.1]

Notes:

Notes:

The Riemann problem for advection

The Riemann problem for the advection equation $q_{t}+u q_{x}=0$ with

$$
q(x, 0)= \begin{cases}q_{l} & \text { if } x<0 \\ q_{r} & \text { if } x \geq 0\end{cases}
$$

has solution

$$
q(x, t)=q(x-u t, 0)= \begin{cases}q_{l} & \text { if } x<u t \\ q_{r} & \text { if } x \geq u t\end{cases}
$$

consisting of a single wave of strength $\mathcal{W}^{1}=q_{r}-q_{l}$ propagating with speed $s^{1}=u$.
R.J. LeVeque, University of Washington

Riemann solution for advection

R.J. LeVeque, University of Washington

Discontinuous solutions

Note: The Riemann solution is not a classical solution of the PDE $q_{t}+u q_{x}=0$, since q_{t} and q_{x} blow up at the discontinuity. Integral form:

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x=u q\left(x_{1}, t\right)-u q\left(x_{2}, t\right)
$$

Integrate in time from t_{1} to t_{2} to obtain

$$
\begin{array}{rl}
\int_{x_{1}}^{x_{2}} & q\left(x, t_{2}\right) d x-\int_{x_{1}}^{x_{2}} q\left(x, t_{1}\right) d x \\
& =\int_{t_{1}}^{t_{2}} u q\left(x_{1}, t\right) d t-\int_{t_{1}}^{t_{2}} u q\left(x_{2}, t\right) d t .
\end{array}
$$

The Riemann solution satisfies the given initial conditions and this integral form for all $x_{2}>x_{1}$ and $t_{2}>t_{1} \geq 0$.

Notes:

Notes:

Notes:

Diffusive flux

$q(x, t)=$ concentration
$\beta=$ diffusion coefficient $(\beta>0)$
diffusive flux $=-\beta q_{x}(x, t)$
$q_{t}+f_{x}=0 \Longrightarrow$ diffusion equation:

$$
\left.q_{t}=\left(\beta q_{x}\right)_{x}=\beta q_{x x} \text { (if } \beta=\mathrm{const}\right) .
$$

Heat equation: Same form, where
$q(x, t)=$ density of thermal energy $=\kappa T(x, t)$,
$T(x, t)=$ temperature,$\quad \kappa=$ heat capacity,
flux $=-\beta T(x, t)=-(\beta / \kappa) q(x, t) \Longrightarrow$

$$
q_{t}(x, t)=(\beta / \kappa) q_{x x}(x, t) .
$$

Advection-diffusion

$q(x, t)=$ concentration that advects with velocity u and diffuses with coefficient β :

$$
\text { flux }=u q-\beta q_{x} .
$$

Advection-diffusion equation:

$$
q_{t}+u q_{x}=\beta q_{x x}
$$

If $\beta>0$ then this is a parabolic equation.
Advection dominated if u / β (the Péclet number) is large.
Fluid dynamics: "parabolic terms" arise from

- thermal diffusion and
- diffusion of momentum, where the diffusion parameter is the viscosity.
R.J. LeVeque, University of Washington

AMath 574, January 3, 2011 [FVMHP Sec. 2.2]

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution $q(x, t)$ is the limit as $\epsilon \rightarrow 0$ of the solution $q^{\epsilon}(x, t)$ of the parabolic advection-diffusion equation

$$
q_{t}+u q_{x}=\epsilon q_{x x} .
$$

For any $\epsilon>0$ this has a classical smooth solution:

